Littérature scientifique sur le sujet « Electrosensor »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Electrosensor ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Electrosensor"

1

Liu, Jiangtao, Mingying Zhang, Jianbo Liu et Jianbin Zheng. « Synthesis of Ag@Pt core–shell nanoparticles loaded onto reduced graphene oxide and investigation of its electrosensing properties ». Analytical Methods 8, no 5 (2016) : 1084–90. http://dx.doi.org/10.1039/c5ay02672e.

Texte intégral
Résumé :
Nanocomposites of Ag@Pt core–shell nanoparticles loaded on graphene (Ag@Pt–graphene) were synthesized, and further fabricated into an electrosensor to detect hydrogen peroxide (H2O2).
Styles APA, Harvard, Vancouver, ISO, etc.
2

Papp, G., et F. M. Peeters. « Resistance maps for a submicron Hall electrosensor in the diffusive regime ». Journal of Applied Physics 101, no 11 (juin 2007) : 113717. http://dx.doi.org/10.1063/1.2745345.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Qin, Xiaojiao, Shuxia Xu, Li Deng, Rongfu Huang et Xinfeng Zhang. « Photocatalytic electrosensor for label-free and ultrasensitive detection of BRCA1 gene ». Biosensors and Bioelectronics 85 (novembre 2016) : 957–63. http://dx.doi.org/10.1016/j.bios.2016.05.076.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Neiva, Eduardo G. C., Marcio F. Bergamini, Marcela M. Oliveira, Luiz H. Marcolino et Aldo J. G. Zarbin. « PVP-capped nickel nanoparticles : Synthesis, characterization and utilization as a glycerol electrosensor ». Sensors and Actuators B : Chemical 196 (juin 2014) : 574–81. http://dx.doi.org/10.1016/j.snb.2014.02.041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kan, Xianwen, Tingting Liu, Hong Zhou, Chen Li et Bin Fang. « Molecular imprinting polymer electrosensor based on gold nanoparticles for theophylline recognition and determination ». Microchimica Acta 171, no 3-4 (19 septembre 2010) : 423–29. http://dx.doi.org/10.1007/s00604-010-0455-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Rani, Reetu, Akash Deep, Boris Mizaikoff et Suman Singh. « Copper Based Organic Framework Modified Electrosensor for Selective and Sensitive Detection of Ciprofloxacin ». Electroanalysis 32, no 11 (28 octobre 2020) : 2442–51. http://dx.doi.org/10.1002/elan.202060274.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Guo, Wenjuan, Tingcheng Xia, Huaying Zhang, Minghui Zhao, Luyan Wang et Meishan Pei. « A Molecularly Imprinting Electrosensor Based on the Novel Nanocomposite for the Detection of Tryptamine ». Science of Advanced Materials 10, no 12 (1 décembre 2018) : 1805–12. http://dx.doi.org/10.1166/sam.2018.3388.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

HOFMANN, MICHAEL H., MARIANNE FALK et LON A. WILKENS. « ELECTROSENSORY BRAIN STEM NEURONS COMPUTE THE TIME DERIVATIVE OF ELECTRIC FIELDS IN THE PADDLEFISH ». Fluctuation and Noise Letters 04, no 01 (mars 2004) : L129—L138. http://dx.doi.org/10.1142/s0219477504001732.

Texte intégral
Résumé :
For many aquatic animals, the electrosense is an important sensory system used to detect prey or conspecifics at short to medium range and for long-range orientation. Passive electroreceptive animals sense the minute electric fields of animate and inanimate sources and it has been thought that they are most sensitive to sources that modulate the field around a few Hertz. Our data on the properties of the electrosensory system in the paddlefish reveal that the firing rate of electrosensory brain stem neurons represents the first derivative of the stimulus, i.e. the rate of change in intensity of an electric field. Furthermore, the responses to several non-periodic stimuli suggest that the electrosensory system monitors changes in field intensity caused by the relative movement between source and receiver and converts spatial field structure into its time derivative form. This new interpretation solves a number of contradictions between behavioural observations and electrophysiological studies on the electrosensory system of vertebrates.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sutton, Erin E., Alican Demir, Sarah A. Stamper, Eric S. Fortune et Noah J. Cowan. « Dynamic modulation of visual and electrosensory gains for locomotor control ». Journal of The Royal Society Interface 13, no 118 (mai 2016) : 20160057. http://dx.doi.org/10.1098/rsif.2016.0057.

Texte intégral
Résumé :
Animal nervous systems resolve sensory conflict for the control of movement. For example, the glass knifefish, Eigenmannia virescens , relies on visual and electrosensory feedback as it swims to maintain position within a moving refuge. To study how signals from these two parallel sensory streams are used in refuge tracking, we constructed a novel augmented reality apparatus that enables the independent manipulation of visual and electrosensory cues to freely swimming fish ( n = 5). We evaluated the linearity of multisensory integration, the change to the relative perceptual weights given to vision and electrosense in relation to sensory salience, and the effect of the magnitude of sensory conflict on sensorimotor gain. First, we found that tracking behaviour obeys superposition of the sensory inputs, suggesting linear sensorimotor integration. In addition, fish rely more on vision when electrosensory salience is reduced, suggesting that fish dynamically alter sensorimotor gains in a manner consistent with Bayesian integration. However, the magnitude of sensory conflict did not significantly affect sensorimotor gain. These studies lay the theoretical and experimental groundwork for future work investigating multisensory control of locomotion.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Neven, Liselotte, Hanan Barich, Nick Sleegers, Rocío Cánovas, Gianni Debruyne et Karolien De Wael. « Development of a combi-electrosensor for the detection of phenol by combining photoelectrochemistry and square wave voltammetry ». Analytica Chimica Acta 1206 (mai 2022) : 339732. http://dx.doi.org/10.1016/j.aca.2022.339732.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Electrosensor"

1

Oswald, Anne-Marie Michelle. « Burst firing in electrosensory processing ». Thesis, University of Ottawa (Canada), 2005. http://hdl.handle.net/10393/29244.

Texte intégral
Résumé :
Processing of sensory input requires information transfer between neurons primarily via action potentials. The interaction between synaptic input and the ionic mechanisms of action potential generation leads to stereotyped sequences of action potential events. It is hypothesized that these spike sequences code for the sensory inputs. Spike trains often consist of sequences of single action potentials and clusters of action potentials or bursts. Investigations in this thesis are directed toward identifying candidate coding mechanisms in the processing of electrosensory input by pyramidal cells of the electrosensory lateral line lobe (ELL). These studies employ electrophysiological techniques combined with computational analysis and neural modeling to study the responses of pyramidal cells to mimics of electrosensory stimuli and feedback from higher brain centers. The major findings of this thesis are that the timing of isolated action potentials is correlated with a broad range of frequencies present in electrosensory stimuli whereas burst timing is correlated mainly with low frequency stimulus content. The timing of both single action potentials and bursts is reproducible and occurs with low variability in response to repeated stimulus presentations. In addition, within burst events, the time intervals between consecutive action potentials are correlated with stimulus intensity. Thus, bursts can detect low frequency stimulus events as well as estimate their intensity. Finally, feedback input to ELL pyramidal cells from higher brain regions is highly plastic. A subset of these feedback fibers synapse on the region of pyramidal cell dendrites that are responsible for burst generation; thus feedback synaptic input might modulate burst responses and perhaps enhance the detection of low frequency stimuli. The main conclusions of this thesis are that isolated action potentials and spike bursts code for different stimulus frequencies and that the time between burst spikes codes for the intensity of stimulus events. In addition, I speculate that feedback can modify coding by regulating bursting.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Rochman, Rebecca. « Electrosensory-based Search Strategies In Weakly Electric Fish ». Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/31947.

Texte intégral
Résumé :
Effective exploration of the environment is a critical aspect of adaptive behaviour, enabling animals to identify food sources, potential mates, refuge locations, and other important resources. The particular strategies used during exploratory behaviours depend on a variety of factors including context, personality traits and natural ecology. Weakly electric fish rely specifically on a short-range electric sense to search and locate objects in their environment in low-light conditions. However, little is known about the exploratory strategies used. We characterized the exploratory movements of two species of weakly electric fish, Apteronotus leptorhynchus and Apteronotus albifrons, in a laboratory setting. Our results suggest that there are behavioural differences between species in their exploratory strategies. Apteronotus albifrons spent more time in the open, travelled at a slower speed when out in the open, and had a higher total feeding time. Interestingly, Apteronotus leptorhynchus had a higher total displacement and preference for wall-following. A subsequent study on the behavioural function of wall-following in the two species suggested that wall-following is used for exploration in weakly electric fish, rather than for protection, and is not an artifact of restricted movement and tank shape.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lemon, Neal Allen Scott. « Control of oscillatory discharge in an electrosensory neuron ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0016/MQ49634.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Mathieson, William Bruce. « An electrosensory lateral line lobe slice preparation pyramidal cell electrophysiology ». Thesis, University of Ottawa (Canada), 1987. http://hdl.handle.net/10393/5448.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wang, Ke. « Design and Implementation of Bio-inspired Underwater Electrosense ». Thesis, Curtin University, 2017. http://hdl.handle.net/20.500.11937/68277.

Texte intégral
Résumé :
Underwater electrosense, manipulating underwater electric field for sensing purpose, is a growing technology bio-inspired by weakly electric fish that can navigate in dark or cluttered water. We studied its theoretical foundations and developed sophisticated sensing algorithms including some first-introduced techniques such as discrete dipole approximation (DDA) and convolutional neural networks (CNN), which were tested and validated by simulation and a planar sensor prototype. This work pave a solid way to applications on practical underwater robots.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Rashid, Asim J. « Contribution of Kv3 potassium channels to signal processing by electrosensory neurons ». Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=38513.

Texte intégral
Résumé :
Gamma-frequency burst discharge in pyramidal cells of the apteronotid electrosensory lateral line lobe (ELL) is necessary for signal processing. Bursting is dependent on an interaction between somatic and apical dendritic currents, in which spike broadening in the apical dendrite potentiates a somatic afterpotential that follows each rapid somatic spike. Somatic spike repolarization must be consistent in order for the afterpotential to be expressed soon after. The work presented in this thesis describes how the expression and differential subcellular distribution of two Kv3-type K+ channels in ELL pyramidal cells may contribute to this mechanism of burst discharge.
I cloned a family of Kv3 channels from an apteronotid brain cDNA library and demonstrated that two of these channels, homologues of the mammalian subtypes Kv3.1 and Kv3.3, are expressed in ELL pyramidal cells. Immunohistochemical analysis demonstrated that the AptKv3.3 K+ channel is distributed throughout the dendrites of pyramidal cells while the AptKv3.1 channel is restricted in its expression to pyramidal cell somata, basilar dendrites and proximal apical dendrites. Heterologous expression of each channel in HEK 293 cells indicated that AptKv3.3 encodes a high-threshold inactivating K + current while AptKv3.1 encodes a high-threshold K+ current which does not display inactivation upon prolonged membrane depolarization. Based on these results as well as pharmacological analysis of native ELL pyramidal cells, I propose that AptKv3.3 mediates spike repolarization in the apical dendrite and inactivation of the channel during repetitive firing allows spike broadening. In contrast, AptKv3.1 likely contributes towards rapid and consistent spike repolarization in the cell soma. Therefore, the expression and differential distribution of these two Kv3 channels in ELL pyramidal cells may underlie the compartmental differences in spike repolarzation that is necessary for burst discharge.
The extensive dendritic localization of AptKv3.3 observed in ELL pyramidal cells as well as in other hindbrain neurons has not previously been demonstrated for members of the Kv3 family of K+ channels. The differential localization of AptKv3.1. AptKv3.3 and possibly AptKv3.3 splice variants that I have identified presents an opportunity to examine the molecular mechanisms of Kv3 channel targeting in neurons. Preliminary data is presented which provides the foundation for future studies on channel targeting.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Deemyad, Tara. « Serotonergic modulation of potassium channels : implications for signal processing in electrosensory neurons ». Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110476.

Texte intégral
Résumé :
Most sensory systems need to discriminate between wide ranges of behaviorally relevant signals. In order to achieve this, neurons need to adjust their response properties, such as firing rate and filtering capabilities. In the experiments presented in this thesis, I studied modifications mediated by serotonin in the response properties of neurons that receive direct sensory inputs from peripheral sensors in the weakly electric fish. These neurons also receive a rich serotonergic innervation from the raphe nuclei. In a first set of studies, in an in vitro preparation I found that the effect of serotonin is mediated through down regulation of two different potassium channels, namely SK and M channels. Using specific blockers in vitro, I found that SK and M potassium channels contributed to the observed effects of serotonin through a reduction in after hyperpolarization (AHP). Blocking of either channel resulted in burst firing and decreased the time constant of spike frequency adaptation. Surprisingly, SK an M channel block had opposite effects on frequency tuning of neurons. Blocking SK channels increased oscillations in membrane potential in the theta range, thus increasing the response of neurons to low frequency stimuli. In contrast, blocking M channels resulted in an increase in high frequency tuning. Occlusion experiments showed that serotonin down regulates both SK and M channels, the overall effect being a reduction in the response of neurons to low frequency stimuli (i.e., <40Hz).To study the effect of serotonin on neuronal activity and information coding at the network level, I performed sharp electrode intracellular and extracellular recordings from pyramidal neurons in immobilized behaving fish. I either applied serotonin or electrically stimulated the raphe nuclei. Similar to the slice preparation, serotonin induced burst activity by reducing the AHP. Furthermore, I found that serotonin improves detection of low-frequency beats – which mimic the presence of same sex animal in the electrical field – as measured by an increase in phase-locking of responses to low frequency sinusoidal stimuli. Surprisingly, in contrast to in vitro conditions, serotonin application resulted in an increase in neuronal responses to low frequency stimuli. This finding suggests that serotonin also affects the feedback inputs that are not present in vitro, but remain intact in vivo.Previous studies have shown a positive correlation between serotonergic activity and harm avoidance in different animals. Here, I found that detection of small chirp stimuli improved in the presence of serotonin, as shown by a decrease in the variability and latency of the first spike after the stimulus. Since small chirp is an aggressive signal used for initiating fights between male fish, these findings suggest that serotonin release is beneficial for faster detection of stimuli and harm avoidance behaviors. These results provide electrophysiological correlates for known behavioral effects of serotonin. In contrast, prey-like and courtship signals were not affected in any way by serotonin injection. Taken together, these results provide a link between changes in membrane properties of neurons by serotonin (i.e., down-regulation of potassium channels) to a change in the firing pattern and consequently the filtering properties of neurons, which is reflected in better detection of signals related to same sex interactions and aggressive behaviors. Furthermore, this neuromodulator commands a "shut up and listen" order for the animal in threatening conditions: serotonin reduces the rate of chirp generation and increases small chirp detection. Thus, the findings of studies in the present thesis provide evidence at the cellular and network levels for the role of neuromodulators in adjusting response properties of neurons in order to better detect behaviorally relevant stimuli at the systems level.
La plupart des systèmes sensoriels doivent faire la différence entre un large panel de signaux qui peuvent être pertinent comportementalement. Pour réaliser cette différentiation, un neurone doit ajuster les propriétés de sa réponse, comme sa fréquence de décharge ou sa capacité de filtrage. Une façon d'ajuster ces propriétés neuronale est d'utiliser des substances endogènes comme la sérotonine, la dopamine, ou l'histamine. Lors des expériences présentées dans cette thèse, j'étudie les modifications engendrées par la sérotonine, sur les propriétés de réponse de neurones qui sont directement connectes a des capteurs sensoriels périphériques chez le poisson «faiblement électrique». Cette zone reçoit une innervation « sérotonergique » importante en provenance des noyaux raphe. Dans un premier groupe d'expériences, j'ai trouve, dans une préparation in vitro, que les effets de la sérotonine sont régulés par deux canaux a potassium différents : canal SK et canal M. En utilisant des bloqueurs spécifiques, j'ai trouve que les canaux a potassium SK et M contribuent aux effets de la sérotonine: réduction après hyperpolarisation (AHP). Bloquer l'un ou l'autre des canaux a pour conséquence une rafale de potentiels d'action et une diminution de la constante de temps de l'adaptation de la fréquence de décharge. Etonnamment, bloquer les canaux SK et M a un effet oppose sur l'ajustement fréquentiel du neurone. Bloquer les canaux SK augmente les oscillations du potentiel de membrane dans la gamme thêta, ce qui a pour conséquence d'augmenter la réponse neuronal aux basses fréquences. Bloquer les canaux M a pour conséquence une augmentation de l'ajustement neuronal aux hautes fréquences.Les expériences d'occlusion ont montrées que la sérotonine régule les deux canaux SK et M, avec un effet global de diminution de la réponse neuronal aux basses fréquences (<40Hz). La sérotonine a aussi pour effet d'augmenter la décharge des neurones pyramidaux avec des rafales d'activité et des potentiels d'action transportant de l'information sur les basses et hautes fréquences, respectivement. Dans le but d'étudier les effets de la sérotonine sur l'activité neuronale et le codage de l'information au niveau des réseaux neuronaux j'ai réalisé des enregistrements intracellulaire et extracellulaire des neurones pyramidaux chez le poisson immobilisé. J'ai soit délivré de la sérotonine soit stimule électriquement le noyau raphe. De la même façon que pour la préparation in vitro, la sérotonine provoque une rafale de potentiel d'actions à cause de la réduction de l'AHP. De plus, j'ai trouve que la sérotonine améliore la détection des battements a basse fréquence, ce qui simule la présence d'un animal de même sexe dans le champ électrique. Cela a été mesure par une augmentation de l'asservissement de la phase de la réponse aux sinusoïdes à basse fréquence. Il est surprenant de constater qu'à l'inverse des résultats in vitro, l'application de la sérotonine a pour conséquence l'augmentation de la densité de l'information mutuelle. Pris dans leur ensemble, ces résultats montrent comment des changements de propriétés de membrane induit par la sérotonine (Diminution de l'activité des canaux a potassium) ont des conséquences sur le modèle de décharge et incidemment, sur les propriétés de filtrage du neurone, ce qui se reflète dans une meilleur détection des signaux lie aux interactions avec des pairs de même sexe et aux comportements agressifs. De plus, ce neuromodulateur commande un ordre de « tais toi et écoutes » pour l'animal en condition de menace : la sérotonine réduit la production de pépiement et améliore la détection de petit pépiements. Les résultats des études présentées dans cette thèse, fournissent donc des évidences au niveau cellulaire et au niveau des réseaux neuronaux du rôle de neuromodulateurs dans l'ajustement des propriétés de réponses du neuronales dans le but de mieux détecter des stimuli pertinent au niveau du system.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Jordan, Laura Katherine. « Structure and function of stingray mechanosensory lateral line canals and electrosensory systems ». Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1712249181&sid=5&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Jesus, Bacelo Machado Sousa Joao Antonio. « Sensory processing in the Electrosensory Lobe of the weakly electric fish Gnathonemus petersii ». Paris 6, 2007. http://www.theses.fr/2007PA066341.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mileva, Gerri. « Short Term Synaptic Plasticity Across Multiple Electrosensory Maps in the Weakly Electric Fish Apteronotus leptorhynchus ». Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/28637.

Texte intégral
Résumé :
The electrosensory lateral line lobe (ELL) is the first order electrosensory processing station in the brain of the electric fish Apteronotus leptorhynchus, and is the only nucleus to receive input from electroreceptors on the skin. The ELL is subdivided into three maps: the centromedial segment (CMS), centrolateral segment (CLS), and lateral segment (LS) which receive input from tuberous electroreceptors processing high frequency signals. Two feedback pathways from higher order nuclei, the nucleus praemenintialis (nP) and the eminentia posterior granularis (EGp) are integral to processing in the ELL and show synaptic plasticity on various time scales. This thesis focuses on characterizing short term plasticity (STP) in nP-ELL synapses between the CMS, CLS and LS, and the development of an in vitro slice containing the entire direct feedback pathway. We find that LS pyramidal cells show greater facilitation in response to high frequency stimulation of direct feedback fibres as compared to CMS.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Electrosensor"

1

Nelson, Mark E. « Adaptive Filtering in the Electrosensory System ». Dans Computation in Neurons and Neural Systems, 209–14. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2714-5_34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Perks, Krista, et Nathaniel B. Sawtell. « Influences of Motor Systems on Electrosensory Processing ». Dans Electroreception : Fundamental Insights from Comparative Approaches, 315–38. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29105-1_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bodxnick, David. « Comparisons Between Electrosensory and Mechanosensory Lateral Line Systems ». Dans The Mechanosensory Lateral Line, 653–78. New York, NY : Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3560-6_33.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Paulin, Michael G. « Neural System Identification Applied to Modelling Dogfish Electrosensory Neurons ». Dans Computation in Neurons and Neural Systems, 191–96. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2714-5_31.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Tricas, Timothy C., et Joseph A. Sisneros. « Ecological Functions and Adaptations of the Elasmobranch Electrosense ». Dans The Senses of Fish, 308–29. Dordrecht : Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-007-1060-3_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Xu, Zhian, Jeremy R. Payne et Mark E. Nelson. « System Identification and Modeling of Primary Electrosensory Afferent Response Dynamics ». Dans Computation in Neurons and Neural Systems, 197–202. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2714-5_32.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

von der Emde, Gerhard. « Electric Fields and Electroreception : How Electrosensory Fish Perceive Their Environment ». Dans Ecology of Sensing, 313–29. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-22644-5_16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Caputi, Angel Ariel, et Javier Nogueira. « Identifying Self- and Nonself-Generated Signals : Lessons from Electrosensory Systems ». Dans Advances in Experimental Medicine and Biology, 107–25. New York, NY : Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1704-0_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Fritzsch, Bernd. « Diversity and Regression in the Amphibian Lateral Line and Electrosensory System ». Dans The Mechanosensory Lateral Line, 99–114. New York, NY : Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3560-6_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Payne, Jeremy R., Zhian Xu et Mark E. Nelson. « A Network Model of Automatic Gain Control in the Electrosensory System ». Dans Computation in Neurons and Neural Systems, 203–8. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2714-5_33.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Electrosensor"

1

Wang, Ke, Khac Duc Do et Lei Cui. « An underwater electrosensor for identifying objects of similar volume and aspect ratio using convolutional neural network ». Dans 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017. http://dx.doi.org/10.1109/iros.2017.8206378.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Brown, Brandon R., Mary E. Hughes et John C. Hutchison. « Extracellular signal fluctuations in shark electrosensors ». Dans SPIE's First International Symposium on Fluctuations and Noise, sous la direction de Sergey M. Bezrukov, Hans Frauenfelder et Frank Moss. SPIE, 2003. http://dx.doi.org/10.1117/12.498789.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Van den Bergh, Bertold, Domenico Giustiniano, Hector Cordobes, Markus Fuchs, Roberto Calvo-Palomino, Sofie Pollin, Sreeraj Rajendran et Vincent Lenders. « Electrosense : Crowdsourcing spectrum monitoring ». Dans 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). IEEE, 2017. http://dx.doi.org/10.1109/dyspan.2017.7920766.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lafferriere, Gerardo, et Patrick D. Roberts. « Stable feedback models for electrosensory filtering in mormyrid fish ». Dans 2007 46th IEEE Conference on Decision and Control. IEEE, 2007. http://dx.doi.org/10.1109/cdc.2007.4434558.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wang, Ke, Lei Cui et Khac Duc Do. « An underwater electrosensory membrane bio-inspired by weakly electric fish ». Dans 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016. http://dx.doi.org/10.1109/iros.2016.7759727.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Silverman, Yonatan, James Snyder, Yang Bai et Malcolm A. MacIver. « Location and orientation estimation with an electrosense robot ». Dans 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012). IEEE, 2012. http://dx.doi.org/10.1109/iros.2012.6386167.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Bai, Yang, James Snyder, Yonatan Silverman, Michael Peshkin et Malcolm A. MacIver. « Sensing capacitance of underwater objects in bio-inspired electrosense ». Dans 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012). IEEE, 2012. http://dx.doi.org/10.1109/iros.2012.6386174.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wang, Ke, Lei Cui et Khac Duc Do. « A discrete dipole approximation approach to underwater active electrosense problems ». Dans 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016. http://dx.doi.org/10.1109/iros.2016.7759216.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Petkov, Ivan. « Polymer/dye composition as component for interactive paper used as photochemical or electrosensors ». Dans First International Conference on Interactive Paper, sous la direction de Graham G. Allan et Jean J. Robillard. SPIE, 1997. http://dx.doi.org/10.1117/12.280786.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Peng, Haoran, Qiao Hu, Guangyu Jiang, Dan Xu et Tongqiang Fu. « Direction Identification of Underwater Moving Target with Active Electrosense and CNN ». Dans 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2021. http://dx.doi.org/10.1109/robio54168.2021.9739322.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie