Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Embedding in a microsystem.

Articles de revues sur le sujet « Embedding in a microsystem »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Embedding in a microsystem ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Belfiore, Nicola Pio, Alvise Bagolini, Andrea Rossi, Gabriele Bocchetta, Federica Vurchio, Rocco Crescenzi, Andrea Scorza, Pierluigi Bellutti et Salvatore Andrea Sciuto. « Design, Fabrication, Testing and Simulation of a Rotary Double Comb Drives Actuated Microgripper ». Micromachines 12, no 10 (17 octobre 2021) : 1263. http://dx.doi.org/10.3390/mi12101263.

Texte intégral
Résumé :
This paper presents the development of a new microgripper actuated by means of rotary-comb drives equipped with two cooperating fingers arrays. The microsystem presents eight CSFH flexures (Conjugate Surface Flexure Hinge) that allow the designer to assign a prescribed motion to the gripping tips. In fact, the adoption of multiple CSFHs gives rise to the possibility of embedding quite a complex mechanical structure and, therefore, increasing the number of design parameters. For the case under study, a double four-bar linkage in a mirroring configuration was adopted. The presented microgripper has been fabricated by using a hard metal mask on a Silicon-on-Insulator (SOI) wafer, subject to DRIE (Deep Reactive Ion Etching) process, with a vapor releasing final stage. Some prototypes have been obtained and then tested in a lab. Finally, the experimental results have been used in order to assess simulation tools that can be used to minimize the amount of expensive equipment in operational environments.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Fries, David, Liesl Hotaling, Geran Barton, Stan Ivanov, Michelle Janowiak et Matt Smith. « PCBMEMS as a Flexible Path to Devices and Systems across Spatial Scales ». Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2011, DPC (1 janvier 2011) : 000597–634. http://dx.doi.org/10.4071/2011dpc-ta24.

Texte intégral
Résumé :
PCB technology based on both rigid and flexible laminates is desirable for miniaturization of mobile devices and systems. The technology provides substantial flexibility in systems design. The ability to use flexible microsystems allows new sensing systems for mobile applications. Using this design, fabrication and construction approach allows lightweight, complex, and space efficient systems. Flex microsystems based on structurable, non-fiber filled laminates permits miniaturization to occur at two levels: at the micro scale with the embedding of microstructures in the substrate, and at the macro scale with the ability to flex the system across millimeter to centimeter lengths of real everyday objects. The macro scale systems further allows ultra large systems with high resolution features permitting novel sensor systems. Examples will be given where the technology has enabled devices, systems and packaging innovation across several spatial scales. Mobile (environmental, medical, portable, embedded) sensor systems all can be realized using this design and fabrication toolbox.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Boehme, Christian, Andreas Ostmann et Martin Schneider-Ramelow. « Modular Microsystems with Embedded Components ». International Symposium on Microelectronics 2013, no 1 (1 janvier 2013) : 000735–39. http://dx.doi.org/10.4071/isom-2013-wp52.

Texte intégral
Résumé :
Each system is designed to fulfill the desired purpose. It is defined by its inputs, outputs, structure, environment, boundary, and the including elements (subsystems). Due to the ongoing miniaturization and integration the complexity of subsystems increases continuously. This paper is intended to demonstrate the build-up of modular Microsystems. By using the embedding technology, each subsystem (module) is interchangeable and stackable. Therefore, the functionality of the entire system depends solely on the selected modules. Moreover, the enhancement, expansion or redesign can be accomplished by replacing existing or adding new modules. The communication between the individual modules is based on the standardized I2C bus. Additionally, a USB interface has been implemented to manage the data transmission between the embedded camera module and a computer. The whole system recognizes each module and performs accordingly. The user can access sensor values, watch the video stream, and change the parameters of each module via a Graphical User Interface (GUI) on his computer. To achieve the build-up of the modular Microsystems we only used packaged active and passive components. Depending on the complexity of each module a core of up to eight layers is build up. The components are then soldered onto both sides of the core. At this point the components are embedded using a laminating press. The afterwards even surface is then structured again, to enable the stacking of the modules. Each step of the entire assembly process is done via state of the art circuit board processing technologies, including laser drill and laser-direct imaging.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Tolochko, N. K. « Application of Additive Technologies for Manufactoring Non-Electronic Components of Microsystems ». Nano- i Mikrosistemnaya Tehnika 23, no 4 (20 août 2021) : 193–200. http://dx.doi.org/10.17587/nmst.23.193-200.

Texte intégral
Résumé :
It is problematic to apply traditional microtechnologies for the manufacturing three-dimensional (3D) components of microsystems due to a number of inherent disadvantages. It is much more promising to use additive technologies for these purposes. In present paper various additive technologies used for manufacturing non-electronic components of microsystems as well as various non-electronic components manufactured using these technologies are considered. The peculiarities of the implementation of additive technologies in the manufacture of non-electronic microcomponents are discussed. More than 20 types of additive technologies characterized by different principles for the implementation of 3D printing processes are presented and their brief description is given. Most of these technologies allow manufacturing the components with micrometer feature sizes and some of them — with nanometer feature sizes. Microcomponents produced by additive technologies are intended for use in micromechanics, microoptics and microfluidics. Many examples of such microcomponents are given with indication of their typical feature sizes. Additive technologies make it possible to create both individual parts of microdevices and completely finished micro-devices. Microcomponents are mainly made from photopolymers and thermoplastics, as well as metals. Among additive technologies those that provide the multi-material 3D printing as well as the embedding of discrete components into printed microdevices are especially promising. It is expected that in near future additive technologies will be widely used in the production of various non-electronic components of microsystems.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Fries, David, Geran Barton, Gary Hendricks, Brian Gregson et Liesl Hotaling. « Rigid and Flex PCB Based Microsystems for Mobility, Systems Development and Harsh Environments ». Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2012, DPC (1 janvier 2012) : 001054–95. http://dx.doi.org/10.4071/2012dpc-tp33.

Texte intégral
Résumé :
The exploration of PCBMEMS as a path towards systems development continues. PCBMEMS technology based on rigid-flexible laminates is desirable for miniaturization and integration of systems for mobility and harsh environment deployments. The technology provides substantial flexibility in systems design and integration of multiple functions into limited spaces. Using this design and construction approach allows lightweight, complex, and space efficient systems. Flex microsystems based on structurable, non-fiber filled laminates permits miniaturization to occur at two levels: at the micro scale with the embedding of microstructures in the substrate, and at the macro scale with the ability to flex the system across millimeter to centimeter lengths of real everyday systems. Examples will be given where the technology is being applied toward several different systems including mobile chemical analyzers, heat and mass transfer devices, portable therapeutics, augmented mobile phone systems, and high density microfluidics-based robotics.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Selbmann, Franz, Frank Roscher, Frederic Gueth, Maik Wiemer, Harald Kuhn et Yvonne Joseph. « A Parylene-Based Ultra-Thin Printed Circuit Board As a New Platform for Flexible Sensors and Wearables ». ECS Meeting Abstracts MA2022-02, no 63 (9 octobre 2022) : 2617. http://dx.doi.org/10.1149/ma2022-02632617mtgabs.

Texte intégral
Résumé :
Flexible electronics and sensors are a key enabling element for the realization of wearables and geometry adaptive devices needed to follow current trends such as the Internet of things or Industry 4.0. Within this paper, we present a new and flexible packaging platform by the fabrication of an ultra-thin and highly flexible printed circuit board (PCB). The thermoplastic polymer Parylene, which combines a variety of unique properties such as optical transparency, biostability and biocompatibility according to ISO 10993, thermal stability as well as low permeability for gases and water, was used as the base for the new PCB. Particularly, its mechanical properties, especially the absence of intrinsic stresses, as well as its low Young’s modulus and good bendability are advantageous when using Parylene films as a free-standing substrate for flexible applications. The chemical inertness of Parylene against all common acids, bases and solvents ensures its compatibility with established standard microsystem technologies. For the realization of ultra-thin flexible PCBs, Parylene was used as a substrate as well as for the encapsulation and protection layer, respectively. Furthermore, Parylene was the dielectric between the metallic conductive layers. These redistribution layers (RDL) were deposited and patterned by standard microsystem technologies, such as sputtering, lithography and wet chemical etching. Hence, structure sizes of down to 10 µm were successfully realized. Different metals, such as gold, copper, and aluminum were tested for the RDL. Alternatively, printing technologies such as screen printing and aerosol jet printing were successfully demonstrated for the if conductive silver layerse. The electrical connection between the various RDL was of special interest throughout the study and was realized by etching vertical vias through the Parylene using oxygen plasma. Due to the low total thickness of the flexible Parylene PCB of 20 µm or even less, the obtained vias through the Parylene feature an advantageous low aspect ratio. For the contact formation through the vias, different methods were investigated, e. g. sputtering, printing and electrochemical deposition. Finally, the fabricated flexible Parylene PCB were characterized with respect to their bendability and electrical properties. Doing so, the resistivity and capacitance were measured as well as the frequency response between 20 kHz and 500 MHz. Particularly, for frequencies below 1 MHz the realized flexible Parylene PCBs show a good electrical performance. A third function of Parylene with respect to the realization of an ultra-thin and flexible PCB is its usage as a barrier or capping layer. Doing so, new approaches such as embedding electronic or sensor components in the flexible PCB can be enabled. Other integration technologies such as wire bonding, printing or gluing were investigated with respect to their usability for the new flexible PCB as well. Besides, also the direct fabrication of sensors on the Parylene flexible PCB was successfully demonstrated by the realization of a flexible potentiometric pH sensor. The presented new type of ultra-thin PCB is a versatile platform for the realization of flexible electronics, sensors and devices. Due to its biocompatible properties, the flexible Parylene PCB can be used for medical applications but also for the integration of MEMS, chemical sensors and optical components, respectively. Doing so, it enables the realization of smart systems for wearable applications and their integration into light weight constructions. Within this paper, the concept of this new approach, the respected fabrication and integration technologies as well as possible applications are presented in detail. Figure 1
Styles APA, Harvard, Vancouver, ISO, etc.
7

Fries, David P., Stanislav Z. Ivanov, Heather Broadbent, Matthew Smith, George Steimle et Ross Willoughby. « PCBMEMS as a Flexible Path to Devices and Systems across Spatial Scales ». Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2010, DPC (1 janvier 2010) : 000599–642. http://dx.doi.org/10.4071/2010dpc-ta23.

Texte intégral
Résumé :
PCBMEMS, within rigid or flexible laminates is desirable for miniaturization of devices and systems and provide substantial flexibility in systems design. PCBMEMS is the combined insertion of mechanical, fluidic, optical and electronic functions into the PCB landscape, which permits a complex system on a board. This design, fabrication and construction approach allows lightweight, complex, and space efficient systems. PCBMEMS permits miniaturization to occur at two levels: at the micro scale with the embedding of microstructures in the substrate, and at the macro scale with the ability to flex the system across millimeter to centimeter lengths of real everyday objects. Using this path PCBMEMS can approach the creativity and complexity of natural made systems. The use of PCBMEMS can also provide a path toward ultra large systems with high resolution features. With the ability to provide from the very small to the very large, PCBMEMS has a unique place in systems development in that the same processing pathway can enable Microsystems and macro systems. Examples will be given where the technology has enabled devices, systems and packaging innovation across several spatial scales. Environmental, medical, portable, embedded, and sensor systems all can be realized using this design and fabrication toolbox. The approach is affordable and can be used from prototyping to production and even in educational efforts.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Korvink, Jan G., et Henry Baltes. « Microsystem Modeling ». Sensors Update 2, no 1 (octobre 1996) : 181–209. http://dx.doi.org/10.1002/1616-8984(199610)2:1<181 ::aid-seup181>3.0.co;2-a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Schultze, J. W. « Electrochemical microsystem technologies ». Electrochimica Acta 42, no 20-22 (janvier 1997) : 2981–82. http://dx.doi.org/10.1016/s0013-4686(97)00145-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Habal, Mutaz B. « Commentary on Microsystem ». Journal of Craniofacial Surgery 5, no 2 (mai 1994) : 104. http://dx.doi.org/10.1097/00001665-199405000-00009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Barach, P., et J. K. Johnson. « Understanding the complexity of redesigning care around the clinical microsystem ». Quality in Health Care 15, suppl 1 (décembre 2006) : i10—i16. http://dx.doi.org/10.1136/qshc.2005.015859.

Texte intégral
Résumé :
The microsystem is an organizing design construct in which social systems cut across traditional discipline boundaries. Because of its interdisciplinary focus, the clinical microsystem provides a conceptual and practical framework for simplifying complex organizations that deliver care. It also provides an important opportunity for organizational learning. Process mapping and microworld simulation may be especially useful for redesigning care around the microsystem concept. Process mapping, in which the core processes of the microsystem are delineated and assessed from the perspective of how the individual interacts with the system, is an important element of the continuous learning cycle of the microsystem and the healthcare organization. Microworld simulations are interactive computer based models that can be used as an experimental platform to test basic questions about decision making misperceptions, cause-effect inferences, and learning within the clinical microsystem. Together these tools offer the user and organization the ability to understand the complexity of healthcare systems and to facilitate the redesign of optimal outcomes.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Khmelnitskiy, I. K., V. V. Luchinin, K. G. Gareev, N. V. Andreeva, O. S. Bokhov, O. A. Testov, V. M. Aivazyan et al. « Appearance and Basic Functional Elements of an Interactive Multimodal Hybrid Conformal Microsystem for Real-Time Transdermal Biomedical Monitoring and Correction of the Body State ». Nano- i Mikrosistemnaya Tehnika 23, no 6 (23 décembre 2021) : 294–99. http://dx.doi.org/10.17587/nmst.23.294-299.

Texte intégral
Résumé :
The constructive and technological solutions of a new generation interactive multimodal hybrid conformal sensor-correcting microsystem are presented. The functional modules of the microsystem made in the form of an ultrathin bracelet or patch with the possibility of fixation on human skin are considered. The advantages of the proposed microsystem, its purpose and possible applications are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Woerdeman, Peter A., Peter W. A. Willems, Herke J. Noordmans, Cornelis A. F. Tulleken et Jan W. B. van der Sprenkel. « The Impact of Workflow and Volumetric Feedback on Frameless Image-guided Neurosurgery ». Operative Neurosurgery 64, suppl_1 (1 mars 2009) : ONS170—ONS176. http://dx.doi.org/10.1227/01.neu.0000335791.85615.38.

Texte intégral
Résumé :
Abstract Objective: During image-guided neurosurgery, if the surgeon is not fully orientated to the surgical position, he or she will briefly shift attention toward the visualization interface of an image guidance station, receiving only momentary “point-in-space” information. The aim of this study was to develop a novel visual interface for neuronavigation during brain tumor surgery, enabling intraoperative feedback on the entire progress of surgery relative to the anatomy of the brain and its pathology, regardless of the interval at which the surgeon chooses to look. Methods: New software written in Java (Sun Microsystems, Inc., Santa Clara, CA) was developed to visualize the cumulative recorded instrument positions intraoperatively. This allowed surgeons to see all previous instrument positions during the elapsed surgery. This new interactive interface was then used in 17 frameless image-guided neurosurgical procedures. The purpose of the first 11 cases was to obtain clinical experience with this new interface. In these cases, workflow and volumetric feedback (WVF) were available at the surgeons' discretion (Protocol A). In the next 6 cases, WVF was provided only after a complete resection was claimed (Protocol B). Results: With the novel interactive interface, dynamics of surgical resection, displacement of cortical anatomy, and digitized functional data could be visualized intraoperatively. In the first group (Protocol A), surgeons expressed the view that WVF had affected their decision making and aided resection (10 of 11 cases). In 3 of 6 cases in the second group (Protocol B), tumor resections were extended after evaluation of WVF. By digitizing the cortical surface, an impression of the cortical shift could be acquired in all 17 cases. The maximal cortical shift measured 20 mm, but it typically varied between 0 and 10 mm. Conclusion: Our first clinical results suggest that the embedding of WVF contributes to improvement of surgical awareness and tumor resection in image-guided neurosurgery in a swift and simple manner.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Hsu, H. « Microsystem design [Book Review] ». IEEE Circuits and Devices Magazine 17, no 4 (juillet 2001) : 38–39. http://dx.doi.org/10.1109/mcd.2001.950082.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Holmer, R., M. Horn, R. Ullmann et H. R. Tränkler. « A microsystem design process ». Microsystem Technologies 1, no 2 (mars 1995) : 68–70. http://dx.doi.org/10.1007/bf01624465.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Yang, Deng, Wenrui Duan, Guozhe Xuan, Lulu Hou, Zhen Zhang, Mingxue Song et Jiahao Zhao. « Self-Powered Long-Life Microsystem for Vibration Sensing and Target Recognition ». Sensors 22, no 24 (7 décembre 2022) : 9594. http://dx.doi.org/10.3390/s22249594.

