Thèses sur le sujet « Endonucleasi »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Endonucleasi ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
FIRRITO, CLAUDIA. « Targeted Gene Correction and Reprogramming of SCID-X1 Fibroblasts to Rescue IL2RG Expression in iPSC-derived Hematopoietic Cells ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/94656.
Texte intégralGene replacement by integrating vectors has been successfully used to treat several inherited diseases, such as Lysosomal Storage Disorders (LSD), Thalassemia and Primary Immunodeficiencies (PIDs). X-linked Combined Immunodeficiency (SCID-X1) is a fatal monogenic disorder, caused by mutation of the Interleukin 2 Receptor common γ-chain (IL2RG) gene. For SCID-X1, the early clinical studies have clearly shown the therapeutic potential of integrating vector based gene replacement therapy, which achieved efficient lymphoid reconstitution thanks to the selective growth advantage of the genetically modified cells. However, these studies also highlighted the potential risk of insertional mutagenesis due to random integration of the vector into the host cell genome and to unregulated transgene expression, thus calling for the development of safer gene therapy approaches. Here, by combining the Zinc Finger Nuclease (ZFNs) technology to induce site-specific DNA double-strand breaks (DSB) and of Integrase-Defective Lentiviral Vector (IDLV) to deliver a corrective donor template, we exploited Homology Driven Repair (HDR) to correct SCID-X1 mutation in situ, restoring both physiological expression and function of the IL2RG gene . By knocking-in a corrective IL2RG cDNA transgene downstream of its endogenous promoter in B-lymphoblastoid cells, which constitutively express IL2RG, and in primary T-lymphocytes, which requires IL2RG for their survival and growth, we provide evidence of physiologic activity of the gene-edited IL2RG gene. By including an excisable GFP- or a Puromycin Resistance (PuroR) expression cassette downstream of the corrective cDNA, we coupled correction with exogenous selection of corrected SCID-X1 primary fibroblasts, which do not physiologically express IL2RG, and obtained an enriched population of gene-corrected cells. We then reverted this population to pluripotency by using a novel reprogramming vector that expresses OCT4, SOX2, KLF4 and microRNA cluster 302-367 to obtain a potentially unlimited source of gene-corrected induced pluripotent stem cells (iPSC). We thus generated several gene-corrected bona-fide iPSCs, as confirmed by molecular analyses for targeted integration, which were characterized for their pluripotent state. IDLV-mediated transient delivery of the Cre-recombinase resulted in the co-excision of the reprogramming vector together with the selector cassette, thus allowing the generation of several gene-corrected, reprogramming-factor free iPSCs with normal karyotypes. Finally, by differentiating corrected iPSC to T-lymphoid progenitor cells, which are lacking in SCID-X1 patients, and showing a selective growth advantage of those derived from corrected iPSCs, we provide evidence of the functional correction of the IL2RG mutant allele. Overall these data demonstrate the feasibility of our targeted gene editing strategy, which couples gene correction with cell reprogramming to generate disease-free IPSC, thus paving the way for the development of novel and safer therapeutic approaches for SCID-X1.
Daniels, Lucy Elizabeth. « The SgrAI restriction endonuclease ». Thesis, University of Bristol, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393877.
Texte intégralChevalier, Brett S. « Homing endonuclease mechanism, structure and design / ». Thesis, Connect to this title online ; UW restricted, 2002. http://hdl.handle.net/1773/4984.
Texte intégralAlMalki, Faizah. « Structural studies on flap endonuclease complexes ». Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/7293/.
Texte intégralBarzilay, Gil. « Characterisation of human AP endonuclease I (HAP1) ». Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318791.
Texte intégralPernstich, Christian. « Protein dynamics of the restriction endonuclease Fokl ». Thesis, University of Bristol, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526007.
Texte intégralStanford, Neil Philip. « DNA cleavage by the EcoRV restriction endonuclease ». Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299311.
Texte intégralWentzell, Lois Marie. « DNA communications by the SfiI restriction endonuclease ». Thesis, University of Bristol, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388002.
Texte intégralHanson, Mark Nils. « Biochemical characterization of the endonuclease PMR-1 / ». The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488204276532461.
Texte intégralZhao, Lei. « Characterization of bacterial homing endonuclease I-Ssp6803I / ». Thesis, Connect to this title online ; UW restricted, 2008. http://hdl.handle.net/1773/9214.
Texte intégralReuter, Monika. « Die Restriktionsendonuklease EcoRII : Primitives antivirales Abwehrsystem der Bakterien oder mehr ? » Doctoral thesis, Humboldt-Universität zu Berlin, Medizinische Fakultät - Universitätsklinikum Charité, 2002. http://dx.doi.org/10.18452/13829.
Texte intégralBacterial restriction and modification systems (R/M-systems) endonucleolytically attack DNA that is not host cell-specifically modified. R/M-systems comprise a restriction endonuclease and a DNA methyltransferase exhibiting the same DNA sequence specificity. The biological function of the restriction endonuclease is the protection of the cell against invading foreign DNA, e. g. virus infection. The corresponding DNA methyltransferase renders cellular DNA resistent against the endonucleolytic action of the restriction endonuclease by sequence-specific DNA methylation. Dimeric type II- restriction endonucleases recognize short, specific, and unmethylated base sequences that they cut at a defined position in the presence of Mg2+ ions. Restriction endonuclease EcoRII requires the co- ordinated interaction with two copies of the sequence 5 CCWGG for catalytic activity. One of these sequences serves as an allosteric activator site and has not to be cleaved. The two copies of the sequence 5 CCWGG can be located as well on the same as on different DNA molecule(s). EcoRII interaction with two sites on different DNA molecules is limited by their length and concentration, EcoRII interaction within one DNA molecule is limited by the distance between the two sites. The two- domain structure of EcoRII figured out by limited proteolysis studies probably allows this particular form of protein-DNA interaction. The C-terminal domain of EcoRII represents a new restriction endonuclease (EcoRII-C). In contrast to EcoRII wild type, EcoRII-C cleaves DNA at single 5 CCWGG sites. The truncated endonuclease cleaves DNA specifically and independent of a second site. The enzymatic reaction passes well more rapid than that of the complete enzyme. The N-terminal domain binds DNA specifically, attenuates the endonucleolytic activity of EcoRII and makes it dependent on a second copy of the sequence 5 CCWGG. Therefore, the current EcoRII could be an evolutionary intermediate between a site-specific endonuclease and a protein that functions specifically with two DNA sites on the DNA such as recombinases and transposases. The combination of both functions may enable EcoRII to accomplish its own propagation similarly to transposable elements.
Wood, Katie Maria. « Interactions of the SgrAl restriction endonuclease with oligoduplexes ». Thesis, University of Bristol, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407034.
Texte intégralOates, S. L. « Molecular characterisation of the Trypanosoma brucei flap endonuclease ». Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/14274/.
Texte intégralAlgasaier, Sana. « Mechanistic studies of flap endonuclease-1 (FEN-1) ». Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/19940/.
Texte intégralLuke, P. A. « The EcoRI and EcoRV restriction endonucleases ». Thesis, University of Bristol, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372027.
Texte intégralGoddard, Matthew. « The ecology and evolution of selfish genes ». Thesis, Imperial College London, 2000. http://hdl.handle.net/10044/1/11419.
Texte intégralJacobs, D. « Type II restriction-modified systems in Enterobacter aerogenes and Herpetosiphon giganteus ». Thesis, University of Bristol, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379680.
Texte intégralLagerbäck, Pernilla. « Endonuclease II - a GIY-YIG enzyme of bacteriophage T4 ». Doctoral thesis, Uppsala universitet, Institutionen för cell- och molekylärbiologi, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9410.
Texte intégralSukackaitė, Rasa. « Structural and functional studies of the restriction endonuclease BpuJI ». Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2009. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2009~D_20091215_091842-18511.
Texte intégralII tipo restrikcijos endonukleazės atpažįsta specifines DNR sekas ir kerpa DNR šiose sekose arba šalia jų. BpuJI, atpažįstanti 5’-CCCGT seką, skiriasi nuo kitų fermentų tuo, kad jos kirpimo vieta yra labai variabili. Čia parodoma, kad BpuJI yra dimeras, sudarytas iš dviejų monomerų, kurie turi po du atskirus domenus. BpuJI N domenas atpažįsta taikinį kaip monomeras, o C-domenas pasižymi nukleaziniu aktyvumu ir dimerizuojasi. Apo-fermento nukleazinis aktyvumas yra nuslopintas. N-domenams atpažinus taikinį, aktyvuojamas C-domenas, kuris perkerpa DNR šalia taikinio. Be to, aktyvuotas C-domenas yra nespecifinė nukleazė, linkusi nukirpti ~3 nt nuo buko dvigrandės DNR galo. Taigi, BpuJI DNR karpymo pobūdis yra labai sudėtingas. Bioinformatinė analizė ir kryptinga mutagenezė parodė, kad BpuJI C-domenas turi PD-(D/E)XK struktūrinę sanklodą ir yra panašus į archėjų Holidėjaus jungtis karpančias nukleazes. Išsprendus 1,3 Å skiriamosios gebos BpuJI N-domeno/DNR komplekso erdvinė struktūrą, paaiškėjo, kad šį domeną sudaro du „sparnuotą“ spiralė-linkis-spiralė motyvą turintys subdomenai. BpuJI taikinį atpažįsta aminorūgštys, esančios N-rankoje ir abiejų spiralė-linkis-spiralė motyvų atpažinimo spiralėse. BpuJI N-domenas yra labiausiai panašus į Nt.BspD6I nukleazę, kerpančią vieną DNR grandinę. Nt.BspD6I/DNR komplekso struktūros modelis rodo, kad Nt.BspD6I ir BpuJI taikinį atpažįstantys struktūriniai elementai yra panašūs.
Walker, David Colin. « Translocation and cytotoxicity of the HNH endonuclease colicin E9 ». Thesis, University of East Anglia, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368143.
Texte intégralWilliams, Shelley Ann. « Reactions of the SfiI restriction endonuclease with DNA duplexes ». Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326390.
Texte intégralNichols, Claire. « Structure-Function Studies of SgrAI : An Allosteric Restriction Endonuclease ». Thesis, The University of Arizona, 2010. http://hdl.handle.net/10150/144913.
Texte intégralWalker, Jeremy N. B. « Identification and characterisation of novel restriction endonucleases ». Thesis, University of Liverpool, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.277215.
Texte intégralMarshall, Jacqueline Johanna Tabitha. « BcgI and other type IIB restriction endonucleases ». Thesis, University of Bristol, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435433.
Texte intégralGuha, Tuhin. « Biochemical characterization of homing endonucleases encoded by fungal mitochondrial genomes ». PLoS ONE, 2014. http://hdl.handle.net/1993/31680.
Texte intégralOctober 2016
Delgadillo, Liberona José Sebastián. « Clonamiento, expresión y purificación de las endonucleasas apurínicas/apirimidínicas TcAP1 y TcAP2 de Trypanosoma cruzi en condiciones nativas ». Tesis, Universidad de Chile, 2011. http://repositorio.uchile.cl/handle/2250/131433.
Texte intégralEl agente causal de la enfermedad de Chagas o tripanosomiasis americana, es el parásito hemoflagelado Trypanosoma cruzi. Esta enfermedad es de carácter endémico en América Latina; se estima un promedio de 10-15 millones de personas infectadas y 75-90 millones en riesgo de contraer la enfermedad. T. cruzi posee un ciclo de vida indirecto y se presenta en cuatro formas celulares; epimastigote, forma extracelular replicativa y no infectiva, tripomastigote metacíclico y tripomastigote sanguíneo, formas no replicativas e infectivas y amastigote, forma intracelular replicativa. T. cruzi es capaz de sobrevivir al daño oxidativo del DNA generado por especies reactivas de oxígeno y nitrógeno (ROS/RNS) producidas por su propio metabolismo, así como aquellas producidas en el intestino del insecto vector y en células del hospedero mamífero. Este daño sería reparado mediante la actividad de las endonucleasas apurínicas/apirimidínicas (endonucleasas AP) de la vía de escisión de bases (BER). T. cruzi presenta en su genoma secuencias que codificarían para endonucleasas AP, entre ellas TcAP1, homóloga de APE1 humana y TcAP2, homóloga de APE2 humana y de Apn2 de Schizosaccaromyces pombe. La expresión de estas proteínas podría ser fundamental para la sobrevida del parásito, tanto en el vector triatomino como en el hospedero mamífero. Para un estudio sistemático de las características de estas enzimas, se requiere obtenerlas en el más alto grado de pureza desde el parásito o por técnicas de ingeniería genética. En esta Memoria de Título se clonaron las secuencias génicas que codifican para TcAP1 y TcAP2 en vectores de expresión para células eucariontes, lo que se confirmó mediante secuenciación automática de DNA. Con estos constructos se transfectaron células S2 de Drosophila melanogaster, levaduras Pichia pastoris y epimastigotes de T. cruzi cepa Dm28c. Sorprendentemente, sólo fue posible expresar ambas endonucleasas en este último modelo. La imposibilidad de expresar ambas endonucleasas AP en los modelos P. pastoris y D. melanogaster podría relacionarse a una variedad insuficiente o limitada de ciertos tRNAs, necesarios para la expresión de TcAP1 y TcAP2, con la consecuente disminución de la traducción de los mRNAs codificantes para ambos genes. Probablemente, los tRNAs que presentan anticodones específicos para la traducción de las endonucleasas AP de T. cruzi sólo se encuentran en concentraciones adecuadas en modelos celulares de expresión filogenéticamente cercanos a este protozoario. Mediante cromatografía de afinidad se intentó purificar TcAP1-GFP a partir de homogeneizados de proteínas totales de epimastigotes transfectados que expresaban esta proteína recombinante. Sin embargo no se logró obtener la proteína recombinante en condiciones nativas de forma pura. Se concluye que la utilización de GFP asociado como proteína de fusión a TcAP1 sólo permite la identificación de la proteína recombinante y no una purificación adecuada de la misma
Proyecto Bicentenario Anillo ACT 112, CONICYT, Chile. Proyecto FONDECYT 1090124.
Russell, Anthony George. « Characterization of a novel archaeal RNA endonuclease from Sulfolobus acidocaldarius ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0017/NQ56609.pdf.
Texte intégralLu, Jian. « The Kluyveromyces lactis killer toxin is a transfer RNA endonuclease ». Doctoral thesis, Umeå : Department of Molecular Biology, Umeå Univ, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1092.
Texte intégralRepanas, Konstantinos. « Structural and functional studies on the LINE-1 retrotransposon endonuclease ». [S.l.] : Rotterdam : [The Author] ; Erasmus University [Host], 2007. http://hdl.handle.net/1765/10512.
Texte intégralŠilanskas, Arūnas. « Restriction endonuclease-triplex forming oligonucleotide conjugates with controllable catalytic activity ». Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20120702_082537-22107.
Texte intégralMutacijos, atsiradusios atitinkamuose žmogaus genuose, gali lemti pakitusių baltymų atsiradimą, kurie sukelia įvairias ligas (pvz.: vėžį), klaidingą embriono vystymąsi ar priešlaikinę mirtį. Tokios genetinės ligos gali būti gydomos genų terapijos būdu. Labiausiai vystoma genų terapijos strategija yra paremta homologine rekombinacija, kurios metu DNR seka, naudojama geno taisymui, yra patiekiama in trans. Natūraliai žinduolių ląstelėse homologinė rekombinacija (HR) vyksta žemu rekombinacijos dažniu (10-6). Tačiau yra žinoma, kad dvigrandininio trūkio įvedimas žymiai pagreitina HR (10-1). In vivo eksperimentų atveju dvigrandininio trūkio įvedimas turi būti ypač tikslus, todėl šis metodas reikalauja naujų molekulinių įrankių, kurie būtų itin specifiški ir griežtai kontroliuojami. Šiame darbe mes orientavomės į itin specifiškų ir griežtai kontroliuojamų meganukleazių kūrimą naudojant restrikcijos endonukleazių (REazių)-tripleksą formuojančių oligonukleotidų (TFO) konjugatus. REazių-TFO konjugatuose TFO suteikia specifiškumą prailgintam atpažinimo taikiniui per DNR triplekso susidarymą taip nukreipdamas restrikcijos fermentą prie konkretaus taikinio kur norima įvesti dvigrandininį trūkį. Šiuo tyrimu mes parodėme dvi alternatyvias restrikcijos endonukleazių-TFO konjugatų aktyvumo reguliavimo strategijas, kas leistų šias nukleazes panaudoti in vivo tyrimuose. Tuo tikslu buvo pasirinkti ortodoksiniai restrikcijos fermentai MunI ir Bse634I, kurie mūsų laboratorijoje yra gerai... [toliau žr. visą tekstą]
Preece, Fiona Louise. « Reactions at two DNA sites by the BSPMI restriction endonuclease ». Thesis, University of Bristol, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.495821.
Texte intégralKeeble, Anthony Howard. « Biophysical analysis of ligand binding to the colicin E9 endonuclease ». Thesis, University of East Anglia, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251393.
Texte intégralElliott, Sarah Louise. « E. coli Vsr endonuclease : mechanism and role in mismatch repair ». Thesis, University of Newcastle Upon Tyne, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417442.
Texte intégralMosbahi, KheÌdidja. « Interaction of the endonuclease domain of colicin E9 with membranes ». Thesis, University of York, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399260.
Texte intégralErskine, Symon George. « The kinetics of DNA cleavage by the EcoRV restriction endonuclease ». Thesis, University of Bristol, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388107.
Texte intégralLau, Roxanne. « Characterisation of the streptococcal DNA polymerase I flap endonuclease domain ». Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/19951/.
Texte intégralMeisenberg, Cornelia. « The role of ubiquitylation in regulating apurinic/apyrimidinic endonuclease 1 ». Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:9a6582d4-6fc0-48c9-9c13-6c99e23e66e9.
Texte intégralDance, Geoffrey Stephen Charles. « Endonucleases involved in mRNA decay in E. coli ». Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260160.
Texte intégralBolton, Bryan John. « Class II restriction endonucleases : screening, purification and characterization ». Thesis, University of Salford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240035.
Texte intégralBilcock, Denzil Trevor. « DNA communications by SfiI and other restriction endonucleases ». Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299592.
Texte intégralJakimo, Noah Michael. « Genomic nucleic acid memory storage with directed endonucleases ». Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98625.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (pages 40-41).
Technologies for long-term recording of cellular pathway activation are constrained by the difficultly to constantly monitor transient signaling events and expression of target genes. To overcome these limitations we designed a recording tool that uses the transcriptional output of a signaling pathway as the input for an engineered genome encoded memory. The mechanism of recording leverages the programmable nature of the bacterial immune system that consists of Clustered Regularly Interspaced Short Palindromic Repeat Sequences (CRISPR), which can recognize and cleave viral DNA using an RNA-guided directed endonuclease. Cuts left by the endonuclease are repaired by an error-prone DNA damage repair mechanism, namely non-homologous end joining (NHEJ), likely to leave mutations at the cut sites. Defining the cut site with pathway-dependent transcription of guide RNA, this genomic region is sequenced to measure pathway activation by the amount of accumulated mutations. To demonstrate a system to monitor cancer metabolism, guide RNA is expressed in mammalian cell culture with a NF-kappaB promoter. To demonstrate a system that can monitor sugar intake in an environment like the gut, guide RNA is expressed in bacteria with an arabinose promoter.
by Noah Jakimo.
S.M.
Gao, Honghai. « Biochemical study of endonuclease V and its application in mutation scanning ». Connect to this title online, 2007. http://etd.lib.clemson.edu/documents/1181252071/.
Texte intégralMitchell, Belinda Michon Hall. « Restriction endonuclease analysis of chromosomal DNA from campylobacter and helicobacter organisms ». Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/25220.
Texte intégralGorman, Michael Anthony. « Crystal structure of the human DNA repair enzyme AP endonuclease 1 ». Thesis, Open University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242493.
Texte intégralMakovets, Svetlana. « Regulation of the endonuclease activity of type 1 restriction-modification systems ». Thesis, University of Edinburgh, 1999. http://hdl.handle.net/1842/11090.
Texte intégralTechner, José-Marc. « Sequence Affinity Studies of E301W, A Mutant of Restriction Endonuclease SgrAI ». Thesis, The University of Arizona, 2011. http://hdl.handle.net/10150/144972.
Texte intégralPatel, Nikesh. « Mechanistic and structural studies of the helical arch of flap endonuclease ». Thesis, University of Sheffield, 2012. http://etheses.whiterose.ac.uk/3135/.
Texte intégralSilva, Rita de C?ssia Barreto da. « Caracteriza??o de uma nova exonuclease identificada em uma biblioteca metagen?mica ». Universidade Federal do Rio Grande do Norte, 2014. http://repositorio.ufrn.br/handle/123456789/19374.
Texte intégralApproved for entry into archive by Elisangela Moura (lilaalves@gmail.com) on 2015-11-16T15:20:00Z (GMT) No. of bitstreams: 1 RitaDeCassiaBarretoDaSilva_TESE.pdf: 3291914 bytes, checksum: 557593d073ed5762546f566b1d7e415d (MD5)
Made available in DSpace on 2015-11-16T15:20:00Z (GMT). No. of bitstreams: 1 RitaDeCassiaBarretoDaSilva_TESE.pdf: 3291914 bytes, checksum: 557593d073ed5762546f566b1d7e415d (MD5) Previous issue date: 2014-03-27
2019-05-27
A abordagem metagen?mica tem permitido o acesso ao material gen?tico de microrganismos n?o cultivados e tem sido usada para identifica??o de novos genes. Apesar da import?ncia dos mecanismos de reparo de DNA para a manuten??o da integridade gen?mica nosso conhecimento sobre mecanismos de reparo de DNA ? baseado em organismos modelo como E. coli e pouco ? conhecido sobre os organismos de vida livre e n?o cultivados. Neste trabalho, a abordagem metagen?mica foi aplicada para descobrir novos genes envolvidos com a manuten??o da integridade gen?mica. Um clone positivo foi identificado por replicar a biblioteca metagen?mica em meio seletivo contendo H2O2. O clone metagen?mico foi capaz de complementar parcialmente a defici?ncia em reparo de DNA de cepas simples e duplo-mutantes de E.coli (recA e xthA nfo, respectivamente) submetidas ao estresse gerado por H2O2 e MMS.A an?lise de sequ?ncia mostrou uma ORF codificando para uma prote?na hipot?tica membro da superfam?lia Exo_Endo_Phos (PF03372) e, a filogenia indicou que a mesma n?o est? inclusa em nenhuma das subfam?lias EEP. Assim, uma nova nuclease foi identificada e experimentalmente caracterizada in vivo e in vitro. Ensaios espec?ficos utilizando a nuclease purificada e oligonucleotideos fluorescentemente marcados revelaram sua atividade 3?-5?exonuclease, em substratos simples e dupla-fita, dependente de Magn?sio e sens?vel a EDTA. Uma vez que este ? o primeiro relato e caracteriza??o de uma enzima obtida a partir de abordagem metagen?mica mostrando uma atividade exonuclease, foi nomeada EXOMEG1
Sandegren, Linus. « Group I Introns and Homing Endonucleases in T-even-like Bacteriophages ». Doctoral thesis, Stockholm : Institutionen för molekylärbiologi och funktionsgenomik, Univ, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-211.
Texte intégralKim, Hyong-ha. « A novel intron-encoded endonuclease derived from the fourth intron of the Chlamydomonas reinhardtii psbA gene / ». Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.
Texte intégral