Articles de revues sur le sujet « Embryonic stem cells »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Embryonic stem cells.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Embryonic stem cells ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

HOSSEINI, Hamid, et S. MOOSAVI-NEJAD. « 1A34 Shock waves effects on embryonic stem cells ». Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME 2014.26 (2014) : 35–36. http://dx.doi.org/10.1299/jsmebio.2014.26.35.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pera, M. F., B. Reubinoff et A. Trounson. « Human embryonic stem cells ». Journal of Cell Science 113, no 1 (1 janvier 2000) : 5–10. http://dx.doi.org/10.1242/jcs.113.1.5.

Texte intégral
Résumé :
Embryonic stem (ES) cells are cells derived from the early embryo that can be propagated indefinitely in the primitive undifferentiated state while remaining pluripotent; they share these properties with embryonic germ (EG) cells. Candidate ES and EG cell lines from the human blastocyst and embryonic gonad can differentiate into multiple types of somatic cell. The phenotype of the blastocyst-derived cell lines is very similar to that of monkey ES cells and pluripotent human embryonal carcinoma cells, but differs from that of mouse ES cells or the human germ-cell-derived stem cells. Although our understanding of the control of growth and differentiation of human ES cells is quite limited, it is clear that the development of these cell lines will have a widespread impact on biomedical research.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Challa, Stalin Reddy, et Swathi Goli. « Differentiation of Human Embryonic Stem Cells into Engrafting Myogenic Precursor Cells ». Stem cell Research and Therapeutics International 1, no 1 (16 avril 2019) : 01–05. http://dx.doi.org/10.31579/2643-1912/002.

Texte intégral
Résumé :
Degenerative muscle diseases affect muscle tissue integrity and function. Human embryonic stem cells (hESC) are an attractive source of cells to use in regenerative therapies due to their unlimited capacity to divide and ability to specialize into a wide variety of cell types. A practical way to derive therapeutic myogenic stem cells from hESC is lacking. In this study, we demonstrate the development of two serum-free conditions to direct the differentiation of hESC towards a myogenic precursor state. Using TGFß and PI3Kinase inhibitors in combination with bFGF we showed that one week of differentiation is sufficient for hESC to specialize into PAX3+/PAX7+ myogenic precursor cells. These cells also possess the capacity to further differentiate in vitro into more specialized myogenic cells that express MYOD, Myogenin, Desmin and MYHC, and showed engraftment in vivo upon transplantation in immunodeficient mice. Ex vivo myomechanical studies of dystrophic mouse hindlimb muscle showed functional improvement one month post-transplantation. In summary, this study describes a promising system to derive engrafting muscle precursor cells solely using chemical substances in serum-free conditions and without genetic manipulation.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Cezar, Gabriela Gebrin. « Embryonic Stem Cells ». International Journal of Pharmaceutical Medicine 20, no 2 (2006) : 107–14. http://dx.doi.org/10.2165/00124363-200620020-00004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wagner, Erwin F. « Embryonic stem cells ». Current Opinion in Oncology 4 (décembre 1992) : S2—S4. http://dx.doi.org/10.1097/00001622-199212001-00002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Rippon, H. J., et A. E. Bishop. « Embryonic stem cells ». Cell Proliferation 37, no 1 (février 2004) : 23–34. http://dx.doi.org/10.1111/j.1365-2184.2004.00298.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Biswas, Atindriya, et Robert Hutchins. « Embryonic Stem Cells ». Stem Cells and Development 16, no 2 (avril 2007) : 213–22. http://dx.doi.org/10.1089/scd.2006.0081.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Etches, Robert J. « Embryonic stem cells ». Lancet Oncology 2, no 3 (mars 2001) : 131–32. http://dx.doi.org/10.1016/s1470-2045(00)00252-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Hampton, Tracy. « Embryonic Stem Cells ». JAMA 297, no 5 (7 février 2007) : 459. http://dx.doi.org/10.1001/jama.297.5.459-a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Morowitz, Harold. « Embryonic stem cells ». Complexity 8, no 3 (janvier 2003) : 10–11. http://dx.doi.org/10.1002/cplx.10080.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Bishop, Anne E., Lee D. K. Buttery et Julia M. Polak. « Embryonic stem cells ». Journal of Pathology 197, no 4 (2002) : 424–29. http://dx.doi.org/10.1002/path.1154.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Pacholczyk, Tadeusz. « Rethinking Embryonic Stem Cells ». Ethics & ; Medics 33, no 4 (2008) : 1–3. http://dx.doi.org/10.5840/em20083347.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Wilmut, I. « Human Embryonic Stem Cells ». Science 310, no 5756 (23 décembre 2005) : 1903c. http://dx.doi.org/10.1126/science.1123832.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Daley, George Q. « Histocompatible embryonic stem cells ». Cell Research 18, S1 (août 2008) : S2. http://dx.doi.org/10.1038/cr.2008.92.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Clements, M. « Human Embryonic Stem Cells ». British Journal of Cancer 90, no 2 (janvier 2004) : 558–59. http://dx.doi.org/10.1038/sj.bjc.6601577.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

HENRY, CELIA. « EMBRYONIC STEM CELLS' SUPPORT ». Chemical & ; Engineering News 81, no 42 (20 octobre 2003) : 9. http://dx.doi.org/10.1021/cen-v081n042.p009a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Wray, Jason, et Christine Hartmann. « WNTing embryonic stem cells ». Trends in Cell Biology 22, no 3 (mars 2012) : 159–68. http://dx.doi.org/10.1016/j.tcb.2011.11.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Choong, Cleo, et Mahendra S. Rao. « Human Embryonic Stem Cells ». Neurosurgery Clinics of North America 18, no 1 (janvier 2007) : 1–14. http://dx.doi.org/10.1016/j.nec.2006.10.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Trounson, Alan, et Martin Pera. « Human embryonic stem cells ». Fertility and Sterility 76, no 4 (octobre 2001) : 660–61. http://dx.doi.org/10.1016/s0015-0282(01)02880-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Letso, Reka R., et Brent R. Stockwell. « Renewing embryonic stem cells ». Nature 444, no 7120 (décembre 2006) : 692–93. http://dx.doi.org/10.1038/444692b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Nichols, Jennifer. « Introducing embryonic stem cells ». Current Biology 11, no 13 (juillet 2001) : R503—R505. http://dx.doi.org/10.1016/s0960-9822(01)00304-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

West, J. A., et G. Q. Daley. « Human embryonic stem cells ». Bone Marrow Transplantation 33, no 1 (janvier 2004) : 135. http://dx.doi.org/10.1038/sj.bmt.1704315.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Gama, Vivian, et Mohanish Deshmukh. « Human embryonic stem cells ». Cell Cycle 11, no 21 (novembre 2012) : 3905–6. http://dx.doi.org/10.4161/cc.22233.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Damdimopoulou, Pauliina, Sergey Rodin, Sonya Stenfelt, Liselotte Antonsson, Karl Tryggvason et Outi Hovatta. « Human embryonic stem cells ». Best Practice & ; Research Clinical Obstetrics & ; Gynaecology 31 (février 2016) : 2–12. http://dx.doi.org/10.1016/j.bpobgyn.2015.08.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Bhartiya, Deepa, Sandhya Anand et Hiren Patel. « Making gametes from pluripotent stem cells : embryonic stem cells or very small embryonic-like stem cells ? » Stem Cell Investigation 3 (14 octobre 2016) : 57. http://dx.doi.org/10.21037/sci.2016.09.06.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Azab, Azab. « Stem Cells : Insights into Niche, Classification, Identification, Characterization, Mechanisms of Regeneration by Using Stem Cells, and Applications in Joint Disease Remedy ». Biotechnology and Bioprocessing 2, no 1 (1 février 2021) : 01–07. http://dx.doi.org/10.31579/2766-2314/024.

Texte intégral
Résumé :
Background: Stem cell therapy has attracted much interest in the 21st century, not only because of the controversy surrounding the ethics involving pluripotent stem cells, but their potential for clinical use. Objectives: The present review highlights the stem cells niche, types, identification, and characterization, mechanisms of regeneration by using stem cells, and applications in joint disease remedy. Stem cells could be well differentiated cells with the potential to display different cell types depending on the host niche. Niche is defined as the cellular microenvironment providing support and stimuli to control the properties of stem cells. It consists of signaling molecules, inter-cell contacts and interaction between stem cells and their extracellular matrix neighbors. Stem cells are classified according to their sources into two main types, the embryonic and non-embryonic. Embryonic stem cells are pluripotent and can differentiate into all germ layers. Non-embryonic stem cells can be sub-classified into fetal stem cells and adult stem cells. Cultured cells can be made to differentiate into exclusive lineages by providing selective media components that can be identified by histochemical staining and quantified by quantitative Real-time polymerase chain reaction. Mesenchymal stem cells (MSCs) can be identified based on the expression of specific proteins called surface antigen phenotype of mesenchymal stem cell markers. MSCs secrete a variety of interleukins, several neurotrophic factors, many cytokines, and growth factors. These secreted bioactive factors have both paracrine and autocrine effects, which are anti-fibrotic and anti-apoptotic, as well as enhance angiogenesis. Furthermore, they stimulate mitosis and differentiation of tissue-intrinsic reparative stem cells. Systemic MSC transplantation can engraft to an injured tissue and promote wound healing through differentiation, and proliferation in synergy with hematopoietic stem cells. MSCs have been shown to express a variety of chemokines and chemokine receptors and can home to sites of inflammation by migrating towards injury or inflammatory chemokines and cytokines. MSCs are proven to have immunomodulatory properties that are among the most intriguing aspects of their biology. The immunosuppressive properties of MSCs inhibit the immune response of naive and memory T cells in a mixed lymphocyte culture and induce mitogen. The systemic infusion of MSCs can be used in immunosuppressive therapy of various disorders. MSCs have become an alternative source of cells that can be drawn from several these cells have been used as treatment to repair cartilage defects at early stages sources. Using the MSCs and directing them into chondrogenic differentiation might lead to the formation of higher quality cartilage, which has a great composition of hyaline, adequate structural reorganization and therefore improved biomechanical properties. Conclusion: It can be concluded that stem cells are classified according to their sources into two main types, the embryonic and non-embryonic. Embryonic stem cells are pluripotent and can differentiate into all germ layers. Non-embryonic stem cells can be sub-classified into fetal stem cells and adult stem cells. MSCs secrete bioactive factors that are anti-fibrotic and anti-apoptotic, as well as enhance angiogenesis. The systemic infusion of MSCs can be used in immunosuppressive therapy of various disorders. These cells have been used as treatment to repair cartilage defects at early stages.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Sharma, Dinesh Kumar. « Comparative Study of Human Embryonic and Adult Stem Cells : A Review ». Indian Journal of Genetics and Molecular Research 8, no 1 (2019) : 27–34. http://dx.doi.org/10.21088/ijgmr.2319.4782.8119.4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Dani, C., A. G. Smith, S. Dessolin, P. Leroy, L. Staccini, P. Villageois, C. Darimont et G. Ailhaud. « Differentiation of embryonic stem cells into adipocytes in vitro ». Journal of Cell Science 110, no 11 (1 juin 1997) : 1279–85. http://dx.doi.org/10.1242/jcs.110.11.1279.

Texte intégral
Résumé :
Embryonic stem cells, derived from the inner cell mass of murine blastocysts, can be maintained in a totipotent state in vitro. In appropriate conditions embryonic stem cells have been shown to differentiate in vitro into various derivatives of all three primary germ layers. We describe in this paper conditions to induce differentiation of embryonic stem cells reliably and at high efficiency into adipocytes. A prerequisite is to treat early developing embryonic stem cell-derived embryoid bodies with retinoic acid for a precise period of time. Retinoic acid could not be substituted by adipogenic hormones nor by potent activators of peroxisome proliferator-activated receptors. Treatment with retinoic acid resulted in the subsequent appearance of large clusters of mature adipocytes in embryoid body outgrowths. Lipogenic and lipolytic activities as well as high level expression of adipocyte specific genes could be detected in these cultures. Analysis of expression of potential adipogenic genes, such as peroxisome proliferator-activated receptors gamma and delta and CCAAT/enhancer binding protein beta, during differentiation of retinoic acid-treated embryoid bodies has been performed. The temporal pattern of expression of genes encoding these nuclear factors resembled that found during mouse embryogenesis. The differentiation of embryonic stem cells into adipocytes will provide an invaluable model for the characterisation of the role of genes expressed during the adipocyte development programme and for the identification of new adipogenic regulatory genes.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Koestenbauer, Sonja, Nicolas H. Zech, Herbert Juch, Pierre Vanderzwalmen, Luc Schoonjans et Gottfried Dohr. « Embryonic Stem Cells : Similarities and Differences Between Human and Murine Embryonic Stem Cells ». American Journal of Reproductive Immunology 55, no 3 (mars 2006) : 169–80. http://dx.doi.org/10.1111/j.1600-0897.2005.00354.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Zhang, Yue Shelby, Ana Sevilla, Leo Q. Wan, Ihor R. Lemischka et Gordana Vunjak-Novakovic. « Patterning pluripotency in embryonic stem cells ». STEM CELLS 31, no 9 (septembre 2013) : 1806–15. http://dx.doi.org/10.1002/stem.1468.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Nagy, Andras, Marina Gertsenstein, Kristina Vintersten et Richard Behringer. « Differentiating Embryonic Stem (ES) Cells into Embryoid Bodies ». Cold Spring Harbor Protocols 2006, no 2 (juillet 2006) : pdb.prot4405. http://dx.doi.org/10.1101/pdb.prot4405.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Liu, De Wu, Yong Tie Li, De Ming Liu et Pu Ning. « Culture and Characteristics of Human Induced Pluripotent Stem Cells ». Advanced Materials Research 268-270 (juillet 2011) : 835–37. http://dx.doi.org/10.4028/www.scientific.net/amr.268-270.835.

Texte intégral
Résumé :
Human induced pluripotent stem cells is promising for regenerative medicine and tissue engineering. In this chapter, we focus on the culture and characteristics of human induced pluripotent stem cells. The induced pluripotent stem cells were plated on murine embryonic fibroblast feeder cells and expanded in human embryonic stem cells media contained basic fibroblast growth factor. The cells were passaged by collagenase IV digestion method and observed under invert microscope. The expression of alkaline phosphatase was detected by immunocytochemistry. The cultured induced pluripotent stem cells grew well and stability with similar characteristics of human embryonic stem cells. These cells also expressed alkaline phosphatase. They formed embryoid body in feeder-free and suspension culture conditions. The results provide an experimental basis for improvement of induction study and further application to generate patient-specific induced pluripotent stem cells.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Wang, Yuan, Frank Yates, Eugenia Dikovskaia, Patricia Ernst, Alan J. Davidson, Leonard I. Zon et George Q. Daley. « Derivation of Hematopoietic Stem Cells from Embryonic Stem Cells. » Blood 104, no 11 (16 novembre 2004) : 223. http://dx.doi.org/10.1182/blood.v104.11.223.223.

Texte intégral
Résumé :
Abstract Despite the significant in vitro blood-forming potential of murine embryonic stem cells (ESCs), deriving hematopoietic stem cells (HSCs) that can reconstitute irradiated mice has proven to be challenging. Previously, we successfully engrafted lethally irradiated adult mice with ESCs engineered to ectopically express the homeodomain gene hoxB4. In engrafted animals, blood reconstitution showed a myeloid predominance, likely due to an inability to fully pattern the adult HSC from these embryonic populations. Recently, we have investigated cdx4, a caudal-related homeobox gene whose function has been linked to blood development in the zebrafish. During in vitro differentiation of murine ESCs, cdx4 is expressed during a very narrow time interval on day 3, coincident with the specification of hematopoietic mesoderm. To further characterize the function of cdx4 in mouse hematopoiesis, we have established a tetracycline-inducible murine embryonic stem cell line. When cdx4 expression is conditionally induced over a protracted period from day 2 and 6, we observe a marked enhancement of hemangioblast formation as well as significant increases in primitive and definitive hematopoietic colonies. Cdx4 acts to induce a broad array of hox genes, including a modest elevation in hoxb4. Co-expression of cdx4 and hoxb4 promotes robust expansion of hematopoietic blasts on supportive OP9 stromal cultures. When injected intravenously into lethally-irradiated mice, these cell populations provide robust radio-protection, and reconstitute high-level lymphoid-myeloid donor chimerism. Marrow from engrafted primary animals can be transplanted into irradiated secondary mice. B220+ splenic lymphoid cells and Mac-1/Gr-1+ marrow myeloid cells purified from primary and secondary mice show multiple common sites of retroviral integration, thereby proving the derivation of long-term hematopoietic stem cells from embryonic stem cells in vitro. Our data support a central role for the cdx4-hox gene pathway in specifying murine HSC development, and establish a robust system for hematopoietic reconstitution from ESCs. We have coupled techniques for generating ESCs by nuclear transfer with these methods for blood reconstitution to model the treatment of genetic disorders of the bone marrow.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Larrú, M. « Adult stem cells : an alternative to embryonic stem cells ? » Trends in Biotechnology 19, no 12 (1 décembre 2001) : 487. http://dx.doi.org/10.1016/s0167-7799(01)01867-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

LENGERKE, C., et G. DALEY. « Patterning definitive hematopoietic stem cells from embryonic stem cells ». Experimental Hematology 33, no 9 (septembre 2005) : 971–79. http://dx.doi.org/10.1016/j.exphem.2005.06.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Zerhouni, E. « EMBRYONIC STEM CELLS : Enhanced : Stem Cell Programs ». Science 300, no 5621 (9 mai 2003) : 911–12. http://dx.doi.org/10.1126/science.1084819.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Wang, Y., F. Yates, O. Naveiras, P. Ernst et G. Q. Daley. « Embryonic stem cell-derived hematopoietic stem cells ». Proceedings of the National Academy of Sciences 102, no 52 (15 décembre 2005) : 19081–86. http://dx.doi.org/10.1073/pnas.0506127102.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Chen, Yifei, et Dongmei Lai. « Pluripotent States of Human Embryonic Stem Cells ». Cellular Reprogramming 17, no 1 (février 2015) : 1–6. http://dx.doi.org/10.1089/cell.2014.0061.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Koch, Cody A., Pedro Geraldes et Jeffrey L. Platt. « Immunosuppression by Embryonic Stem Cells ». Stem Cells 26, no 1 (janvier 2008) : 89–98. http://dx.doi.org/10.1634/stemcells.2007-0151.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Calabrese, Edward J. « Hormesis and embryonic stem cells ». Chemico-Biological Interactions 352 (janvier 2022) : 109783. http://dx.doi.org/10.1016/j.cbi.2021.109783.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Tonti-Filippini, Nicholas, et Peter McCullagh. « Embryonic Stem Cells and Totipotency ». Ethics & ; Medics 25, no 7 (2000) : 1–3. http://dx.doi.org/10.5840/em200025713.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Travis, J. « Human Embryonic Stem Cells Found ? » Science News 152, no 3 (19 juillet 1997) : 36. http://dx.doi.org/10.2307/3980870.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Daley, George Q. « Customized human embryonic stem cells ». Nature Biotechnology 23, no 7 (juillet 2005) : 826–28. http://dx.doi.org/10.1038/nbt0705-826.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Borge, Ole. « Embryonic and Adult Stem Cells ». Acta Veterinaria Scandinavica 45, Suppl 1 (2004) : S39. http://dx.doi.org/10.1186/1751-0147-45-s1-s39.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Redi, Carlo Alberto. « Human embryonic stem cells handbook ». European Journal of Histochemistry 57, no 1 (12 mars 2013) : 2. http://dx.doi.org/10.4081/ejh.2013.br2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Roccanova, L., P. Ramphal, P. R. III;, C. B. Harley, J. S. Lebkowski, M. K. Carpenter et T. B. Okarma. « Mutation in Embryonic Stem Cells ». Science 292, no 5516 (20 avril 2001) : 438b—440. http://dx.doi.org/10.1126/science.292.5516.438b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Grompe, Markus. « Embryonic stem cells without embryos ? » Nature Biotechnology 23, no 12 (décembre 2005) : 1496–97. http://dx.doi.org/10.1038/nbt1205-1496.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Kazemirad, Nastaran, et Nahid Lorzadeh. « Embryonic Stem Cells and Infertility ». American Journal of Perinatology 35, no 10 (28 février 2018) : 925–30. http://dx.doi.org/10.1055/s-0038-1632367.

Texte intégral
Résumé :
AbstractEmbryonic stem cells (ESCs) have the ability to differentiate into several cell lineages and self-renew. Through a spontaneous process, ESCs can differentiate into germ cells of various stages, partly due to their self-renewal ability and their microenvironment culture. Human and mouse ESC differentiation into putative primordial germ cells (PGCs) has been demonstrated by several studies; in fact, derivation of functional mouse male gametes has also been reported. However, the exact underlying mechanisms are yet to be understood properly, and as such clinical applications of ESC-derived PGC remains controversial. Nonetheless, this technique can still serve as a potential treatment option for infertility. This review centers on the available reports on the possible application of ESC for infertility treatment.
Styles APA, Harvard, Vancouver, ISO, etc.
49

AGAR, NICHOLAS. « EMBRYONIC POTENTIAL AND STEM CELLS ». Bioethics 21, no 4 (mai 2007) : 198–207. http://dx.doi.org/10.1111/j.1467-8519.2006.00533.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Ding, Li, et Frank Buchholz. « RNAi in Embryonic Stem Cells ». Stem Cell Reviews 2, no 1 (2006) : 11–18. http://dx.doi.org/10.1385/scr:2:1:11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie