Littérature scientifique sur le sujet « Embedding in a microsystem »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Embedding in a microsystem ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Embedding in a microsystem"
Belfiore, Nicola Pio, Alvise Bagolini, Andrea Rossi, Gabriele Bocchetta, Federica Vurchio, Rocco Crescenzi, Andrea Scorza, Pierluigi Bellutti et Salvatore Andrea Sciuto. « Design, Fabrication, Testing and Simulation of a Rotary Double Comb Drives Actuated Microgripper ». Micromachines 12, no 10 (17 octobre 2021) : 1263. http://dx.doi.org/10.3390/mi12101263.
Texte intégralFries, David, Liesl Hotaling, Geran Barton, Stan Ivanov, Michelle Janowiak et Matt Smith. « PCBMEMS as a Flexible Path to Devices and Systems across Spatial Scales ». Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2011, DPC (1 janvier 2011) : 000597–634. http://dx.doi.org/10.4071/2011dpc-ta24.
Texte intégralBoehme, Christian, Andreas Ostmann et Martin Schneider-Ramelow. « Modular Microsystems with Embedded Components ». International Symposium on Microelectronics 2013, no 1 (1 janvier 2013) : 000735–39. http://dx.doi.org/10.4071/isom-2013-wp52.
Texte intégralTolochko, N. K. « Application of Additive Technologies for Manufactoring Non-Electronic Components of Microsystems ». Nano- i Mikrosistemnaya Tehnika 23, no 4 (20 août 2021) : 193–200. http://dx.doi.org/10.17587/nmst.23.193-200.
Texte intégralFries, David, Geran Barton, Gary Hendricks, Brian Gregson et Liesl Hotaling. « Rigid and Flex PCB Based Microsystems for Mobility, Systems Development and Harsh Environments ». Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2012, DPC (1 janvier 2012) : 001054–95. http://dx.doi.org/10.4071/2012dpc-tp33.
Texte intégralSelbmann, Franz, Frank Roscher, Frederic Gueth, Maik Wiemer, Harald Kuhn et Yvonne Joseph. « A Parylene-Based Ultra-Thin Printed Circuit Board As a New Platform for Flexible Sensors and Wearables ». ECS Meeting Abstracts MA2022-02, no 63 (9 octobre 2022) : 2617. http://dx.doi.org/10.1149/ma2022-02632617mtgabs.
Texte intégralFries, David P., Stanislav Z. Ivanov, Heather Broadbent, Matthew Smith, George Steimle et Ross Willoughby. « PCBMEMS as a Flexible Path to Devices and Systems across Spatial Scales ». Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2010, DPC (1 janvier 2010) : 000599–642. http://dx.doi.org/10.4071/2010dpc-ta23.
Texte intégralKorvink, Jan G., et Henry Baltes. « Microsystem Modeling ». Sensors Update 2, no 1 (octobre 1996) : 181–209. http://dx.doi.org/10.1002/1616-8984(199610)2:1<181 ::aid-seup181>3.0.co;2-a.
Texte intégralSchultze, J. W. « Electrochemical microsystem technologies ». Electrochimica Acta 42, no 20-22 (janvier 1997) : 2981–82. http://dx.doi.org/10.1016/s0013-4686(97)00145-x.
Texte intégralHabal, Mutaz B. « Commentary on Microsystem ». Journal of Craniofacial Surgery 5, no 2 (mai 1994) : 104. http://dx.doi.org/10.1097/00001665-199405000-00009.
Texte intégralThèses sur le sujet "Embedding in a microsystem"
Quelin, Aurélien. « Microstockage électrique pour microrobotique à énergie embarquée ». Electronic Thesis or Diss., Compiègne, 2022. http://www.theses.fr/2022COMP2705.
Texte intégralAn analysis of the design methods of energy autonomous microrobots carried out during this thesis highlights the fact that these methods may not be optimal, and that the performance of these microrobots could be improved through a co-design of their energy source and their motion system. This thesis work therefore addressed the following question : « Is there an advantage to using fine models for the design of a microrobot, and in particular for co-design of its battery and its displacement system? ». To answer this question, we have studied an on-board power supplied microrobot for which it is possible to size the battery, of lithium-ion chemistry and coin cell format, and the displacement system, based on the impact-drive inertial principle implemented around an electromagnetic actuator. The study of the co-design of these two components has been carried out using their coupled fine models, which have been validated experimentally during the thesis. We have shown, using these coupled models, that the optimal sizing of the whole system does not correspond to the sum of the optimal sizings of the individual components, but to a compromise difficult or impossible to determine without these coupled models, because of the cross-interactions of the effects of the design parameters. The microrobot studied during thisthesis has thus demonstrated the interest of the method used, which could be used on other microsystems, depending on their characteristics
Nguyen, Hugo. « Microsystem Interfaces for Space ». Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Universitetsbiblioteket [distributör], 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6954.
Texte intégralKratz, Henrik. « Integrated Communications and Thermal Management Systems for Microsystem-based Spacecraft : A Multifunctional Microsystem Approach ». Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Universitetsbiblioteket [distributör], 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6316.
Texte intégralRezaei, Masoud. « Multimodal implantable neural interfacing microsystem ». Doctoral thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/36437.
Texte intégralStudying brain functionality to help patients suffering from neurological diseases needs fully implantable brain interface to enable access to neural activities as well as read and analyze them. In this thesis, ultra-low power implantable brain-machine-interfaces (BMIs) that are based on several innovations on circuits and systems are studied for use in neural recording applications. Such a system is intended to collect information on neural activity emitted by several hundreds of neurons, while activating them on demand using actuating means like electro- and/or photo-stimulation. Such a system must provide several recording channels, while consuming very low energy, and have an extremely small size for safety and biocompatibility. Typically, a brain interfacing microsystem includes several building blocks, such as an analog front-end (AFE), an analog-to-digital converter (ADC), digital signal processing modules, and a wireless data transceiver. A BMI extracts neural signals from noise, digitizes them, and transmits them to a base station without interfering with the natural behavior of the subject. This thesis focuses on ultra-low power front-ends to be utilized in a BMI, and presents front-ends with several innovative strategies to consume less power, while enabling high-resolution and high-quality of data. First, we present a new front-end structure using a current-reuse scheme. This structure is scalable to huge numbers of recording channels, owing to its small implementation silicon area and its low power consumption. The proposed current-reuse AFE, which includes a low-noise amplifier (LNA) and a programmable gain amplifier (PGA), employs a new fully differential current-mirror topology using fewer transistors. This is an improvement over several design parameters, in terms of power consumption and noise, over previous current-reuse amplifier circuit implementations. In the second part of this thesis, we propose a new multi-channel sigma-delta converter that converts several channels independently using a single op-amp and several charge storage capacitors. Compared to conventional techniques, this method applies a new interleaved multiplexing scheme, which does not need any reset phase for the integrator while it switches to a new channel; this enhances its resolution. When the chip area is not a priority, other approaches can be more attractive, and we propose a new power-efficient strategy based on a new in-channel ultra-low power sigma-delta converter designed to decrease further power consumption. This new converter uses a low-voltage architecture based on an innovative feed-forward topology that minimizes the nonlinearity associated with low-voltage supply.
Farnsworth, Bradley David. « Wireless Implantable EMG Sensing Microsystem ». Case Western Reserve University School of Graduate Studies / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1276263665.
Texte intégralPauchard, Alexandre. « Silicon sensor microsystem for ultraviolet detection / ». Lausanne, 2000. http://library.epfl.ch/theses/?nr=2152.
Texte intégralMarselli, Catherine. « Data processing of a navigation microsystem ». Université de Franche-Comté. UFR des sciences et techniques, 1998. http://www.theses.fr/1998BESA2078.
Texte intégralThis research is part of a Swiss French academic project whose goal was the determination of some limits in the design and use of microtechnologies and microsystems, using as a common thread example a navigation system based on microaccelerometers and angular rate microsensors (gyros). The entire project was divided into four parts, including design at the component level as well as at the system level. This PhD report describes the data processing of the navigation microsystem realised at the Electronics and Signal Processing Laboratory of the Institute of Microtechnology, University of Neuchâtel. Current low-cost microsensors are less expensive but less accurate that mechanical or optical sensors. In a navigation system, the accelerometer and gyro outputs are integrated, leading to the accumulation of the errors. Thus, the measured trajectory becomes quickly wrong and a corrective system has to be designed. Hence, the goals of the data processing system is to compute the navigation parameters (position, velocity, orientation) while preventing the trajectory from diverging, following two approaches: reducing the sensor errors,updating regularly the trajectory using an aiding navigation system
James, Matthew. « Relativistic embedding ». Thesis, University of Bath, 2010. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.538128.
Texte intégralWang, H. (Hongbo). « Silicon X-ray smart sensor micromodule and microsystem ». Doctoral thesis, University of Oulu, 2002. http://urn.fi/urn:isbn:951426746X.
Texte intégralSaha, Debashis Massachusetts Institute of Technology. « A framework for distributed Web-based microsystem design ». Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/46119.
Texte intégralIncludes bibliographical references (p. 109-111).
The increasing complexity of microsystem design mandates a distributed and collaborative design environment. The high integration levels call for tools and generators that allow exploration of the design space irrespective of the geographical or physical availability of the design tools. The World Wide Web serves as a desirable platform for distributed access to libraries, models and design tools. The rapid growth and acceptance of the World Wide Web has happened over the same time period in which distributed object systems have stabilized and matured. The Web can become an important platform for VLSI CAD, when the distributed object technologies (e.g, CORBA) are combined with the Web technologies (e.g., HTTP, CGI) and Web-aware object oriented languages (e.g., Java). In this thesis, a framework using the Object-Web technologies is presented, which enables distributed Web based CAD. The Object-Web architecture provides an open, interoperable and scalable distributed computing environment for microsystem design, in which Web based design tools can efficiently utilize the capabilities of existing design tools on the Web to build hierarchical Web tools. The framework includes the infrastructure to store and manipulate design objects, protocols for tool communication and WebTop, a Java hierarchical schematic/block editor with interfaces to distributed Web tools and cell libraries.
by Debashis Saha.
M.S.
Livres sur le sujet "Embedding in a microsystem"
Bratko, Aleksandr. Artificial intelligence, legal system and state functions. ru : INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1064996.
Texte intégralMicrosystem design. Boston : Kluwer Academic Publishers, 2001.
Trouver le texte intégralW, Schultze J., Ōsaka Tetsuya 1945- et Datta Madhav, dir. Electrochemical microsystem technologies. London : Taylor & Francis, 2002.
Trouver le texte intégralCorporation, Intel. Microsystem components handbook. Santa Clara, CA : Intel, 1986.
Trouver le texte intégralYang, Cheng, Chuan Shi, Zhiyuan Liu, Cunchao Tu et Maosong Sun. Network Embedding. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-031-01590-8.
Texte intégralMaurice, Marc, et Arndt Sorge, dir. Embedding Organizations. Amsterdam : John Benjamins Publishing Company, 2000. http://dx.doi.org/10.1075/aios.4.
Texte intégralLynn, Meskell, et Pels Peter, dir. Embedding ethics. Oxford, UK : Berg, 2005.
Trouver le texte intégralUlrich, Rembold, dir. Microsystem Technology and Microrobotics. Berlin, Heidelberg : Springer Berlin Heidelberg, 1997.
Trouver le texte intégralSchomburg, Werner Karl. Introduction to Microsystem Design. Berlin, Heidelberg : Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47023-7.
Texte intégralSchomburg, Werner Karl. Introduction to Microsystem Design. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19489-4.
Texte intégralChapitres de livres sur le sujet "Embedding in a microsystem"
Armengaud, Eric, Georg Macher, Riccardo Groppo, Marco Novaro, Alexander Otto, Ralf Döring, Holger Schmidt, Bartek Kras et Slawomir Stankiewicz. « Embedding Electrochemical Impedance Spectroscopy in Smart Battery Management Systems Using Multicore Technology ». Dans Advanced Microsystems for Automotive Applications 2016, 225–37. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44766-7_19.
Texte intégralShelton, Lawrence G. « Microsystem ». Dans The Bronfenbrenner Primer, 58–62. New York, NY : Routledge, 2018. : Routledge, 2018. http://dx.doi.org/10.4324/9781315136066-12.
Texte intégralNathan, Arokia, et Henry Baltes. « Microsystem Simulation ». Dans Computational Microelectronics, 376–419. Vienna : Springer Vienna, 1999. http://dx.doi.org/10.1007/978-3-7091-6428-0_9.
Texte intégralDi Paolo Emilio, Maurizio. « Powering Microsystem ». Dans Microelectronic Circuit Design for Energy Harvesting Systems, 75–104. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47587-5_8.
Texte intégralFatikow, Sergej, et Ulrich Rembold. « Microsystem Technology Applications ». Dans Microsystem Technology and Microrobotics, 24–45. Berlin, Heidelberg : Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03450-7_2.
Texte intégralLi, Suny. « SiP and MicroSystem ». Dans MicroSystem Based on SiP Technology, 67–87. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0083-9_3.
Texte intégralHusak, M. « Microsystem Project-Oriented Education ». Dans Microelectronics Education, 269–72. Dordrecht : Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9506-3_62.
Texte intégralSchumacher, Axel, T. Goettsche, S. Haeberle, T. Velten, O. Scholz, A. Wolff, B. Beiski, S. Messner et R. Zengerle. « Intraoral Drug Delivery Microsystem ». Dans IFMBE Proceedings, 2352–55. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89208-3_564.
Texte intégralTerry, Stephen C., Diederik W. de Bruin et Henry V. Allen. « Self-testable Accelerometer Microsystem ». Dans Micro System Technologies 90, 611–16. Berlin, Heidelberg : Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-45678-7_87.
Texte intégralTvarozek, V. « Microsystem Technology in Biosensors ». Dans Biosensors for Direct Monitoring of Environmental Pollutants in Field, 351–71. Dordrecht : Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-8973-4_31.
Texte intégralActes de conférences sur le sujet "Embedding in a microsystem"
Ostmann, A., D. Manessis, T. Loeher, A. Neumann et H. Reichl. « Strategies for Embedding of Active Components ». Dans 2006 International Microsystems, Package, Assembly Conference Taiwan. IEEE, 2006. http://dx.doi.org/10.1109/impact.2006.312182.
Texte intégralJung, Erik, Dirk Wojakowski, Alexander Neumann, Andreas Ostmann, Rolf Aschenbrenner et Herbert Reichl. « Chip in Polymer : 3D Integration of Active Circuitry in Polymeric Substrate ». Dans ASME 2003 International Electronic Packaging Technical Conference and Exhibition. ASMEDC, 2003. http://dx.doi.org/10.1115/ipack2003-35025.
Texte intégralOstmann, Andreas, Lars Boettcher, Stefan Karaszkiewicz, David Schuetze et Dionysios Manessis. « Chip embedding technology for power applications ». Dans 2010 5th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). IEEE, 2010. http://dx.doi.org/10.1109/impact.2010.5699484.
Texte intégralPletz, Martin, Raul Bermejo, Peter Supancic, Johannes Stahr et Mike Morianz. « Numerical investigation of the process of embedding components into Printed Circuit Boards ». Dans Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE, 2011. http://dx.doi.org/10.1109/esime.2011.5765814.
Texte intégralMacurova, K., A. Kharicha, M. Pletz, M. Mataln, R. Bermejo, R. Schongrundner, T. Krivec et al. « Multi-physics simulation of the component attachment within embedding process ». Dans 2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE, 2013. http://dx.doi.org/10.1109/eurosime.2013.6529914.
Texte intégralTakeshita, Toshihiro, Manabu Yoshida, Yusuke Takei, Atsushi Ouchi et Takeshi Kobayashi. « Cubic Flocked Electrode Embedding Amplifier Circuit for Smart ECG Textile Application ». Dans 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). IEEE, 2019. http://dx.doi.org/10.1109/transducers.2019.8808816.
Texte intégralBan, Yu, Jie Liu, Wei Li et Zhiqiang Wang. « A Miniaturized Bandpass Filter Design and Verification with De-embedding Technology in SiP Solutions ». Dans 2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems (ICICM). IEEE, 2018. http://dx.doi.org/10.1109/icam.2018.8596527.
Texte intégralDionysios Manessis, Lars Boettcher, Andreas Ostmann, Stefan Karaszkiewicz et Herbert Reichl. « Breakthroughs in chip embedding technologies leading to the emergence of further miniaturised system-in-packages ». Dans 2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). IEEE, 2009. http://dx.doi.org/10.1109/impact.2009.5382147.
Texte intégralCao, Yang, Wei Zhang, Jun Fu, Nianhong Liu, Quan Wang et Linlin Liu. « De-embedding and electromagnetic simulation calibration of on-wafer passive devices for millimeter wave integrated circuit design support ». Dans 2017 2nd IEEE International Conference on Integrated Circuits and Microsystems (ICICM). IEEE, 2017. http://dx.doi.org/10.1109/icam.2017.8242137.
Texte intégralYapici, M. K., J. M. Hong, J. Zou et K. Balareddy. « Post-CMOS on-chip integration of 3D MEMS inductors using a novel chip embedding technique ». Dans 2013 Transducers & Eurosensors XXVII : The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). IEEE, 2013. http://dx.doi.org/10.1109/transducers.2013.6626718.
Texte intégralRapports d'organisations sur le sujet "Embedding in a microsystem"
Ryan, Cillian, et Mike Walsh. Embedding WinEcon. Bristol, UK : The Economics Network, juin 2007. http://dx.doi.org/10.53593/n2495a.
Texte intégralJames, Conrad D., Paul C. Galambos, Dawn Jonita Bennett, Monica Manginell, Murat Okandan, Andreas Acrivos, Susan Marie Brozik et Boris Khusid. Microsystem strategies for sample preparation in biological detection. Office of Scientific and Technical Information (OSTI), mars 2005. http://dx.doi.org/10.2172/920445.
Texte intégralLemons, Nathan Wishard. The cost of embedding. Office of Scientific and Technical Information (OSTI), juin 2017. http://dx.doi.org/10.2172/1364582.
Texte intégralSandford, M. T. II, J. N. Bradley et T. G. Handel. The data embedding method. Office of Scientific and Technical Information (OSTI), juin 1996. http://dx.doi.org/10.2172/249252.
Texte intégralJanek, Richard P., Paul Gabriel Kotula, Thomas Edward Buchheit, R. P. Michael et Steven Howard Goods. Oxide dispersion strengthening of nickel electrodeposits for microsystem applications. Office of Scientific and Technical Information (OSTI), novembre 2003. http://dx.doi.org/10.2172/918246.
Texte intégralSbriglia, Lexey Raylene. Embedding Sensors During Additive Manufacturing. Office of Scientific and Technical Information (OSTI), août 2015. http://dx.doi.org/10.2172/1209455.
Texte intégralChowdhury, Rosen. Embedding employability in Monetary Economics. Bristol, UK : The Economics Network, octobre 2020. http://dx.doi.org/10.53593/n3355a.
Texte intégralSainudeen, Zuhail, et Navid Yazdi. Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem. Fort Belvoir, VA : Defense Technical Information Center, juillet 2001. http://dx.doi.org/10.21236/ada402437.
Texte intégralZifer, Thomas, LeRoy L. ,. Jr Whinnery, Jeromy Todd Hollenshead, George M. Buffleben, James Ross McElhanon et Robert H. Nilson. Assuring ultra-clean environments in microsystem packages : irreversible and reversible getters. Office of Scientific and Technical Information (OSTI), novembre 2003. http://dx.doi.org/10.2172/918394.
Texte intégralMorris, Kristen Deanne. Adaptive Active � Embedding Inclusion into Activewear. Ames (Iowa) : Iowa State University. Library, janvier 2019. http://dx.doi.org/10.31274/itaa.9544.
Texte intégral