Littérature scientifique sur le sujet « Electrons – Diffraction »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Electrons – Diffraction ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Electrons – Diffraction"

1

Qin, L. C., A. J. Garratt-Reed et L. W. Hobbs. « Theory and practice of energy-filtered electron diffraction using the HB5 STEM ». Proceedings, annual meeting, Electron Microscopy Society of America 50, no 1 (août 1992) : 350–51. http://dx.doi.org/10.1017/s0424820100122150.

Texte intégral
Résumé :
Electron diffraction patterns obtained in TEM have long been an important part of microstructural characterizations. Certain materials, such as crystalline silicas, are amorphized in the fast electron beam of the TEM, and their aperiodic (metamict) structure is of interest. For amorphous materials, both elastically and inelastically scattered electrons contribute to the diffuse diffraction pattern. Analysis of aperiodic structure, however, requires intensity data from only elastically scattered electrons, and it is therefore it is necessary to obtain energy-filtered electron diffraction patterns. With the energy-filtered electron diffraction technique, the background intensity that is mainly due to inelastically scattered electrons is removed. This makes possible the derivation of radial distribution functions (RDFs) from collected electron diffraction intensity data for uniform aperiodic structures.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lyman, Charles. « Diffraction ». Microscopy Today 20, no 2 (28 février 2012) : 7. http://dx.doi.org/10.1017/s1551929512000107.

Texte intégral
Résumé :
This year marks the 100th anniversary of the discovery of X-ray diffraction and the 85th anniversary of electron diffraction (see Microscopy Pioneers). For most of the time since their introduction, microscopists have known these two techniques as the primary phase identification methods used in conjunction with various microscopies. However, these two diffraction methods also have played enormous roles in understanding the structure of matter, as well as the nature of both X rays and electrons.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Schröder, Rasmus R., et Christoph Burmester. « Improvements in electron diffraction of frozen hydrated crystals by energy filtering and large-area single-electron detection ». Proceedings, annual meeting, Electron Microscopy Society of America 51 (1 août 1993) : 666–67. http://dx.doi.org/10.1017/s0424820100149167.

Texte intégral
Résumé :
Diffraction patterns of 3D protein crystals embedded in vitrious ice are critical to record. Inelastically scattered electrons almost completely superimpose the diffraction pattern of crystals if the thickness of the crystal is higher than the mean free path of electrons in the specimen. Figure 1 shows such an example of an unfiltered electron diffraction pattern from a frozen hydrated 3D catalase crystal. However, for thin 2D crystals electron diffraction has been the state of the art method to determine the Fourier amplitudes for reconstructions to atomic level, and in one case the possibility of obtaining Fourier phases from diffraction patterns has been studied. One of the main problems could be the background in the diffraction pattern due to inelastic scattering and the recording characteristics for electrons of conventional negative material.It was pointed out before, that the use of an energy filtered TEM (EFTEM) and of the Image Plate as a large area electron detector gives considerable improvement for detection of diffraction patterns.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bauer, R., W. Probst et W.I. Miller. « Elemental imaging of thin specimens with an energy filtering electron microscope (EFEM) ». Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988) : 524–25. http://dx.doi.org/10.1017/s0424820100104686.

Texte intégral
Résumé :
In conventional TEM (CTEM), image contrast is determined by scattering absorption contrast, diffraction contrast and phase contrast. Phase contrast is produced by the interference of unscattered electrons and elastically scattered electrons. Scattering absorption contrast and diffraction contrast are produced by angle selection of the scattered electrons using an objective aperture diaphragm for brightfield, darkfield and diffraction images.In an EFEM, with an integrated imaging electron energy-loss spectrometer, angle selection is used as in CTEM, but, additionally, it is possible to perform energy selection. This is done from the energy-loss spectrum obtained for the specimen area imaged. Energy selection permits the elimination of all inelastically scattered electrons to improve contrast for brightfield, darkfield and diffraction images. This technique also permits imaging of selected, e.g. e1ement-characteristic, ine1astica11y scattered electrons. Images obtained in this way display object- specific or e1ement-specific contrast and are termed electron or element-spectroscopic images (ESI).
Styles APA, Harvard, Vancouver, ISO, etc.
5

Barckhaus, R. H., I. Fromm, H. J. Höhling et L. Reimer. « Advantage of Electron Spectroscopic Diffraction on Calcified Tissue Sections ». Proceedings, annual meeting, Electron Microscopy Society of America 48, no 2 (12 août 1990) : 362–63. http://dx.doi.org/10.1017/s0424820100135411.

Texte intégral
Résumé :
Different stages in the mineralization of calcified tissues can be investigated by electron diffraction. A disadvantage is the strong background below the Debye—Scherrer rings caused by the large massthickness of calcified products and the high ratio (≃ 3) of the inelastic—to—elastic scattering cross—sections of the embedding material. Therefore, a large fraction of the background consists of inelastically scattered electrons with energy losses. The electron spectroscopic diffraction (ESD) mode of an energy—filtering microscope (ZEISS EM902) allows to record diffraction patterns using only the zero—loss electrons which consist of the primary beam, Bragg diffracted electrons and a smaller fraction of elastically scattered electrons between the Debye—Scherrer rings by thermal—diffuse scattering. Small—area diffraction patterns with different camera lengths are generated at the filter—entrance plane and the zero—loss electrons are selected by a slit in the energy—dispersive plane behind the Castaing—Henry filter lens.
Styles APA, Harvard, Vancouver, ISO, etc.
6

VALERI, SERGIO, et ALESSANDRO di BONA. « MODULATED ELECTRON EMISSION BY SCATTERING-INTERFERENCE OF PRIMARY ELECTRONS ». Surface Review and Letters 04, no 01 (février 1997) : 141–60. http://dx.doi.org/10.1142/s0218625x9700016x.

Texte intégral
Résumé :
We review the effects of scattering-interference of the primary, exciting beam on the electron emission from ordered atomic arrays. The yield of elastically and inelastically backscattered electrons, Auger electrons and secondary electrons shows a marked dependence on the incidence angle of primary electrons. Both the similarity and the relative importance of processes experienced by incident and excident electrons are discussed. We also present recent studies of electron focusing and defocusing along atomic chains. The interplay between these two processes determines the in-depth profile of the primary electron intensity anisotropy. Finally, the potential for surface-structural studies and limits for quantitative analysis are discussed, in comparison with the Auger electron diffraction (AED) and photoelectron diffraction (PD) techniques.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lynch, D. F., et A. E. Smith. « Electron diffraction phenomena for very low energy electrons ». Acta Crystallographica Section A Foundations of Crystallography 43, a1 (12 août 1987) : C246. http://dx.doi.org/10.1107/s0108767387078887.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Yang, Jie, Markus Guehr, Theodore Vecchione, Matthew S. Robinson, Renkai Li, Nick Hartmann, Xiaozhe Shen et al. « Femtosecond gas phase electron diffraction with MeV electrons ». Faraday Discussions 194 (2016) : 563–81. http://dx.doi.org/10.1039/c6fd00071a.

Texte intégral
Résumé :
We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect of velocity mismatch between pump laser pulses and the probe electron pulses, and maintaining a low timing jitter. At electron kinetic energies above 3 MeV, the velocity mismatch between laser and electron pulses becomes negligible. The relativistic electrons are also less susceptible to temporal broadening due to the Coulomb force. One of the challenges of diffraction with relativistic electrons is that the small de Broglie wavelength results in very small diffraction angles. In this paper we describe the new setup and its characterization, including capturing static diffraction patterns of molecules in the gas phase, finding time-zero with sub-picosecond accuracy and first time-resolved diffraction experiments. The new device can achieve a temporal resolution of 100 fs root-mean-square, and sub-angstrom spatial resolution. The collimation of the beam is sufficient to measure the diffraction pattern, and the transverse coherence is on the order of 2 nm. Currently, the temporal resolution is limited both by the pulse duration of the electron pulse on target and by the timing jitter, while the spatial resolution is limited by the average electron beam current and the signal-to-noise ratio of the detection system. We also discuss plans for improving both the temporal resolution and the spatial resolution.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Vincent, R. « Quantitative energy-filtered electron diffraction ». Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994) : 992–93. http://dx.doi.org/10.1017/s0424820100172693.

Texte intégral
Résumé :
Microanalysis and diffraction on a sub-nanometre scale have become practical in modern TEMs due to the high brightness of field emission sources combined with the short mean free paths associated with both elastic and inelastic scattering of incident electrons by the specimen. However, development of electron diffraction as a quantitative discipline has been limited by the absence of any generalised theory for dynamical inelastic scattering. These problems have been simplified by recent innovations, principally the introduction of spectrometers such as the Gatan imaging filter (GIF) and the Zeiss omega filter, which remove the inelastic electrons, combined with annual improvements in the speed of computer workstations and the availability of solid-state detectors with high resolution, sensitivity and dynamic range.Comparison of experimental data with dynamical calculations imposes stringent requirements on the specimen and the electron optics, even when the inelastic component has been removed. For example, no experimental CBED pattern ever has perfect symmetry, departures from the ideal being attributable to residual strain, thickness averaging, inclined surfaces, incomplete cells and amorphous surface layers.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Wang, Z. L. « Coupled thermal diffuse-atomic inner shell scattering in electron diffraction ». Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994) : 994–95. http://dx.doi.org/10.1017/s042482010017270x.

Texte intégral
Résumé :
In electron diffraction patterns, diffuse scattering at high angles is primarily generated by phonon, or thermal diffuse, scattering (TDS). Techniques were introduced to acquire the electron energy-loss spectra (EELS) of high-angle thermal-diffuse-scattered electrons (TDS-EELS) in a transmission electron microscope (TEM). With regards to the scattering mechanism, the TDS-EELS core ionization edge intensity was believed to be generated primarily by TDS - single electron, double-inelastic electron scattering processes. It was concluded from experimental data that the signal from coupled phonon - atomic inner shell excitations is stronger than that from atomic inner shell excitation alone. A formal dynamical theory is presented in this paper to illustrate the theoretical basis of the experimental observations. The theory can be applied to calculate the diffraction patterns of inelastically double-scattered electrons and the signal intensity observed in TDS-EELS.TDS is actually a statistically averaged, quasi-elastic scattering of the electrons by the crystal lattice of different thermal vibration configurations.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Electrons – Diffraction"

1

Krecinic, Faruk [Verfasser]. « Ultrafast electron diffraction and imaging using ionized electrons / Faruk Krecinic ». Berlin : Freie Universität Berlin, 2017. http://d-nb.info/1142155447/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Chen, Yixin. « Electron diffraction analysis of amorphous Ge2Sb2Te5 ». Thesis, University of Oxford, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669987.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Dogbe, John Kofi. « Comparing cluster and slab model geometries from density functional theory calculations of si(100)-2x1 surfaces using low-energy electron diffraction ». abstract and full text PDF (free order & ; download UNR users only), 2007. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3258835.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Menzel, Andreas. « Step dynamics measurements with time-resolved low energy electron diffraction ». Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/27870.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Chatelain, Robert P. 1982. « RF compression of electron bunches applied to ultrafast electron diffraction ». Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111943.

Texte intégral
Résumé :
The dynamics of atomic scale structures during structural change can be studied by Ultrafast Electron Diffraction (UED). The time resolution needed to reveal the fastest dynamics is 100 fs. Sub-angstrom structural resolution becomes possible with 1-1000 pC of charge necessary for diffraction pattern analysis during subtle structural changes. This combination of requirements cannot currently be realized due to the space-charge temporal broadening inherent to bunches of electrons of high fluence and short temporal duration. Simulations show that the incorporation of a specially designed Radio-Frequncy (RF) cavity into the UED apparatus removes this technical limitation. The RF cavity reverses the near linear position-momentum distribution of the temporally broadened electron bunch, causing the bunch to recompress itself as it propagates. It is found that our proposed method allows for sub-100 fs bunches with maximum charge of 0.6 pC, almost 3 orders of magnitude improvement over today's state of the art.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Erasmus, Nicolas. « The development of an electron gun for performing ultrafast electron diffraction experiments ». Thesis, Stellenbosch : Stellenbosch University, 2009. http://hdl.handle.net/10019.1/2560.

Texte intégral
Résumé :
Thesis (MSc (Physics))--Stellenbosch University, 2009.
ENGLISH ABSTRACT: This thesis aims to comprehensively discuss ultrafast electron di raction and its role in temporally resolving ultrafast dynamics on the molecular level. Theory on electron pulses and electron pulse propagation will be covered, but the main focus will be on the method, equipment and experimental setup required to generate sub-picosecond electron pulses, which are needed to perform time resolved experiments. The design and construction of an electron gun needed to produce the electron pulses will be shown in detail, while preliminary pulse characterization experiments will also be illustrated. An introduction into the theory of electron diffraction patterns and how to interpret these diffraction patterns will conclude the thesis.
AFRIKAANSE OPSOMMING: Hierdie tesis het ten doel om ultravinnige elektrondi raksie deeglik te bespreek asook die rol wat dit speel om ultravinnige tyd-dinamika op 'n molekulêre vlak op te los. Die teorie van elektonpulse en die voortplanting van elektronpulse sal gedek word, maar die fokus sal op die metode, gereedskap en eksperimentele opstelling wees wat benodig is om sub-pikosekonde elektronpulse te genereer. Die ontwerp en konstruksie van 'n elektrongeweer, wat benodig word om elektronpulse te produseer, sal in detail bespreek word, terwyl aanvanklike pulskarakterisasie eksperimente ook illustreer sal word. 'n Inleiding tot die teorie van elektrondi raksie patrone en hoe om hulle te interpreteer sal die tesis afsluit.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ho, Wing-kin. « The (3x3) reconstruction of SIC(0001) : a low energy electron diffraction study / ». Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19737105.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kaufmann, Martin. « Electron Diffraction Studies of Unsupported Antimony Clusters ». Thesis, University of Canterbury. Physics and Astronomy, 2006. http://hdl.handle.net/10092/1269.

Texte intégral
Résumé :
This thesis contains two main parts: the first part focusses on an electron diffraction study on unsupported antimony (Sb) clusters, while in the second part the design and development of a time-of-flight mass spectrometer (TOFMS) is discussed. Electron diffraction is an ideal tool to study the structure of clusters entrained in a beam. The main advantage of this technique is the ability to study the clusters in situ and in an interaction-free environment. It is therefore not necessary to remove the particles from the vacuum system which would lead to oxidation. Since the particles do not have to be deposited on a sample for further investigation, there is also no substrate which could influence the cluster structure. An additional advantage is the short exposure to the electron beam, thereby minimising the likelihood of damaging the particles. Sb clusters were produced using an inert-gas aggregation source. To control the cluster properties the source temperature, pressure and type of cooling gas can be adjusted. In the range of source parameters tested, Sb clusters with three different structures were observed: a crystalline structure corresponding to the rhombohedral structure of bulk Sb, an amorphous structure equivalent to the structure of amorphous Sb thin films, and a structure with the same diffraction signature as Sb4 (Sb evaporates mainly as Sb4). This last structure was found to belong to large particles consisting of randomly oriented Sb4 units. In order to study the size distributions and morphologies of the Sb clusters, the clusters were deposited onto substrates and studied under an electron microscope. The crystalline particles showed a wide variety of strongly faceted shapes. Depending on source conditions, the average cluster diameters ranged from 15 to 130 nm. There was a considerable disagreement between these values and the size estimates from the diffraction results with the latter being smaller by an order of magnitude. This might be due to the existence of domains inside the clusters. The amorphous particles were all found to be spherical with mean sizes between 27 and 45 nm. The Sb4 particles showed a liquid-like morphology and tended to coalesce easily. Their sizes ranged from 18 to 35 nm. To obtain an independent method for determining the cluster size, a TOFMS was designed and developed in collaboration with Dr Bernhard Kaiser. However, the TOFMS failed to detect a cluster signal in the original set-up which is most likely due to a defective ioniser and underestimated cluster energies. Further tests were performed in a new vacuum system and mass spectra for palladium clusters were successfully recorded.
Styles APA, Harvard, Vancouver, ISO, etc.
9

何永健 et Wing-kin Ho. « The (3x3) reconstruction of SIC(0001) : a low energy electron diffraction study ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31215300.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mok, Cheuk-wai. « Comparing electron and positron scattering factors for applications in diffraction and holography / ». Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B18716337.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Electrons – Diffraction"

1

Beeston, B. E. P. Electron diffraction and optical diffraction techniques. Amsterdam : North-Holland Pub. Co., 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Beeston, B. E. P. Electron diffraction and optical diffraction techniques. Amsterdam : North-Holland, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

1923-, Cowley J. M., dir. Electron diffraction techniques. [Chester, England] : International Union of Crystallography, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

NATO Advanced Study Institute on Electron Crystallography (1997 Erice, Italy). Electron crystallography. Dordrecht : Kluwer Academic Publishers, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kästner, Gerhard. Many-beam electron diffraction related to electron microscope diffraction contrast. Berlin : Akademie Verlag, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hirsch, P. B. Topics in electron diffraction and microscopy of materials. Philadelphia, PA : Institute of Physics Pub., 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

B, Hirsch P., dir. Topics in electron diffraction and microscopy of materials. Bristol : Institute of Physics Publishing, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zou, Xiaodong. Electron crystallography : Electron microscopy and electron diffraction. Oxford : Oxford University Press, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Misell, D. L. Electron diffraction : An introduction for biologists. Amsterdam : Elsevier, 1987.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Tanaka, Michiyoshi. Convergent-beam electron diffraction II. Tokyo : JEOL, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Electrons – Diffraction"

1

Morawiec, Adam. « Diffraction of High Energy Electrons ». Dans Indexing of Crystal Diffraction Patterns, 123–47. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11077-1_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Alloul, Henri. « Crystalline Solids : Diffraction ». Dans Introduction to the Physics of Electrons in Solids, 23–50. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13565-1_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Rochow, Theodore George, et Paul Arthur Tucker. « Transmission Electron Microscopy and Electron Diffraction ». Dans Introduction to Microscopy by Means of Light, Electrons, X Rays, or Acoustics, 265–96. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1513-9_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Drits, Victor A. « Dynamical n-Beam Scattering of Electrons ». Dans Electron Diffraction and High-Resolution Electron Microscopy of Mineral Structures, 85–101. Berlin, Heidelberg : Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71729-1_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Potylitsyn, Alexander Petrovich, Mikhail Ivanovich Ryazanov, Mikhail Nikolaevich Strikhanov et Alexey Alexandrovich Tishchenko. « Experimental Investigations of Diffraction Radiation Generated by Relativistic Electrons ». Dans Springer Tracts in Modern Physics, 251–77. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12513-3_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Drits, Victor A. « The Kinematical Theory of Scattering of Electrons by Crystals. Intensity of Diffraction Reflections ». Dans Electron Diffraction and High-Resolution Electron Microscopy of Mineral Structures, 14–42. Berlin, Heidelberg : Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71729-1_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wang, Zhong Lin. « Diffraction and Imaging of Reflected High-Energy Electrons from Bulk Crystal Surfaces ». Dans Elastic and Inelastic Scattering in Electron Diffraction and Imaging, 97–126. Boston, MA : Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1579-5_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Moritz, W. « 5.1 Introduction to elastic scattering and diffraction of electrons and positrons ». Dans Physics of Solid Surfaces, 134. Berlin, Heidelberg : Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47736-6_48.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

ZhiLi, Dong. « Atomic Scattering Factors for Electrons and X-rays ». Dans Fundamentals of Crystallography, Powder X-ray Diffraction, and Transmission Electron Microscopy for Materials Scientists, 155–64. Boca Raton : CRC Press, 2022. http://dx.doi.org/10.1201/9780429351662-13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Peter Toennies, J. « Otto Stern and Wave-Particle Duality ». Dans Molecular Beams in Physics and Chemistry, 519–45. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63963-1_23.

Texte intégral
Résumé :
AbstractThe contributions of Otto Stern to the discovery of wave-particle duality of matter particles predicted by de Broglie are reviewed. After a short introduction to the early matter-vs-wave ideas about light, the events are highlighted which lead to de Broglie’s idea that all particles, also massive particles, should exhibit wave behavior with a wavelength inversely proportional to their mass. The first confirming experimental evidence came for electrons from the diffraction experiments of Davisson and Germer and those of Thomson. The first demonstration for atoms, with three orders of magnitude smaller wave lengths, came from Otto Stern’s laboratory shortly afterwards in 1929 in a remarkable tour de force experiment. After Stern’s forced departure from Hamburg in 1933 it took more than 40 years to reach a similar level of experimental perfection as achieved then in Stern’s laboratory. Today He atom diffraction is a powerful tool for studying the atomic and electronic structure and dynamics of surfaces. With the advent of nanotechnology nanoscopic transmission gratings have led to many new applications of matter waves in chemistry and physics, which are illustrated with a few examples and described in more detail in the following chapters.
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Electrons – Diffraction"

1

Fill, Ernst E. « Electron Diffraction Experiments using Laser Plasma Electrons ». Dans SUPERSTRONG FIELDS IN PLASMAS : Third International Conference on Superstrong Fields in Plasmas. AIP, 2006. http://dx.doi.org/10.1063/1.2195222.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ascolani, H., M. A. Vicente Alvarez et G. Zampieri. « Inelastic diffraction of electrons ». Dans The 8th Latin American congress on surface science : Surfaces , vacuum, and their applications. AIP, 1996. http://dx.doi.org/10.1063/1.51187.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Rose-Petruck, C., T. Guo, F. Raksi, J. Squier, B. Walker, P. M. Weber, K. R. Wilson et C. P. J. Barty. « Measurements of Ultrafast Dynamics in GaAs Crystals using Time-resolved X-Ray Diffraction ». Dans Applications of High Field and Short Wavelength Sources. Washington, D.C. : Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.pdp2.

Texte intégral
Résumé :
We present initial results of picosecond time resolved diffraction from GaAs(111) crystals using plasma generated, ultrafast x-ray pulses. Laser excitation of the GaAs transfers electron population from the valence into the conduction band. Such an excitation typically produces a hot electron gas in the conduction band that thermalizes with the lattice via phonon emission with a time constant of about 2 ps.[1, 2] However, upon transfer of a few percent of all valence electrons, the cohesive energy binding the atoms in the crystal lattice changes, which can lead to a rapid modification of the crystal structure.[3-8] This process, which does not require the thermalization of electrons and phonons, can proceed on femtosecond timescales. Both effects, which substantially disturb the equilibrium crystal structure, are in principle detectable by ultrafast x-ray diffraction, as are other effects such as melting and shock wave propagation.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kitanaka, Michihiro, Motoki Ishikawa, Reika Kanya et Kaoru Yamanouchi. « Observation of terahertz-wave assisted electron scattering by Ar ». Dans International Conference on Ultrafast Phenomena. Washington, D.C. : Optica Publishing Group, 2022. http://dx.doi.org/10.1364/up.2022.tu4a.32.

Texte intégral
Résumé :
THz-wave assisted electron scattering by Ar, in which the scattered electrons exchange their energy with as many as 800 photons, was observed unambiguously as a first step for ultrafast electron diffraction by the THz-wave streaking.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sakabe, S., S. Tokita, M. Hashida, K. Otani, S. Inoue et T. Nishoji. « Single-shot ultrafast electron diffraction using electrons accelerated by an intense femtosecond laser pulse ». Dans 12th European Quantum Electronics Conference CLEO EUROPE/EQEC. IEEE, 2011. http://dx.doi.org/10.1109/cleoe.2011.5943027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Walsh, John E., Kenneth Woods, Richard Fernow et Harold Kirk. « Radiation produced by relativistic electrons moving over a diffraction grating ». Dans SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, sous la direction de Eric Munro et Henry P. Freund. SPIE, 1995. http://dx.doi.org/10.1117/12.221603.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ascolani, H., et G. Zampieri. « Diffraction of electrons at intermediate energies : The role of phonons ». Dans The 8th Latin American congress on surface science : Surfaces , vacuum, and their applications. AIP, 1996. http://dx.doi.org/10.1063/1.51179.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gunasekar, Naresh Kumar. « Metrology of crystal defects through intensity variations in secondary electrons from the diffraction of primary electrons ». Dans European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.915.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sambasivan, R. « Anomaly in electron shadow scattering off atoms ». Dans OSA Annual Meeting. Washington, D.C. : Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.wr10.

Texte intégral
Résumé :
Hans Bethe in 1966 theoretically predicted the shadowlike diffraction effects in the forward (θ ≈ D – 1°) elastic scattering cross sections of low-energy electrons off atoms such as He, Ne, and Ar and explained them as being due to the coupling of inelastic scattering channels. By scattering 10-25-eV electrons off Ne in the forward direction (θ up to 20 mrad), Geiger and Moran1 found the diffraction effects (superimposed on the Born approximation). This shadow diffraction occurs not at the atom edge (radius γ0) but at the sheath surrounding (radius R) the atom due to agglomeration of the inelastic scattered electrons.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Garmire, E., F. Karpushko, A. Kost et C. M. Yang. « Band-edge surface transient diffraction ». Dans OSA Annual Meeting. Washington, D.C. : Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.fi2.

Texte intégral
Résumé :
As much as 25% self-diffraction has been observed at the surface of n-GaAs:Te when two pumps (and a weak probe) intersect with an internal angle of 0.15 rad in the Raman–Nath regime. The photoinduced gratings decayed in less than 100 ps. The diffraction efficiency was nearly independent of sample thickness (40 μm and 350 μm), and careful investigation has shown that the diffraction arose primarily at the surface and was resonant just below the band edge. It is proposed that band-bending at the surface states causes increased absorption and results in a sheet of optically induced charge. The faster diffusion of electrons relative to holes allows a transient charge separation to a distance of one diffusion length (1 μm). As a result, a space-charge field is formed (Dember field) that can cause an index change through the Franz–Keldysh effect. The resulting transient grating can cause the large observed diffraction. This new BEST effect has potential for optical-switching applications.
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Electrons – Diffraction"

1

Kotula, Paul G. Advanced electron diffraction diagnostics. Office of Scientific and Technical Information (OSTI), octobre 2016. http://dx.doi.org/10.2172/1563075.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Centurion, Martin. Ultrafast electron diffraction from aligned molecules. Office of Scientific and Technical Information (OSTI), août 2015. http://dx.doi.org/10.2172/1210043.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hall, Ernest, Susanne Stemmer, Haimei Zheng, Yimei Zhu et George Maracas. Future of Electron Scattering and Diffraction. Office of Scientific and Technical Information (OSTI), février 2014. http://dx.doi.org/10.2172/1287380.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Parks, Joel H. Electron Diffraction Determination of Nanoscale Structures. Office of Scientific and Technical Information (OSTI), mars 2013. http://dx.doi.org/10.2172/1064614.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Chen, Jianmin, Philip J. Bos, Hemasiri Vithana et David L. Joseph. An Electro-Optically Controlled Liquid Crystals Diffraction Grating,. Fort Belvoir, VA : Defense Technical Information Center, janvier 1995. http://dx.doi.org/10.21236/ada296613.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bazarov, Ivan, et Luca Cultrera. Ultra-low Emittance Photocathodes for Accelerators and Femtosecond Electron Diffraction. Office of Scientific and Technical Information (OSTI), novembre 2018. http://dx.doi.org/10.2172/1483870.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Hau-Riege, S., R. London et H. Chapman. Pulse requirements for electron diffraction imaging of single biological molecules. Office of Scientific and Technical Information (OSTI), octobre 2004. http://dx.doi.org/10.2172/15014820.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

John Kay et Kurt Eylands. Advanced Characterization of Slags and Refractory Bricks Using Electron Backscatter Diffraction. Office of Scientific and Technical Information (OSTI), septembre 2007. http://dx.doi.org/10.2172/984654.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Weber, Peter M. The Generation and Characterization of Ultrashort Electron Pulses and their Application to Time-Resolved Electron Diffraction. Fort Belvoir, VA : Defense Technical Information Center, janvier 1996. http://dx.doi.org/10.21236/ada308231.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Prather, Dennis. Mesoscopic Diffractive Optics for Electronic Warfare applications. Fort Belvoir, VA : Defense Technical Information Center, mai 2002. http://dx.doi.org/10.21236/ada414831.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie