Sommaire
Littérature scientifique sur le sujet « End-tethering »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « End-tethering ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "End-tethering"
Solinger, Jachen A., et Anne Spang. « Loss of the Sec1/Munc18-family proteins VPS-33.2 and VPS-33.1 bypasses a block in endosome maturation in Caenorhabditis elegans ». Molecular Biology of the Cell 25, no 24 (décembre 2014) : 3909–25. http://dx.doi.org/10.1091/mbc.e13-12-0710.
Texte intégralHuang, H., L. S. Penn, R. P. Quirk et T. H. Cheong. « Effect of Segmental Adsorption on the Tethering of End-Functionalized Polymer Chains ». Macromolecules 37, no 2 (janvier 2004) : 516–23. http://dx.doi.org/10.1021/ma030333r.
Texte intégralPausch, Jonas, Tatiana Sequeira Gross, Hermann Reichenspurner et Evaldas Girdauskas. « Left ventricular reverse remodeling after successful subannular mitral valve repair in end-stage heart failure : a case report ». European Heart Journal - Case Reports 4, no 3 (27 avril 2020) : 1–5. http://dx.doi.org/10.1093/ehjcr/ytaa087.
Texte intégralDeshpande, Rajashree A., Gareth J. Williams, Oliver Limbo, R. Scott Williams, Jeff Kuhnlein, Ji‐Hoon Lee, Scott Classen et al. « ATP ‐driven Rad50 conformations regulate DNA tethering, end resection, and ATM checkpoint signaling ». EMBO Journal 35, no 7 (avril 2016) : 791. http://dx.doi.org/10.15252/embj.201694047.
Texte intégralJain, Suvi, Neal Sugawara et James E. Haber. « Role of Double-Strand Break End-Tethering during Gene Conversion in Saccharomyces cerevisiae ». PLOS Genetics 12, no 4 (13 avril 2016) : e1005976. http://dx.doi.org/10.1371/journal.pgen.1005976.
Texte intégralDeshpande, R. A., G. J. Williams, O. Limbo, R. S. Williams, J. Kuhnlein, J. H. Lee, S. Classen et al. « ATP-driven Rad50 conformations regulate DNA tethering, end resection, and ATM checkpoint signaling ». EMBO Journal 33, no 5 (3 février 2014) : 482–500. http://dx.doi.org/10.1002/embj.201386100.
Texte intégralSplinter, Daniël, David S. Razafsky, Max A. Schlager, Andrea Serra-Marques, Ilya Grigoriev, Jeroen Demmers, Nanda Keijzer et al. « BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures ». Molecular Biology of the Cell 23, no 21 (novembre 2012) : 4226–41. http://dx.doi.org/10.1091/mbc.e12-03-0210.
Texte intégralNovick, P., M. Medkova, G. Dong, A. Hutagalung, K. Reinisch et B. Grosshans. « Interactions between Rabs, tethers, SNAREs and their regulators in exocytosis ». Biochemical Society Transactions 34, no 5 (1 octobre 2006) : 683–86. http://dx.doi.org/10.1042/bst0340683.
Texte intégralBrown, Robert H., et Wayne Mitzner. « Airway closure with high PEEP in vivo ». Journal of Applied Physiology 89, no 3 (1 septembre 2000) : 956–60. http://dx.doi.org/10.1152/jappl.2000.89.3.956.
Texte intégralBlaustein, Robert O. « Kinetics of Tethering Quaternary Ammonium Compounds to K+ Channels ». Journal of General Physiology 120, no 2 (30 juillet 2002) : 203–16. http://dx.doi.org/10.1085/jgp.20028613.
Texte intégralThèses sur le sujet "End-tethering"
RINALDI, CARLO. « Functions and regulation of the MRX and Ku protein complexes at DNA ends ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/402372.
Texte intégralGenome instability is one of the hallmarks of cancer cells and it can be caused by DNA repair defects. Among several types of DNA damage, DNA double-strand breaks (DSBs) are highly cytotoxic lesions that can form accidentally during DNA replication or upon exposure to genotoxic agents. DSBs must be repaired to avoid loss of genetic information and to ensure genomic stability. Eukaryotic cells repair DSBs by activating the DNA damage response (DDR) and by using two main mechanisms: non-homologous end joining (NHEJ) and homologous recombination (HR). The cellular response to DSBs is initiated by the recruitment of Ku (Ku70-Ku80) and MRX/N (Mre11-Rad50-Xrs2/Nbs1) complexes at the two DSB broken ends. MRX in turn recruits Tel1/ATM, a kinase involved in the DNA damage checkpoint, a surveillance mechanism that couples DSB repair and cell-cycle progression. Tel1 allows to promote and stabilize MRX association at both DSBs and telomeres in a positive feedback loop. Ku, MRX/MRN, and Tel1/ATM are also required to maintain the length of telomeres, specialized nucleoprotein complexes at the ends of eukaryotic chromosomes. Furthermore, telomeric DNA must be distinguished from intrachromosomal DSBs ends through different protein complexes, which are recruited to telomeres in order to prevent DDR activation. In S. cerevisiae, Rif2 and Rap1 are two of the main proteins that compose these complexes. Both Rif2 and Rap1 counteract Tel1 activation, nucleolytic degradation, and NHEJ at telomeres. Rif2 appears to exert all these functions by inhibiting MRX association with telomeric DNA, however how Rap1 negatively controls MRX activity at DNA ends remained to be determined. In the first part of my PhD, I contributed to show that Rif2 counteracts MRX association at both DSBs and telomeres in a Rap1-dependent manner. Rap1 in turn can inhibit MRX functions in a Rif2-dependent and -independent manner, and Rap1 functions at DNA ends are influenced by its DNA binding mode. An important issue in NHEJ is the maintenance of the DSB ends in close proximity to allow their correct re-ligation. This function is called end-tethering and some data in E.coli suggested an involvement of the Ku complex in this control mechanism. However, a Ku role in end-tethering remained to be determined. In the second part of my PhD, I investigated this issue by generating a Ku70 mutant variant that increases Ku persistence at DSBs. The characterization of the ku70-C85Y allele has allowed to show that the Ku complex promotes DSB end-tethering and the C85Y mutation enhances this bridging function by increasing Ku retention very close to the DSB ends. The function of Ku in DSB end-tethering is also regulated by Tel1/ATM, which antagonizes this Ku function by limiting Ku persistence at the DSB ends. As the presence of Ku at the DSB ends prevents the access of resection nucleases, the Tel1-mediated regulation of Ku association with the DSB ends provides an important layer of control in the choice between NHEJ and HR mechanism, suggesting a new function of Tel1 in the DNA damage response. All these findings contributed to elucidate the molecular mechanisms that modulate DNA repair and maintain genome stability in response to DSBs, with a specific focus on the functions and regulation of MRX and Ku complexes.
Kalantzaki, Maria. « Dissecting the role of Ndc80 and Dam1 complexes in tethering kinetochores at the microtubule plus end : an in vivo approach ». Thesis, University of Dundee, 2013. https://discovery.dundee.ac.uk/en/studentTheses/50674f9d-a3d9-45e8-873c-f25ace77c7bf.
Texte intégral