Texte intégral
Résumé :
Microsystems play an important role in the Internet of Things (IoT). In many unattended IoT applications, microsystems with small size, lightweight, and long life are urgently needed to achieve covert, large-scale, and long-term distribution for target detection and recognition. This paper presents for the first time a low-power, long-life microsystem that integrates self-power supply, event wake-up, continuous vibration sensing, and target recognition. The microsystem is mainly used for unattended long-term target perception and recognition. A composite energy source of solar energy and battery is designed to achieve self-powering. The microsystem’s sensing module, circuit module, signal processing module, and transceiver module are optimized to further realize the small size and low-power consumption. A low-computational recognition algorithm based on support vector machine learning is designed and ported into the microsystem. Taking the pedestrian, wheeled vehicle, and tracked vehicle as targets, the proposed microsystem of 15 cm3 and 35 g successfully realizes target recognitions both indoors and outdoors with an accuracy rate of over 84% and 65%, respectively. Self-powering of the microsystem is up to 22.7 mW under the midday sunlight, and 11 min self-powering can maintain 24 h operation of the microsystem in sleep mode.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Velten, T., H. Schuck, T. Knoll, O. Scholz, A. Schumacher, T. Göttsche, A. Wolff, B. Z. Beiski et IntelliDrug Consortium. « Intelligent intraoral drug delivery microsystem ». Proceedings of the Institution of Mechanical Engineers, Part C : Journal of Mechanical Engineering Science 220, no 11 (1 novembre 2006) : 1609–17. http://dx.doi.org/10.1243/09544062jmes237.

Texte intégral
Résumé :
The authors report on the concept and development of an intelligent intraoral drug delivery microsystem, that provides an alternative approach for the treatment of addiction and chronic diseases. The drug delivery system (DDS) comprises a medication replacement reservoir, a medication release mechanism, a built-in intelligence, a remote control, microsensors, and microactuators. It is thus able to release the medication in a controlled manner according to the patient needs. The emphasis of this article is on the application of sensors and microfluidic components in a real microsystem and also showing some details of two system components, namely, the osmotic pump and the flow sensor. The motivation for the microfluidic approach, the concept of the DDS, the requirements for this specific application, and the arising problems will be presented and discussed. Regarding the sensors and actuators, the problems mainly concern size and power consumption. A major challenging aspect of microfluidic component development is to avoid clogging of small channels because of particles and recrystallization of saturated fluids.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Cima, Michael J. « Microsystem Technologies for Medical Applications ». Annual Review of Chemical and Biomolecular Engineering 2, no 1 (15 juillet 2011) : 355–78. http://dx.doi.org/10.1146/annurev-chembioeng-061010-114120.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Bouffault, F., J. Febvre, C. Milan, M. Paindavoine et J. C. Grapin. « A high-speed video microsystem ». Measurement Science and Technology 8, no 4 (1 avril 1997) : 398–402. http://dx.doi.org/10.1088/0957-0233/8/4/006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Brown, Joseph J., Ji Won Suk, Gurpreet Singh, Alicia I. Baca, Dmitriy A. Dikin, Rodney S. Ruoff et Victor M. Bright. « Microsystem for nanofiber electromechanical measurements ». Sensors and Actuators A : Physical 155, no 1 (octobre 2009) : 1–7. http://dx.doi.org/10.1016/j.sna.2008.11.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Rudolf, F., et H. de Lambilly. « Low-cost pressure sensor microsystem ». Microsystem Technologies 1, no 2 (mars 1995) : 84–87. http://dx.doi.org/10.1007/bf01624468.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Receveur, Rogier A. M., Fred W. Lindemans et Nicolaas F. de Rooij. « Microsystem technologies for implantable applications ». Journal of Micromechanics and Microengineering 17, no 5 (24 avril 2007) : R50—R80. http://dx.doi.org/10.1088/0960-1317/17/5/r02.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Ruprecht, R., T. Hanemann, V. Piotter et J. Haußelt. « Polymer materials for microsystem technologies ». Microsystem Technologies 5, no 1 (23 octobre 1998) : 44–48. http://dx.doi.org/10.1007/s005420050139.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Hernandez, Cesar A., Valerio Beni et Johann F. Osma. « Fully Automated Microsystem for Unmediated Electrochemical Characterization, Visualization and Monitoring of Bacteria on Solid Media ; E. coli K-12 : A Case Study ». Biosensors 9, no 4 (4 novembre 2019) : 131. http://dx.doi.org/10.3390/bios9040131.

Texte intégral
Résumé :
In this paper, we present a non-fluidic microsystem for the simultaneous visualization and electrochemical evaluation of confined, growing bacteria on solid media. Using a completely automated platform, real-time monitoring of bacterial and image-based computer characterization of growth were performed. Electrochemical tests, using Escherichia coli K-12 as the model microorganism, revealed the development of a faradaic process at the bacteria–microelectrode interface inside the microsystem, as implied by cyclic voltammetry and electrochemical impedance spectrometry measurements. The electrochemical information was used to determine the moment in which bacteria colonized the electrode-enabled area of the microsystem. This microsystem shows potential advantages for long-term electrochemical monitoring of the extracellular environment of cell culture and has been designed using readily available technologies that can be easily integrated in routine protocols. Complementarily, these methods can help elucidate fundamental questions of the electron transfer of bacterial cultures and are potentially feasible to be integrated into current characterization techniques.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Farokhi, Hamed, Mergen H. Ghayesh, Alireza Gholipour et Shahid Hussain. « Modal interactions and energy transfers in large-amplitude vibrations of functionally graded microcantilevers ». Journal of Vibration and Control 24, no 17 (27 juin 2017) : 3882–93. http://dx.doi.org/10.1177/1077546317714883.

Texte intégral
Résumé :
Modal interactions and internal energy transfers are investigated in the large-amplitude oscillations of a functionally graded microcantilever with an intermediate spring-support. Based on the Mori–Tanaka homogenization technique and the modified couple stress theory, the energy terms of the functionally graded microsystem (kinetic and size-dependent potential energies) are developed and dynamically balanced. Large-amplitude deformations, due to having one end free, are modeled taking into account curvature-related nonlinearities and assuming an inextensibility condition. The continuous model of the functionally graded microsystem is reduced, by means of the Galerkin method, yielding an inertial- and stiffness-wise nonlinear model. Numerical simulations on this highly nonlinear reduced-order model of the functionally graded microcantilever are performed using a continuation method; a possible case of modal interactions is determined by obtaining the natural frequencies of the microsystem. The nonlinear oscillations of the microcantilever are examined, and it is shown how the energy fed to the functionally graded microsystem (from the base excitation) is transferred between different modes of oscillation.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Ursi, Pietro, Andrea Rossi, Fabio Botta et Nicola Pio Belfiore. « Analytical Modeling of a New Compliant Microsystem for Atherectomy Operations ». Micromachines 13, no 7 (11 juillet 2022) : 1094. http://dx.doi.org/10.3390/mi13071094.

Texte intégral
Résumé :
This work offers a new alternative tool for atherectomy operations, with the purpose of minimizing the risks for the patients and maximizing the number of clinical cases for which the system can be used, thanks to the possibility of scaling its size down to lumen reduced to a few tenths of mm. The development of this microsystem has presented a certain theoretical work during the kinematic synthesis and the design stages. In the first stage a new multi-loop mechanism with a Stephenson’s kinematic chain (KC) was found and then adopted as the so-called pseudo-rigid body mechanism (PRBM). Analytical modeling was necessary to verify the synthesis requirements. In the second stage, the joint replacement method was applied to the PRBM to obtain a corresponding and equivalent compliant mechanism with lumped compliance. The latter presents two loops and six elastic joints and so the evaluation of the microsystem mechanical advantage (MA) had to be calculated by taking into account the accumulation of elastic energy in the elastic joints. Hence, a new closed form expression of the microsystem MA was found with a method that presents some new aspects in the approach. The results obtained with Finite Element Analysis (FEA) were compared to those obtained with the analytical model. Finally, it is worth noting that a microsystem prototype can be fabricated by using MEMS Technology classical methods, while the microsystem packaging could be a further development for the present investigation.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Pfirrmann, O. « The diffusion of microsystem technologies : the case of the German innovation support programme 'Microsystem Technology' ». Research Evaluation 2, no 1 (1 avril 1992) : 37–45. http://dx.doi.org/10.1093/rev/2.1.37.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Thomas, Lisa W. « Quality Improvement : Assessing Your Clinical Microsystem ». Nephrology Nursing Journal 49, no 2 (2022) : 103. http://dx.doi.org/10.37526/1526-744x.2022.49.2.103.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Torres, Erick O., et Gabriel A. Rincón-Mora. « Energy-Harvesting System-in-Package Microsystem ». Journal of Energy Engineering 134, no 4 (décembre 2008) : 121–29. http://dx.doi.org/10.1061/(asce)0733-9402(2008)134:4(121).

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Keramas, Georgios, Gerardo Perozziello, Oliver Geschke et Claus B. V. Christensen. « Development of a multiplex microarray microsystem ». Lab on a Chip 4, no 2 (2004) : 152. http://dx.doi.org/10.1039/b313472e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Van Toan, Nguyen, Suguru Sangu et Takahito Ono. « Glass reflow process for microsystem applications ». Journal of Micromechanics and Microengineering 26, no 11 (17 octobre 2016) : 115018. http://dx.doi.org/10.1088/0960-1317/26/11/115018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Pavelyev, V. S., K. N. Tukmakov, A. N. Agafonov, N. Tripathi et S. Kumar. « Technologies of microsystem technique and nanosensorics ». IOP Conference Series : Materials Science and Engineering 984 (28 novembre 2020) : 012011. http://dx.doi.org/10.1088/1757-899x/984/1/012011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Lalinský, T., Š. Haščík, Ž. Mozolová, L. Grno, J. Kuzmík et M. Porges. « Monolithic GaAs MESFET power sensor microsystem ». Electronics Letters 31, no 22 (26 octobre 1995) : 1914–15. http://dx.doi.org/10.1049/el:19951295.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Hagleitner, C., A. Hierlemann, D. Lange, A. Kummer, N. Kerness, O. Brand et H. Baltes. « Smart single-chip gas sensor microsystem ». Nature 414, no 6861 (novembre 2001) : 293–96. http://dx.doi.org/10.1038/35104535.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Ebi, Gu¨nter. « Integrated optical noncontact torque measurement microsystem ». Optical Engineering 38, no 2 (1 février 1999) : 240. http://dx.doi.org/10.1117/1.602082.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Wei, J. « Wafer Bonding Techniques for Microsystem Packaging ». Journal of Physics : Conference Series 34 (1 avril 2006) : 943–48. http://dx.doi.org/10.1088/1742-6596/34/1/156.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Laurette, Simon, Anthony Treizebre, Adil Elagli, Basak Hatirnaz, Renato Froidevaux, Frederic Affouard, Ludovic Duponchel et Bertrand Bocquet. « Highly sensitive terahertz spectroscopy in microsystem ». RSC Advances 2, no 26 (2012) : 10064. http://dx.doi.org/10.1039/c2ra21320f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Munn, R. W. « Transition probabilities in a single microsystem ». Journal of Chemical Education 62, no 8 (août 1985) : 644. http://dx.doi.org/10.1021/ed062p644.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Kuratli, C., et Qiuting Huang. « A CMOS ultrasound range-finder microsystem ». IEEE Journal of Solid-State Circuits 35, no 12 (décembre 2000) : 2005–17. http://dx.doi.org/10.1109/4.890317.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Bottner, H., J. Nurnus, A. Gavrikov, G. Kuhner, M. Jagle, C. Kunzel, D. Eberhard, G. Plescher, A. Schubert et K. H. Schlereth. « New thermoelectric components using microsystem technologies ». Journal of Microelectromechanical Systems 13, no 3 (juin 2004) : 414–20. http://dx.doi.org/10.1109/jmems.2004.828740.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Daniel, J. H., D. F. Moore, J. F. Walker et J. T. Whitney. « Focused ion beams in microsystem fabrication ». Microelectronic Engineering 35, no 1-4 (février 1997) : 431–34. http://dx.doi.org/10.1016/s0167-9317(96)00128-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Sahin Solmaz, Nergiz, Marco Grisi, Alessandro V. Matheoud, Gabriele Gualco et Giovanni Boero. « Single-Chip Dynamic Nuclear Polarization Microsystem ». Analytical Chemistry 92, no 14 (12 juin 2020) : 9782–89. http://dx.doi.org/10.1021/acs.analchem.0c01221.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Pauchard, A., B. Furrer, Z. Randjelovic, A. Rochas, D. Manic et R. S. Popovic. « Integrated microsystem for blue/UV detection ». Sensors and Actuators A : Physical 85, no 1-3 (août 2000) : 99–105. http://dx.doi.org/10.1016/s0924-4247(00)00332-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Jiang, Linan, Man Wong et Yitshak Zohar. « Unsteady characteristics of a thermal microsystem ». Sensors and Actuators A : Physical 82, no 1-3 (mai 2000) : 108–13. http://dx.doi.org/10.1016/s0924-4247(99)00317-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Althainz, P., J. Goschnick, S. Ehrmann et H. J. Ache. « Multisensor microsystem for contaminants in air ». Sensors and Actuators B : Chemical 33, no 1-3 (juillet 1996) : 72–76. http://dx.doi.org/10.1016/0925-4005(96)01838-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Dupé, Valérie, et Renaud Briand. « Interactive method for autonomous microsystem design ». International Journal on Interactive Design and Manufacturing (IJIDeM) 4, no 1 (17 décembre 2009) : 35–50. http://dx.doi.org/10.1007/s12008-009-0084-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Trontelj, Janez. « A Magnetic Microsystem on a Chip ». AASRI Procedia 8 (2014) : 93–99. http://dx.doi.org/10.1016/j.aasri.2014.08.016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Mokwa, W. « Microsystem technologies for an epiretinal implant ». Biomedicine & ; Pharmacotherapy 60, no 8 (septembre 2006) : 475–76. http://dx.doi.org/10.1016/j.biopha.2006.07.033.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Romig, A. D., P. V. Dressendorfer et D. W. Palmer. « High performance microsystem packaging : A perspective ». Microelectronics Reliability 37, no 10-11 (octobre 1997) : 1771–81. http://dx.doi.org/10.1016/s0026-2714(97)00158-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Salaun, P., O. Guenat, L. Berdondini, J. Buffle et M. Koudelka-Hep. « Voltammetric Microsystem for Trace Elements Monitoring ». Analytical Letters 36, no 9 (8 janvier 2003) : 1835–49. http://dx.doi.org/10.1081/al-120023617.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie