Articles de revues sur le sujet « Electronic Transport Properties -Graphene »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Electronic Transport Properties -Graphene.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Electronic Transport Properties -Graphene ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Wakabayashi, Katsunori. « Electronic transport properties of graphene nanostructures ». Acta Crystallographica Section A Foundations and Advances 70, a1 (5 août 2014) : C197. http://dx.doi.org/10.1107/s2053273314098027.

Texte intégral
Résumé :
The electronic states of graphene near the Fermi energy are well described by massless Dirac Fermion. The presence of edges, however, makes strong implications for the spectrum of the electrons. In graphene nanoribbons with zigzag edges, localized states appear at the edge with energies close to the Fermi level. In contrast, edge states are absent for ribbons with armchair edges. In my talk, we focus on edge and nanoscale effect on the electronic properties of graphene nanoribbons. We discuss the following aspects of graphene nanostructured systems. (1) In zigzag nanoribbons, for nonmagnetic long-ranged disorder, a single perfectly conducting channel emerges associated with a chiral mode due to the edge state, i.e., the absence of the localization in this class. (2) We show the electronic transport properties of graphene nanojunctions crucially depend on the peripheral lattice structures. The condition for electron confinement is discussed. (3) We will discuss the effect of edge chemical modification on magnetic properties of nanographene systems. Also, we discuss the hole doping effect on the spin-polarized states appearing along the graphene zigzag edges. Our studies reveal that the peculiar electronic, magnetic and transport properties of graphene nanostructured systems. In addition, we present our recent work on graphene double layer structure (GDLS), where two graphene layers are separated by a thin dielectric. We will discuss the dielectric environment effect on the charged-impurity-limited carrier mobility of the GDLS on the basis of the Boltzmann transport theory. It is found that carrier mobility strongly depends on the dielectric constant of the barrier layer if the interlayer distance becomes larger than the inverse of the Fermi wave vector. Our results suggest effective use of ultra-thin dielectric barriers and a practical design strategy to improve the charged-impurity-limited mobility of the GDLS.
Styles APA, Harvard, Vancouver, ISO, etc.
2

CUONG, NGUYEN TIEN, HIROSHI MIZUTA, BACH THANH CONG, NOBUO OTSUKA et DAM HIEU CHI. « AB-INITIO CALCULATIONS OF ELECTRONIC PROPERTIES AND QUANTUM TRANSPORT IN U-SHAPED GRAPHENE NANORIBBONS ». International Journal of Computational Materials Science and Engineering 01, no 03 (septembre 2012) : 1250030. http://dx.doi.org/10.1142/s2047684112500303.

Texte intégral
Résumé :
Graphene is a promising candidate as a material used in nano-scale devices because of recent developments in advanced experimental techniques. Motivated by recent successful fabrications of U-shaped graphene channel transistors by using the gallium focused ion beam technology, we have performed ab-initio calculations to investigate the electronic properties and quantum transport in U-shaped graphene nanoribbons. The electronic properties are calculated using a numerical atomic orbital basis set in the framework of the density functional theory. The transport properties are investigated using the non-equilibrium Green's function method. The transmission spectra of U-shaped graphenes are analyzed in order to reveal the quantum transport of the systems. We found that the graphene nanoribbons tend to open a band gap when U-shaped structures are formed in both armchair and zigzag cases. The geometrical structures of U-shaped GNRs had enormous influences on the electron transport around the Fermi energy due to the formation of quasi-bound states at zigzag edges. The obtained results have provided valuable information for designing potential nano-scale devices based on graphenes.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Pradeepkumar, Aiswarya, D. Kurt Gaskill et Francesca Iacopi. « Electronic and Transport Properties of Epitaxial Graphene on SiC and 3C-SiC/Si : A Review ». Applied Sciences 10, no 12 (24 juin 2020) : 4350. http://dx.doi.org/10.3390/app10124350.

Texte intégral
Résumé :
The electronic and transport properties of epitaxial graphene are dominated by the interactions the material makes with its surroundings. Based on the transport properties of epitaxial graphene on SiC and 3C-SiC/Si substrates reported in the literature, we emphasize that the graphene interfaces formed between the active material and its environment are of paramount importance, and how interface modifications enable the fine-tuning of the transport properties of graphene. This review provides a renewed attention on the understanding and engineering of epitaxial graphene interfaces for integrated electronics and photonics applications.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wakabayashi, Katsunori, Yositake Takane, Masayuki Yamamoto et Manfred Sigrist. « Electronic transport properties of graphene nanoribbons ». New Journal of Physics 11, no 9 (30 septembre 2009) : 095016. http://dx.doi.org/10.1088/1367-2630/11/9/095016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Rasmussen, Jesper Toft, Tue Gunst, Peter Bøggild, Antti-Pekka Jauho et Mads Brandbyge. « Electronic and transport properties of kinked graphene ». Beilstein Journal of Nanotechnology 4 (15 février 2013) : 103–10. http://dx.doi.org/10.3762/bjnano.4.12.

Texte intégral
Résumé :
Local curvature, or bending, of a graphene sheet is known to increase the chemical reactivity presenting an opportunity for templated chemical functionalisation. Using first-principles calculations based on density functional theory (DFT), we investigate the reaction barrier reduction for the adsorption of atomic hydrogen at linear bends in graphene. We find a significant barrier lowering (≈15%) for realistic radii of curvature (≈20 Å) and that adsorption along the linear bend leads to a stable linear kink. We compute the electronic transport properties of individual and multiple kink lines, and demonstrate how these act as efficient barriers for electron transport. In particular, two parallel kink lines form a graphene pseudo-nanoribbon structure with a semimetallic/semiconducting electronic structure closely related to the corresponding isolated ribbons; the ribbon band gap translates into a transport gap for electronic transport across the kink lines. We finally consider pseudo-ribbon-based heterostructures and propose that such structures present a novel approach for band gap engineering in nanostructured graphene.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kolli, Venkata Sai Pavan Choudary, Vipin Kumar, Shobha Shukla et Sumit Saxena. « Electronic Transport in Oxidized Zigzag Graphene Nanoribbons ». MRS Advances 2, no 02 (2017) : 97–101. http://dx.doi.org/10.1557/adv.2017.55.

Texte intégral
Résumé :
ABSTRACT The electronic and transport properties of graphene nanoribbons strongly depends on different types of adatoms. Oxygen as adatom on graphene is expected to resemble oxidized graphene sheets and enable in understanding their transport properties. Here, we report the transport properties of oxygen adsorbed zigzag edge saturated graphene nanoribbon. It is interesting to note that increasing the number of oxygen adatoms on graphene sheets lift the spin degeneracy as observed in the transmission profile of graphene nanoribbons. The relative orientation of the oxygen atom on the graphene basal plane is detrimental to flow of spin current in the nanoribbon.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Fujimoto, Yoshitaka. « Quantum transport, electronic properties and molecular adsorptions in graphene ». Modern Physics Letters B 35, no 08 (9 février 2021) : 2130001. http://dx.doi.org/10.1142/s0217984921300015.

Texte intégral
Résumé :
Molecular sensor applications are used in different fields including environmental monitoring and medical diagnosis. Graphene, a single atomic layer consisting of the hexagonally arranged carbon material, is one of the most promising materials for ideal channels in field-effect transistors to be used as electronic sensing applications owing to its lightweight, mechanical robustness, high electronic conductivity and large surface-to-volume ratio. This paper provides a review of molecular adsorptions, electronic properties and quantum transport of graphene based on the first-principles density-functional study. The adsorption properties of environmentally polluting or toxic molecules and electronic transport of graphene are revealed. The possibility of detecting these molecules selectively is also discussed for designing the graphene-based sensor applications.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ando, Tsuneya. « Exotic electronic and transport properties of graphene ». Physica E : Low-dimensional Systems and Nanostructures 40, no 2 (décembre 2007) : 213–27. http://dx.doi.org/10.1016/j.physe.2007.06.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wakabayashi, Katsunori, Yositake Takane et Manfred Sigrist. « Electronic transport properties of disordered graphene nanoribbons ». Journal of Physics : Conference Series 150, no 2 (1 février 2009) : 022097. http://dx.doi.org/10.1088/1742-6596/150/2/022097.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Treske, Uwe, Frank Ortmann, Björn Oetzel, Karsten Hannewald et Friedhelm Bechstedt. « Electronic and transport properties of graphene nanoribbons ». physica status solidi (a) 207, no 2 (5 janvier 2010) : 304–8. http://dx.doi.org/10.1002/pssa.200982445.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Liu, Wen, Fan-Hua Meng, Jian-Hua Zhao et Xiao-Hui Jiang. « A first-principles study on the electronic transport properties of zigzag graphane/graphene nanoribbons ». Journal of Theoretical and Computational Chemistry 16, no 04 (25 avril 2017) : 1750032. http://dx.doi.org/10.1142/s0219633617500328.

Texte intégral
Résumé :
The electronic transport properties of hybrid nanoribbons constructed by substituting zigzag graphane nanoribbons (ZGaNRs) into zigzag graphene nanoribbons (ZGNRs) are investigated with the non-equilibrium Green’s function method and the density functional theory. Both symmetric and asymmetric ZGNRs are considered. The electronic transport of symmetric and asymmetric ZGNR-based hybrid nanoribbons behave distinctly differently from each other even in the presence of the same substitution positions of ZGaNRs. Moreover, the electronic transport of these hybrid systems is found to be enhanced or weakened compared with pristine ZGNRs depending on the substitution position and proportion. Our results suggest that such hybridization is an effective approach to modulate the transport properties of ZGNRs.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Subedi, Kashi N., Kishor Nepal, Chinonso Ugwumadu, Keerti Kappagantula et D. A. Drabold. « Electronic transport in copper–graphene composites ». Applied Physics Letters 122, no 3 (16 janvier 2023) : 031903. http://dx.doi.org/10.1063/5.0137086.

Texte intégral
Résumé :
We investigate electronic transport properties of copper–graphene (Cu–G) composites using a density-functional theory (DFT) framework. Conduction in composites is studied by varying the interfacial distance of copper/graphene/copper (Cu/G/Cu) interface models. Electronic conductivity of the models computed using the Kubo–Greenwood formula shows that the conductivity increases with decreasing Cu–G distance and saturates below a threshold Cu–G distance. The DFT-based Bader charge analysis indicates increasing charge transfer between Cu atoms at the interfacial layers and the graphene with decreasing Cu–G distance. The electronic density of states reveals increasing contributions from both copper and carbon atoms near the Fermi level with decreasing Cu–G interfacial distance. By computing the space-projected conductivity of the Cu/G/Cu models, we show that the graphene forms a bridge to the electronic conduction at small Cu–G distances, thereby enhancing the conductivity.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Da-Li, SUN, PENG Sheng-Lin, OUYANG Jun et OUYANG Fang-Ping. « Electronic Transport Properties of Graphene Nanoribbons with Nanoholes ». Acta Physico-Chimica Sinica 27, no 05 (2011) : 1103–7. http://dx.doi.org/10.3866/pku.whxb20110521.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Cai, Chao-Yi, et Jian-Hao Chen. « Electronic transport properties of Co cluster-decorated graphene ». Chinese Physics B 27, no 6 (juin 2018) : 067304. http://dx.doi.org/10.1088/1674-1056/27/6/067304.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Qiu, Wanzhi, Phuong Nguyen et Efstratios Skafidas. « Graphene nanopores : electronic transport properties and design methodology ». Phys. Chem. Chem. Phys. 16, no 4 (2014) : 1451–59. http://dx.doi.org/10.1039/c3cp53777c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Jafari, A., M. Ghoranneviss, M. R. Hantehzadeh et Z. Ghorannevis. « Electronic Transport Properties of a Multiterminal Graphene Nanodevice ». Quantum Matter 4, no 6 (1 décembre 2015) : 631–35. http://dx.doi.org/10.1166/qm.2015.1243.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Gusmão, M. S., Angsula Ghosh et H. O. Frota. « Electronic transport properties of graphene/Al2O3 (0001) interface ». Current Applied Physics 18, no 1 (janvier 2018) : 90–95. http://dx.doi.org/10.1016/j.cap.2017.10.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Mach, J., P. Procházka, M. Bartošík, D. Nezval, J. Piastek, J. Hulva, V. Švarc, M. Konečný, L. Kormoš et T. Šikola. « Electronic transport properties of graphene doped by gallium ». Nanotechnology 28, no 41 (14 septembre 2017) : 415203. http://dx.doi.org/10.1088/1361-6528/aa86a4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Choe, D. H., Junhyeok Bang et K. J. Chang. « Electronic structure and transport properties of hydrogenated graphene and graphene nanoribbons ». New Journal of Physics 12, no 12 (13 décembre 2010) : 125005. http://dx.doi.org/10.1088/1367-2630/12/12/125005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Sun, Jie, Na Lin, Zhenyu Li, Hao Ren, Cheng Tang et Xian Zhao. « Electronic and transport properties of graphene with grain boundaries ». RSC Advances 6, no 2 (2016) : 1090–97. http://dx.doi.org/10.1039/c5ra16323d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Woellner, Cristiano Francisco, Pedro Alves da Silva Autreto et Douglas S. Galvao. « One Side-Graphene Hydrogenation (Graphone) : Substrate Effects ». MRS Advances 1, no 20 (2016) : 1429–34. http://dx.doi.org/10.1557/adv.2016.196.

Texte intégral
Résumé :
ABSTRACTRecent studies on graphene hydrogenation processes showed that hydrogenation occurs via island growing domains, however how the substrate can affect the hydrogenation dynamics and/or pattern formation has not been yet properly investigated. In this work we have addressed these issues through fully atomistic reactive molecular dynamics simulations. We investigated the structural and dynamical aspects of the hydrogenation of graphene membranes (one-side hydrogenation, the so called graphone structure) on different substrates (graphene, few-layers graphene, graphite and platinum). Our results also show that the observed hydrogenation rates are very sensitive to the substrate type. For all investigated cases, the largest fraction of hydrogenated carbon atoms was for platinum substrates. Our results also show that a significant number of randomly distributed H clusters are formed during the early stages of the hydrogenation process, regardless of the type of substrate. These results suggest that, similarly to graphane formation, large perfect graphone-like domains are unlikely to be formed. These findings are especially important since experiments have showed that cluster formation influences the electronic transport properties in hydrogenated graphene.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Gungor, Arif Can, Stefan M. Koepfli, Michael Baumann, Hande Ibili, Jasmin Smajic et Juerg Leuthold. « Modeling Hydrodynamic Charge Transport in Graphene ». Materials 15, no 12 (10 juin 2022) : 4141. http://dx.doi.org/10.3390/ma15124141.

Texte intégral
Résumé :
Graphene has exceptional electronic properties, such as zero band gap, massless carriers, and high mobility. These exotic carrier properties enable the design and development of unique graphene devices. However, traditional semiconductor solvers based on drift-diffusion equations are not capable of modeling and simulating the charge distribution and transport in graphene, accurately, to its full extent. The effects of charge inertia, viscosity, collective charge movement, contact doping, etc., cannot be accounted for by the conventional Poisson-drift-diffusion models, due to the underlying assumptions and simplifications. Therefore, this article proposes two mathematical models to analyze and simulate graphene-based devices. The first model is based on a modified nonlinear Poisson’s equation, which solves for the Fermi level and charge distribution electrostatically on graphene, by considering gating and contact doping. The second proposed solver focuses on the transport of the carriers by solving a hydrodynamic model. Furthermore, this model is applied to a Tesla-valve structure, where the viscosity and collective motion of the carriers play an important role, giving rise to rectification. These two models allow us to model unique electronic properties of graphene that could be paramount for the design of future graphene devices.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Gruschwitz, Markus, Chitran Ghosal, Ting-Hsuan Shen, Susanne Wolff, Thomas Seyller et Christoph Tegenkamp. « Surface Transport Properties of Pb-Intercalated Graphene ». Materials 14, no 24 (13 décembre 2021) : 7706. http://dx.doi.org/10.3390/ma14247706.

Texte intégral
Résumé :
Intercalation experiments on epitaxial graphene are attracting a lot of attention at present as a tool to further boost the electronic properties of 2D graphene. In this work, we studied the intercalation of Pb using buffer layers on 6H-SiC(0001) by means of electron diffraction, scanning tunneling microscopy, photoelectron spectroscopy and in situ surface transport. Large-area intercalation of a few Pb monolayers succeeded via surface defects. The intercalated Pb forms a characteristic striped phase and leads to formation of almost charge neutral graphene in proximity to a Pb layer. The Pb intercalated layer consists of 2 ML and shows a strong structural corrugation. The epitaxial heterostructure provides an extremely high conductivity of σ=100 mS/□. However, at low temperatures (70 K), we found a metal-insulator transition that we assign to the formation of minigaps in epitaxial graphene, possibly induced by a static distortion of graphene following the corrugation of the interface layer.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Lin, Guida. « Carbon-Based Micro/Nano Devices for Transistors, Sensors, and Memories ». Journal of Physics : Conference Series 2152, no 1 (1 janvier 2022) : 012033. http://dx.doi.org/10.1088/1742-6596/2152/1/012033.

Texte intégral
Résumé :
Abstract The ballistic transport of electrons and unique structural characteristics of graphene and carbon nanotubes enable them to play an important role in nano electronical appliances. Nanodevices based on carbon nano materials can further reduce device size without affecting performance. Here, this paper analyzes Fin Field-effect transistor (FinFET) and Tunnel Field-effect transistor (TFET) based on graphene nanoribbon (GNR) and carbon nanotube which could be used for reducing power consumption. Then it summarizes the applications of graphene in micro/nano sensors based on the electrical, mechanical, optical, and thermal properties of graphene. Graphene’s single-atom thickness and charge storage mechanism provide itself with great potential in the field of resistive memory. Graphene is also widely used in flexible electronic devices.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Huang, Jing, et Jun Kang. « Two-dimensional graphyne–graphene heterostructure for all-carbon transistors ». Journal of Physics : Condensed Matter 34, no 16 (22 février 2022) : 165301. http://dx.doi.org/10.1088/1361-648x/ac513b.

Texte intégral
Résumé :
Abstract Semiconducting graphyne is a two-dimensional (2D) carbon allotrope with high mobility, which is promising for next generation all-carbon field effect transistors (FETs). In this work, the electronic properties of van der Waals heterostructure consists of 2D graphyne and graphene (GY/G) were studied from first-principles calculations. It is found that the band dispersion of isolated graphene and graphyne remain intact after they were stacked together. Due to the charge transfer from graphene to graphyne, the Fermi level of the GY/G heterostructure crosses the VB of graphene and the CB of graphyne. As a result, n-type Ohmic contact with zero Schottky barrier height (SBH) is obtained in GY/G based FETs. Moreover, the electron tunneling from graphene to graphyne is found to be efficient. Therefore, excellent electron transport properties can be expected in GY/G based FETs. Lastly, it is demonstrated that the SBH in the GY/G heterostructure can be tune by applying a vertical external electric field or doping, and the transition from n-type to p-type contact can be realized. These results show that GY/G is potentially suitable for 2D FETs, and provide insights into the development of all-carbon electronic devices.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Fang-Ping, OUYANG, XU Hui, LI Ming-Jun et XIAO Jin. « Electronic Structure and Transport Properties of Armchair Graphene Nanoribbons ». Acta Physico-Chimica Sinica 24, no 02 (2008) : 328–32. http://dx.doi.org/10.3866/pku.whxb20080225.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Jun-Jun, ZHANG, ZHANG Zhen-Hua, GUO Chao, LI Jie et DENG Xiao-Qing. « Electronic Transport Properties for a Zigzag-Edged Triangular Graphene ». Acta Physico-Chimica Sinica 28, no 07 (2012) : 1701–6. http://dx.doi.org/10.3866/pku.whxb201204172.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Jippo, Hideyuki, Mari Ohfuchi et Susumu Okada. « Electronic Transport Properties of Graphene Channel between Au Electrodes ». e-Journal of Surface Science and Nanotechnology 13 (2015) : 54–58. http://dx.doi.org/10.1380/ejssnt.2015.54.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Tyagi, Arvind, Vikash Sharma et Anurag Srivastava. « Electronic and Transport Properties of Graphene Based Ammonia Sensor ». Quantum Matter 5, no 3 (1 juin 2016) : 419–22. http://dx.doi.org/10.1166/qm.2016.1331.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Dubois, S. M. M., Z. Zanolli, X. Declerck et J. C. Charlier. « Electronic properties and quantum transport in Graphene-based nanostructures ». European Physical Journal B 72, no 1 (7 octobre 2009) : 1–24. http://dx.doi.org/10.1140/epjb/e2009-00327-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Zeng, H., J. Zhao et J. W. Wei. « Electronic transport properties of graphene nanoribbons with anomalous edges ». European Physical Journal Applied Physics 53, no 2 (28 janvier 2011) : 20602. http://dx.doi.org/10.1051/epjap/2010100403.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Simchi, Hamidreza, Mahdi Esmaeilzadeh et Hossein Mazidabadi. « The electronic transport properties of porous zigzag graphene clusters ». Physica E : Low-dimensional Systems and Nanostructures 54 (décembre 2013) : 220–25. http://dx.doi.org/10.1016/j.physe.2013.06.021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Racolta, D., et C. Micu. « The Aharonov-Bohm Effect and Transport Properties in Graphene Nanostructures ». Annals of West University of Timisoara - Physics 57, no 1 (1 décembre 2013) : 52–60. http://dx.doi.org/10.1515/awutp-2015-0106.

Texte intégral
Résumé :
Abstract In this paper we discuss interplays between the Aharonov-Bohm effect and the transport properties in mesoscopic ring structures based on graphene. The interlayer interaction leads to a change of the electronic structure of bilayer graphene ring such that the electronic energy dispersion law exhibits a gap, either by doping one of the layers or by the application of an external perpendicular electric field. Gap adjustments can be done by varying the external electric field, which provides the possibility of obtaining mesoscopic devices based on the electronic properties of bilayer graphene. This opens the way to controllable manipulations of phase-coherent mesoscopic phenomena, as well as to Aharonov-Bohm oscillations depending on the height of the potential step and on the radius of the ring. For this purpose one resorts to a tight-binding model such as used to the description of conductance.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Tao, Zhi Kuo, Jiang Wei Chen, Wei Wang et Li Chen. « Electron Transport Properties of Rippled Zigzag Graphene Nanoribbon ». Advanced Materials Research 496 (mars 2012) : 251–54. http://dx.doi.org/10.4028/www.scientific.net/amr.496.251.

Texte intégral
Résumé :
In this paper, we present the calculated conductance of the rippled zigzag graphene nanoribbon and study the electron transport properties with different amplitude and period of the ripple. Based on the obtained results we find that, the conductance exhibits oscillation when the direction of the ripple is parallel to the direction of electronic flow and we ascribe it to the strain-induced modulated potential. For the second configure when the direction of the ripple is perpendicular to the direction of the electronic flow, we find that the conductance when energy varied around 0eV increases and then decreases with changing amplitude, for which the reason is still unknown.
Styles APA, Harvard, Vancouver, ISO, etc.
35

KUMAR, AMIT, J. M. POUMIROL, W. ESCOFFIER, M. GOIRAN, B. RAQUET et J. M. BROTO. « ELECTRONIC PROPERTIES OF GRAPHENE, FEW-LAYER GRAPHENE, AND BULK GRAPHITE UNDER VERY HIGH MAGNETIC FIELD ». International Journal of Nanoscience 10, no 01n02 (février 2011) : 43–47. http://dx.doi.org/10.1142/s0219581x11007703.

Texte intégral
Résumé :
In the present work, we report on the magneto-transport properties of graphitic based materials (graphene, few-layer graphene, and bulk graphite) in very high magnetic field. Quantum Hall Effect (QHE) has been studied in graphitic systems in very high pulsed magnetic field (up to B = 57 T ) and at low temperature (≤ 4 K). Graphene sample shows well-defined Hall resistance plateaus at filling factors v = 2,6,10, etc. Few-layer graphene systems display clear signatures of standard and unconventional QHE. Magneto-transport studies on bulk highly oriented pyrolytic graphite show a charge density wave transition at strong enough magnetic field as well as Hall coefficient sign reversal.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Álvarez-Rodríguez, Pablo, et Víctor Manuel García-Suárez. « Effect of Impurity Adsorption on the Electronic and Transport Properties of Graphene Nanogaps ». Materials 15, no 2 (10 janvier 2022) : 500. http://dx.doi.org/10.3390/ma15020500.

Texte intégral
Résumé :
Graphene stands out as a versatile material with several uses in fields that range from electronics to biology. In particular, graphene has been proposed as an electrode in molecular electronics devices that are expected to be more stable and reproducible than typical ones based on metallic electrodes. In this work, we study by means of first principles, simulations and a tight-binding model the electronic and transport properties of graphene nanogaps with straight edges and different passivating atoms: Hydrogen or elements of the second row of the periodic table (boron, carbon, nitrogen, oxygen, and fluoride). We use the tight-binding model to reproduce the main ab-initio results and elucidate the physics behind the transport properties. We observe clear patterns that emerge in the conductance and the current as one moves from boron to fluoride. In particular, we find that the conductance decreases and the tunneling decaying factor increases from the former to the latter. We explain these trends in terms of the size of the atom and its onsite energy. We also find a similar pattern for the current, which is ohmic and smooth in general. However, when the size of the simulation cell is the smallest one along the direction perpendicular to the transport direction, we obtain highly non-linear behavior with negative differential resistance. This interesting and surprising behavior can be explained by taking into account the presence of Fano resonances and other interference effects, which emerge due to couplings to side atoms at the edges and other couplings across the gap. Such features enter the bias window as the bias increases and strongly affect the current, giving rise to the non-linear evolution. As a whole, these results can be used as a template to understand the transport properties of straight graphene nanogaps and similar systems and distinguish the presence of different elements in the junction.
Styles APA, Harvard, Vancouver, ISO, etc.
37

DU, XU, IVAN SKACHKO et EVA Y. ANDREI. « TOWARDS BALLISTIC TRANSPORT IN GRAPHENE ». International Journal of Modern Physics B 22, no 25n26 (20 octobre 2008) : 4579–88. http://dx.doi.org/10.1142/s0217979208050334.

Texte intégral
Résumé :
Graphene is a fascinating material for exploring fundamental science questions as well as a potential building block for novel electronic applications. In order to realize the full potential of this material the fabrication techniques of graphene devices, still in their infancy, need to be refined to better isolate the graphene layer from the environment. We present results from a study on the influence of extrinsic factors on the quality of graphene devices including material defects, lithography, doping by metallic leads and the substrate. The main finding is that trapped Coulomb scatterers associated with the substrate are the primary factor reducing the quality of graphene devices. A fabrication scheme is proposed to produce high quality graphene devices dependably and reproducibly. In these devices, the transport properties approach theoretical predictions of ballistic transport.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Khatir, Nadia Mahmoudi, Aidin Ahmadi, Narges Taghizade, Samane Motevali khameneh et Mahdi Faghihnasiri. « Electronic transport properties of nanoribbons of graphene and ψ-graphene -based lactate nanobiosensor ». Superlattices and Microstructures 145 (septembre 2020) : 106603. http://dx.doi.org/10.1016/j.spmi.2020.106603.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Braatz, Marie-Luise, Nils-Eike Weber, Barthi Singh, Klaus Müllen, Xinliang Feng, Mathias Kläui et Martin Gradhand. « Doped graphene characterized via Raman spectroscopy and magneto-transport measurements ». Journal of Applied Physics 133, no 2 (14 janvier 2023) : 025304. http://dx.doi.org/10.1063/5.0117677.

Texte intégral
Résumé :
Functionalizing graphene beyond its intrinsic properties has been a key concept since the first successful realization of this archetype monolayer system. While various concepts, such as doping, co-doping, and layered device design, have been proposed, the often complex structural and electronic changes are often jeopardizing simple functionalization attempts. Here, we present a thorough analysis of the structural and electronic properties of co-doped graphene via Raman spectroscopy as well as magneto-transport and Hall measurements. The results highlight the challenges in understanding its microscopic properties beyond the simple preparation of such devices. It is discussed how co-doping with N and B dopants leads to effective charge-neutral defects acting as short-range scatterers, while charged defects introduce more long-range scattering centers. Such distinct behavior may obscure or alter the desired structural as well as electronic properties not anticipated initially. Exploring further the preparation of effective pn-junctions, we highlight step by step how the preparation process may lead to alterations in the intrinsic properties of the individual layers. Importantly, it is highlighted in all steps how the inhomogeneities across individual graphene sheets may challenge simple interpretations of individual measurements.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Shao, Jingjing, et Beate Paulus. « Edge Effect in Electronic and Transport Properties of 1D Fluorinated Graphene Materials ». Nanomaterials 12, no 1 (30 décembre 2021) : 125. http://dx.doi.org/10.3390/nano12010125.

Texte intégral
Résumé :
A systematic examination of the electronic and transport properties of 1D fluorine-saturated zigzag graphene nanoribbons (ZGNRs) is presented in this article. One publication (Withers et al., Nano Lett., 2011, 11, 3912–3916.) reported a controlled synthesis of fluorinated graphene via an electron beam, where the correlation between the conductivity of the resulting materials and the width of the fluorinated area is revealed. In order to understand the detailed transport mechanism, edge-fluorinated ZGNRs with different widths and fluorination degrees are investigated. Periodic density functional theory (DFT) is employed to determine their thermodynamic stabilities and electronic structures. The associated transport models of the selected structures are subsequently constructed. The combination of a non-equilibrium Green’s function (NEGF) and a standard Landauer equation is applied to investigate the global transport properties, such as the total current-bias voltage dependence. By projecting the corresponding lesser Green’s function on the atomic orbital basis and their spatial derivatives, the local current density maps of the selected systems are calculated. Our results suggest that specific fluorination patterns and fluorination degrees have significant impacts on conductivity. The conjugated π system is the dominate electron flux migration pathway, and the edge effect of the ZGNRs can be well observed in the local transport properties. In addition, with an asymmetric fluorination pattern, one can trigger spin-dependent transport properties, which shows its great potential for spintronics applications.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Johari, Zaharah, Zuriana Auzar et N. Ezaila Alias. « The Electronic and Transport Properties of Defective Bilayer Graphene Nanoribbon ». Journal of Nanoelectronics and Optoelectronics 12, no 2 (1 février 2017) : 177–83. http://dx.doi.org/10.1166/jno.2017.1981.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Zhang, Yu, Wenjing Xu, Guangjie Liu et Jinlong Zhu. « Electronic and transport properties of armchair graphene nanoribbons with defects ». Journal of Physics : Conference Series 1676 (novembre 2020) : 012123. http://dx.doi.org/10.1088/1742-6596/1676/1/012123.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Hibino, H., S. Tanabe, S. Mizuno et H. Kageshima. « Growth and electronic transport properties of epitaxial graphene on SiC ». Journal of Physics D : Applied Physics 45, no 15 (29 mars 2012) : 154008. http://dx.doi.org/10.1088/0022-3727/45/15/154008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Hamid, Mohamad Amin Bin, Chan Kar Tim, Yazid Bin Yaakob et Mohammad Adib Bin Hazan. « Structural, electronic and transport properties of silicene on graphene substrate ». Materials Research Express 6, no 5 (6 février 2019) : 055803. http://dx.doi.org/10.1088/2053-1591/ab01ea.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Kou, Liangzhi, Chun Tang, Changfeng Chen et Wanlin Guo. « Hybrid W-shaped graphene nanoribbons : Distinct electronic and transport properties ». Journal of Applied Physics 110, no 12 (15 décembre 2011) : 124312. http://dx.doi.org/10.1063/1.3669496.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Gómez-Navarro, Cristina, R. Thomas Weitz, Alexander M. Bittner, Matteo Scolari, Alf Mews, Marko Burghard et Klaus Kern. « Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets ». Nano Letters 7, no 11 (novembre 2007) : 3499–503. http://dx.doi.org/10.1021/nl072090c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Gómez-Navarro, Cristina, R. Thomas Weitz, Alexander M. Bittner, Matteo Scolari, Alf Mews, Marko Burghard et Klaus Kern. « Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets ». Nano Letters 9, no 5 (13 mai 2009) : 2206. http://dx.doi.org/10.1021/nl901209z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Deng, Xiaoqing, Guiping Tang et Chao Guo. « Tuning the electronic transport properties for a trigonal graphene flake ». Physics Letters A 376, no 23 (mai 2012) : 1839–44. http://dx.doi.org/10.1016/j.physleta.2012.04.021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Ma, K. L., X. H. Yan, Y. Xiao et Y. P. Chen. « Electronic transport properties of metallic graphene nanoribbons with two vacancies ». Solid State Communications 150, no 29-30 (août 2010) : 1308–12. http://dx.doi.org/10.1016/j.ssc.2010.05.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

He, Y. H., L. Wang, X. L. Chen, Z. F. Wu, W. Li, Y. Cai et N. Wang. « Modifying electronic transport properties of graphene by electron beam irradiation ». Applied Physics Letters 99, no 3 (18 juillet 2011) : 033109. http://dx.doi.org/10.1063/1.3615294.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie