Littérature scientifique sur le sujet « Emulsion extraction »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Emulsion extraction ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Emulsion extraction"
Arun, Varun, Samsnavith Segu Jalaludeen, Suryarajan Jayakumar et Samdavid Swaminathan. « Effect of contacting pattern and various surfactants on phenol extraction efficiency using emulsion liquid membrane ». International Journal of Chemical Reactor Engineering 19, no 7 (25 février 2021) : 739–47. http://dx.doi.org/10.1515/ijcre-2020-0156.
Texte intégralV. Yefimov, Stanislav, et Pedro Gil. « One Step Extraction Method, Sample Preparation Procedure for HPLC/MS Analysis of Altrenogest Sesame Oil Solutions [Extraction of altrenogest from sesame oil with acetonitrile, HPLC/MS] ». South Asian Research Journal of Pharmaceutical Sciences 4, no 1 (5 février 2022) : 17–21. http://dx.doi.org/10.36346/sarjps.2022.v04i01.003.
Texte intégralLängauer, David, Yu-Ying Lin, Wei-Hsin Chen, Chao-Wen Wang, Michal Šafář et Vladimír Čablík. « Simultaneous Extraction and Emulsification of Food Waste Liquefaction Bio-Oil ». Energies 11, no 11 (5 novembre 2018) : 3031. http://dx.doi.org/10.3390/en11113031.
Texte intégralNunez, Cristian, Ramin Dabirian, Ilias Gavrielatos, Ram Mohan et Ovadia Shoham. « Methodology for Breaking Up Nanoparticle-Stabilized Oil/Water Emulsion ». SPE Journal 25, no 03 (12 mars 2020) : 1057–69. http://dx.doi.org/10.2118/199892-pa.
Texte intégralMitbumrung, Wiphada, Numphung Rungraung, Niramol Muangpracha, Ploypailin Akanitkul et Thunnalin Winuprasith. « Approaches for Extracting Nanofibrillated Cellulose from Oat Bran and Its Emulsion Capacity and Stability ». Polymers 14, no 2 (14 janvier 2022) : 327. http://dx.doi.org/10.3390/polym14020327.
Texte intégralKluge, Johannes, Lisa Joss, Sebastian Viereck et Marco Mazzotti. « Emulsion crystallization of phenanthrene by supercritical fluid extraction of emulsions ». Chemical Engineering Science 77 (juillet 2012) : 249–58. http://dx.doi.org/10.1016/j.ces.2011.12.008.
Texte intégralLinares-Devia, Natalia, Javier Arrieta-Escobar, Yolima Baena, Alvaro Orjuela et Coralia Osorio. « Development and Characterization of Emulsions Containing Ground Seeds of Passiflora Species as Biobased Exfoliating Agents ». Cosmetics 9, no 1 (21 janvier 2022) : 15. http://dx.doi.org/10.3390/cosmetics9010015.
Texte intégralGhetiu, Iuliana, Ioana Gabriela Stan, Casen Panaitescu, Cosmin Jinescu et Alina Monica Mares. « Surfactants Efficiency in Oil Reserves Exploatation ». Revista de Chimie 68, no 2 (15 mars 2017) : 273–78. http://dx.doi.org/10.37358/rc.17.2.5435.
Texte intégralKerimova, Z. K., et K. Y. Alieva. « Production of emulsion crème from the Izabella grape seeds and the study of its pharmacocosmetological properties ». Reviews on Clinical Pharmacology and Drug Therapy 10, no 3 (15 septembre 2012) : 50–52. http://dx.doi.org/10.17816/rcf10350-52.
Texte intégralFouad, Elsayed Ali. « Optimizing Emulsion Liquid Membrane Process for Extraction of Nickel from Wastewater Using Taguchi Method ». International Journal of Research in Science 3, no 1 (30 mars 2017) : 1. http://dx.doi.org/10.24178/ijrs.2017.3.1.01.
Texte intégralThèses sur le sujet "Emulsion extraction"
Duhayon, Christophe. « Copper solvent extraction by ultrasound-assisted emulsification ». Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210155.
Texte intégralon solvent extraction. This process should fit the exploitation of small local
copper-rich deposits. In these conditions, the plant has to be as compact as
possible in order to be easily transported from one location to a subsequent
one. Improved extraction kinetics could ensure a high throughput of the
plant despite its compactness. In addition, the extraction reagent should
not be damaging for the environnement. On this basis, we propose to use
ultrasound-assisted solvent extraction. The main idea is to increase the
extraction kinetics by forming an emulsion in place of a dispersion thanks to
the intense cavitation produced by ultrasound. The benefit of this method
is to improve the copper extraction kinetics by increasing the interfacial
surface area and decreasing the width of the diffusion layer. We studied the
implementation of an highly branched decanoic acid (known as Versatic-
10®acid) as a copper extraction reagent dispersed in kerosene.
Emulsification is monitored through the Sauter diameter of the organic
phase droplets in aqueous phase. This diameter is measured during pulsed
and continuous ultrasound irradiation via a static light scattering technique.
The phenomenon of emulsification of our system by ultrasound is effective,
and the emulsification process carried out in the pulsed ultrasound mode is
at least as efficient as the emulsification obtained under continuous mode.
No improvement of emulsification is observed beyond a threshold time of
the ultrasound impulse. This may be attributed to a competition between
disruption and coalescence. The use of mechanical stirring combined with
pulsed ultrasound allows to control the droplet size distribution.
In presence of ultrasound, the extraction kinetics of Versatic-10 acid is
multiplied by a factor ten, and therefore reached a value similar to the kinetics
observed without ultrasound with an industrial extractant such as
LIX-860I®(Cognis). Extraction kinetics measurements are carried out by
monitoring the copper ion concentration in the aqueous phase with an electrochemical
cell.
We conclude that ultrasound-assisted emulsification can be implemented
under certain conditions. Emulsification is a first step, and the following
destabilization step has to be studied. The device using ultrasound-assisted
emulsification should be followed by an efficient settling-coalescing device. A
possible solution would be to promote emulsion destabilization by increasing
the ionic strength with an addition of MgSO4, a salt that is not extracted
by the extraction reagent in the considered range of pH.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Mokhtari, B., et K. Pourabdollah. « Emulsion-Liquid-Membrane Extraction of Alkali Metals by Nano-baskets ». Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/35137.
Texte intégralChaudhuri, Julian Brajendra. « Kinetic studies on the emulsion liquid membrane extraction of lactic acid ». Thesis, University of Reading, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.253779.
Texte intégralPickering, Paul. « Selective extraction of (D)-phenylalanine from aqueous racemic (D/L)-phenylalanine by chiral emulsion liquid membrane extraction ». Thesis, University of Bath, 1994. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.481450.
Texte intégralGuillemin, Sandrine. « Extraction aqueuse d'huile de colza assistée par hydrolyse enzymatique : optimisation de la réaction, caractérisation de l'émulsion et étude de procédés de déstabilisation ». Thesis, Vandoeuvre-les-Nancy, INPL, 2006. http://www.theses.fr/2006INPL073N/document.
Texte intégralConsumer's concerns about the quality and environmental impact of the products as well as the industrial requirements regarding the risk assessment and the environmental and health repercussions of the solvent extraction of rapeseed oil using hexane led us to work on the optimisation of the aqueous enzymatic extraction of this oil. The study has been carried out to determine the best combination of enzymes able to achieve the disruption of the vegetal adipose tissue, and to characterize the emulsion obtained after centrifugation. The final objective was to maximize the yields of the oil extraction and to obtain adequate nutritional properties of the cake. After the physicochemical characterization of the rapeseed raw material, several proteases and polysaccharide hydrolases have been tested individually and in combination in order to optimize the removal of free oil and the emulsion oil yield occurring during the aqueous extraction process. The physicochemical properties of the emulsion have been determined: rheological properties, pH, conductivity, spectroscopy by Short Angles Light Scattering). Thereafter some physicochemical and thermo-mechanical treatments have been carried out to destabilize the oil-in-water emulsion obtained after the centrifugation, which contained a large part of the total oil of the reaction mixture. Three destabilization processes appeared particularly interesting to increase the free oil removal from the emulsion: talc addition before centrifugation, phase inversion by addition of exogenous oil in presence of NaCl in the aqueous phase, and freezing/thawing cycles. Finally, an optimisation trial of the freezing/thawing process using a Doehlert experimental design has been done as an example
Morales, Chabrand Ramón. « Destabilization of the emulsion formed during aqueous extraction of oil from full fat soybean flour ». [Ames, Iowa : Iowa State University], 2007.
Trouver le texte intégralFalco, Nunzia. « Continuous supercritical emulsion extraction : process characterization and optimization of operative conditions to produce biopolymer microspheres ». Doctoral thesis, Universita degli studi di Salerno, 2012. http://hdl.handle.net/10556/294.
Texte intégralControlled release systems for therapeutic drugs have received extensive attention in recent years, due to their great clinical potential. Biodegradable microspheres are well-recognized systems to control the release rate of a drug out of a pharmaceutical dosage form; they are able to protect these agents against rapid degradation and clearance and release them in the body with a desired controlled rate and amount. Particularly, biopolymer microspheres are attracting increasing attention as drug carriers for injectable controlled release formulations. Biopolymer microspheres for controlled drug delivery can be conventionally prepared by solvent evaporation/extraction of emulsions, but this technique shows many drawbacks (high temperature, long processing times, large polidispersity, high residual solvents, lower encapsulation efficiency). To overcome the limits of the traditional process, in recent years, Supercritical Emulsion Extraction (SEE) has been proposed for the production of drug/polymer microspheres with controlled size and distribution, starting from oil-in-water (o-w) and water-in-oil-in-water (w-o-w) emulsions. This process uses supercritical carbon dioxide (SC-CO2) to extract the “oil” phase of emulsions, leading to near solvent-free microparticles. SEE offers the advantage of being a one-step process and is superior to other conventional techniques for the better particle size control, higher product purity and shorter processing times; but, as traditional processes, it shows problems related to batch-to-batch reproducibility and reduction of the process yield, due to the intrinsically discontinuous operation. In the present work, a novel SEE configuration is proposed in a continuous operation layout (Continuous Supercritical Emulsion Extraction, SEE-C) using a countercurrent packed tower, for the production of controlled-size biopolymer microparticles in a robust and reproducible mode. Particularly, the purpose of this thesis is the optimization and characterization of the SEE-C process to investigate its capabilities and performances in the production of poly-lactic-co-glycolic acid (PLGA) microparticles with an engineered size and distribution and charged with different active principles (APs). Before to investigate the possibility to produce AP/PLGA microspheres, an optimization of the process has been performed. Indeed, the thermodynamics of the selected system (ethyl acetate+CO2) has been studied, together with the analysis of the process operating parameters. Moreover, a fluidodynamic characterization of the packed tower has been carried out to identify the best condition of operation, below the flooding point. The capacity limits for the packing material have been evaluated and, then, directly measured in terms of flooding point at different operating conditions. Afterwards, firstly blank (drug-free) PLGA microparticles have been successfully produced, starting from single and double emulsions. Secondly, anti-inflammatory drugs (such as Piroxicam and Diclofenac Sodium), corticosteroids (such as Hydrocortisone acetate) and proteins (such as Insulin) have been chosen as model compounds to be entrapped within PLGA microspheres. All the emulsions produced were stable with non-coalescing droplets. The corresponding microspheres obtained were spherical in shape and well-defined with narrow size distributions, due to the short processing time that prevents aggregation phenomena typically occurring during conventional solvent evaporation process. The influence of some emulsion formulation parameters (such as polymer concentration and emulsion stirring rate) on particle size has been investigated, showing that the droplet formation step determines size and size distribution of the resulting microspheres; particularly, a significant increase in particle size with the increase of polymer concentration or the decrease of emulsion stirring rate has been observed. Moreover, the effect of kind and formulation of emulsion on the microsphere characteristics has also been investigated, demonstrating that the choice of the encapsulation approach and the emulsion composition have a considerable influence on the attainable drug encapsulation efficiency. The produced microspheres have been characterized by X-ray, DSC, HPLC and UV-vis analysis. DSC and X-ray analyses confirmed that the microspheres were formed by an AP/PLGA solid solution and the active principle was entrapped in an amorphous state into the polymeric matrix. HPLC analysis revealed that good encapsulation efficiencies have been obtained in the products obtained. Release studies showed uniform drug concentration profiles, confirming a good dispersion of the drug into the polymer particles. The obtained AP/PLGA microspheres can degrade and release the encapsulated active principle slowly with a specific release profile. Active principle loading, particle size and emulsion kind revealed to be the controlling parameters for drug release. A study of PLGA microparticles degradation has also been carried out to monitor any morphological difference in time of the biodegradable devices produced by SEE-C. Moreover, a comparative study between the characteristics of the PLGA microspheres obtained by SEE-C and the ones produced by the corresponding batch operating mode process (SEE) and conventional evaporation technology (SE) has been performed. PLGA microparticles produced by SEE-C showed a mean particle size always smaller than that associated with particles produced by SEE and SE; physico-chemical properties showed no morphological and structural differences between the processes. Compared with conventional technologies for the preparation of drug delivery systems, e.g. solvent evaporation emulsion techniques, the novel process is environmentally superior and suitable for scaling up to industrial dimensions. Moreover, the higher degree of control, as indicated by the high reproducibility, makes validation of the process very simple. In conclusion, the SEE-C process has shown to be an attractive way of incorporating active principles into biodegradable microparticles for controlled release formulations. Greater product uniformity, higher throughput with smaller plant volumes and elimination of batch-to-batch repeatability problems are the significant advantages observed. [edited by author]
X n.s.
Yates, Matthew Zachariah. « Latex formation and steric stabilization in supercritical carbon dioxide / ». Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Texte intégralGilbert, Christopher Donald. « Non-Newtonian conversion of emulsion liquid membranes in the extraction of lead and zinc from simulated wastewater ». Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/10911.
Texte intégralYim, Ka Ho. « Comparaison de procédés d'extraction appliqués au domaine des biotechnologies blanches ». Phd thesis, Ecole Centrale Paris, 2013. http://tel.archives-ouvertes.fr/tel-00910070.
Texte intégralLivres sur le sujet "Emulsion extraction"
Nilsen, D. N. Copper extraction from aqueous solutions with liquid emulsion membranes : A preliminary laboratory study. Washington, D.C : U.S. Dept. of the Interior, Bureau of Mines, 1991.
Trouver le texte intégralRazdelenie ėmulʹsiĭ v smesitelʹno-otstoĭnykh ėkstraktorakh. Apatity : Kolʹskiĭ filial AN SSSR, 1988.
Trouver le texte intégralKhurshkainen, T. V. Verva - complex biopreparation for plant growing. Sous la direction de A. V. Kuchin. FRC Komi SC UB RAS, 2020. http://dx.doi.org/10.19110/89606-012.
Texte intégralChapitres de livres sur le sujet "Emulsion extraction"
Ho Yim, Ka, Moncef Stambouli et Dominique Pareau. « Emulsion Extraction of Bio-products : Influence of Bio-diluents on Extraction of Gallic Acid ». Dans Alternative Solvents for Natural Products Extraction, 221–35. Berlin, Heidelberg : Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43628-8_10.
Texte intégralChaudhuri, J. B., et D. L. Pyle. « A Model for Emulsion Liquid Membrane Extraction of Organic Acids ». Dans Separations for Biotechnology 2, 112–21. Dordrecht : Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0783-6_13.
Texte intégralReed, D. L., A. L. Bunge et R. D. Noble. « Influence of Reaction Reversibility on Continuous-Flow Extraction by Emulsion Liquid Membranes ». Dans Liquid Membranes, 62–83. Washington, DC : American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0347.ch005.
Texte intégralThakur, Avinash, Parmjit Singh Panesar et Manohar Singh Saini. « Statistical Optimization of Lactic Acid Extraction from Fermentation Broth Using Emulsion Liquid Membrane ». Dans Biotechnology and Biochemical Engineering, 21–33. Singapore : Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1920-3_3.
Texte intégralSulaiman, Raja Norimie Raja, Norasikin Othman, Nor Aishah Saidina Amin, Noor Haziqah Kamaludin et Nur Na Illah Sallih Udin. « Extraction of Ionized Nanosilver by Emulsion Liquid Membrane Using Cyanex 302 as a Mobile Carrier ». Dans Proceedings of the International Conference on Science, Technology and Social Sciences (ICSTSS) 2012, 463–69. Singapore : Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-287-077-3_54.
Texte intégralSantos, Diego T., Ádina L. Santana, M. Angela A. Meireles, Ademir José Petenate, Eric Keven Silva, Juliana Q. Albarelli, Júlio C. F. Johner, M. Thereza M. S. Gomes, Ricardo Abel Del Castillo Torres et Tahmasb Hatami. « Supercritical Fluid Extraction of Emulsion Obtained by Ultrasound Emulsification Assisted by Nitrogen Hydrostatic Pressure Using Novel Biosurfactant ». Dans Supercritical Antisolvent Precipitation Process, 65–74. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26998-2_5.
Texte intégralYurtov, E. V., et M. Yu Koroleva. « Emulsions for Liquid Membrane Extraction : Properties and Peculiarities ». Dans ACS Symposium Series, 89–102. Washington, DC : American Chemical Society, 1996. http://dx.doi.org/10.1021/bk-1996-0642.ch006.
Texte intégralSantos, Diego T., Ádina L. Santana, M. Angela A. Meireles, Ademir José Petenate, Eric Keven Silva, Juliana Q. Albarelli, Júlio C. F. Johner, M. Thereza M. S. Gomes, Ricardo Abel Del Castillo Torres et Tahmasb Hatami. « Recent Developments in Particle Formation with Supercritical Fluid Extraction of Emulsions Process for Encapsulation ». Dans Supercritical Antisolvent Precipitation Process, 51–64. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26998-2_4.
Texte intégralWeixuan, LI, DAI Xing et SHI Yajun. « Study on the Swelling of Emulsion Liquid Membrane ». Dans Solvent Extraction 1990, Part B, 1655–60. Elsevier, 1992. http://dx.doi.org/10.1016/b978-0-444-88677-4.50093-3.
Texte intégralMORI, E., M. I. ORTIZ et A. IRABIEN. « Membrane Behaviour in Chromate Recovery Using Emulsion Liquid Membranes ». Dans Solvent Extraction 1990, Part B, 1585–88. Elsevier, 1992. http://dx.doi.org/10.1016/b978-0-444-88677-4.50081-7.
Texte intégralActes de conférences sur le sujet "Emulsion extraction"
Ali Demirci, Julie C. Cotton, Anthony L. Pometto III, Kristi R. Harkins et Paul N. Hinz. « Optimization of Emulsion Liquid Extraction System for Lactic Acid Recovery ». Dans 2002 Chicago, IL July 28-31, 2002. St. Joseph, MI : American Society of Agricultural and Biological Engineers, 2002. http://dx.doi.org/10.13031/2013.9228.
Texte intégralMathews, Tanya Ann, Paul Azzu, Jairo Cortes et Berna Hascakir. « Effective Extraction of a Heavy Oil Resource by an Environmentally Friendly Green Solvent : Limonene. » Dans SPE Annual Technical Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210138-ms.
Texte intégralLuo, Chuannan, Zhongpeng Xu, Xueying Wang et Zhen Lv. « Extraction of p-phenylenediamine From Aqueous Solutions Using Emulsion Liquid Membranes ». Dans 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2009. http://dx.doi.org/10.1109/icbbe.2009.5162842.
Texte intégralLeite Nobrega De Moura Bell, Juliana. « Understanding the impact of proteolysis on extractability, physicochemical, and functional properties of proteins and lipids from almond flour ». Dans 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/pyui3979.
Texte intégralYuliusman, Silvia, Annisaa Nurqomariah et Radifan Fajaryanto. « Extraction of Co and Ni metals using emulsion liquid membrane and liquid-liquid extraction with Cyanex 272 as extractant ». Dans THE 11TH REGIONAL CONFERENCE ON CHEMICAL ENGINEERING (RCChE 2018). Author(s), 2019. http://dx.doi.org/10.1063/1.5095049.
Texte intégralLam, Raymond H. W., Jiyu Li, Dinglong Hu, Chee Kent Lim et Patrick K. H. Lee. « Single-Bacteria Isolation and Selective Extraction Based on Microfluidic Emulsion and Sequential Micro-Sieves ». Dans 2019 IEEE 14th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2019. http://dx.doi.org/10.1109/nems.2019.8915660.
Texte intégralSamsnavith, S., A. Varun, N. Gowtham, R. Balamurugan et S. Samdavid. « Experimental investigation of bio-emulsion stability and extraction efficiency in liquid-liquid dispersion column ». Dans INSTRUMENTATION ENGINEERING, ELECTRONICS AND TELECOMMUNICATIONS – 2021 (IEET-2021) : Proceedings of the VII International Forum. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0101711.
Texte intégralAmmar, Saad H., Hadi Ghali Attia et Abdul-Kareem D. Affat. « Extraction of metal ions mixture cadmium, iron, zinc and copper from aqueous solutions using emulsion liquid membrane technique ». Dans 2012 First National Conference for Engineering Sciences (FNCES). IEEE, 2012. http://dx.doi.org/10.1109/nces.2012.6740483.
Texte intégralLamsal, Buddhi, et Md Mahfuzur Rahman. « Conventional and novel technologies for extraction of protein and their impact on structure and functionality as ingredient ». Dans 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/dhxf1174.
Texte intégralNatalya, Nikonova, Hurshkainen Tatyana et Kutchin Alexander. « Development of a technological process of isolation bioactive compounds from the wood greenery of Pinus sylvestris using emulsion extraction ». Dans ACTUAL PROBLEMS OF ORGANIC CHEMISTRY AND BIOTECHNOLOGY (OCBT2020) : Proceedings of the International Scientific Conference. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0068976.
Texte intégralRapports d'organisations sur le sujet "Emulsion extraction"
Birdwell, JR J. F. Investigation of Emulsion Formation in Solvent Washing in the Caustic-Side Solvent Extraction (CSSX) Process. Office of Scientific and Technical Information (OSTI), juin 2002. http://dx.doi.org/10.2172/814649.
Texte intégral