Articles de revues sur le sujet « Electron-Transfer polymerization »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Electron-Transfer polymerization.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Electron-Transfer polymerization ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Kajiwara, Atsushi. « Characterizations of radicals formed in radical polymerizations and transfer reactions by electron spin resonance spectroscopy ». Pure and Applied Chemistry 90, no 8 (28 août 2018) : 1237–54. http://dx.doi.org/10.1515/pac-2018-0401.

Texte intégral
Résumé :
Abstract Electron spin resonance (ESR, aka electron paramagnetic resonance, EPR) investigations have been conducted on radicals formed during radical polymerizations and provide a detailed characterization of the active radical species. Active propagating radicals can be observed during actual radical polymerizations by ESR/EPR. The chain lengths of the observed radicals were estimated by a combination of atom transfer radical polymerization (ATRP) and ESR/EPR. The structures of the chain end radicals were determined by analysis of the ESR/EPR spectra. An increase in the dihedral angles between terminal p-orbital of radical and Cβ–H bonds was observed with increasing chain lengths of methacrylate polymers. Radical transfer reactions were observed during radical polymerization of acrylates. A combination of ATRP and ESR/EPR clarified a 1,5-hydrogen shift mechanism of the radical transfer reactions using model adamantyl acrylate radicals. Penultimate unit effects were also observed. Time-resolved ESR/EPR (TR ESR) spectroscopy clarified the initiation processes of an alternating copolymerization of styrene with maleic anhydride and the copolymerization of styrene with 1,3-butadiene. Several unsolved problems in conventional radical polymerization processes have been clarified using combinations of ATRP with ESR/EPR and TR ESR. Characterization of the radicals in radical polymerizations using various ESR techniques would definitely provide interesting and useful information on conventional radical polymerizations.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Fantin, Marco, Francesca Lorandi, Armando Gennaro, Abdirisak Isse et Krzysztof Matyjaszewski. « Electron Transfer Reactions in Atom Transfer Radical Polymerization ». Synthesis 49, no 15 (4 juillet 2017) : 3311–22. http://dx.doi.org/10.1055/s-0036-1588873.

Texte intégral
Résumé :
Electrochemistry may seem an outsider to the field of polymer science and controlled radical polymerization. Nevertheless, several electrochemical methods have been used to determine the mechanism of atom transfer radical polymerization (ATRP), using both a thermodynamic and a kinetic approach. Indeed, electron transfer reactions involving the metal catalyst, initiator/dormant species, and propagating radicals play a crucial role in ATRP. In this mini-review, electrochemical properties of ATRP catalysts and initiators are discussed, together with the mechanism of the atom and electron transfer in ATRP.1 Introduction2 Thermodynamic and Electrochemical Properties of ATRP Catalysts3 Thermodynamic and Electrochemical Properties of Alkyl Halides and Alkyl Radicals4 Atom Transfer from an Electrochemical and Thermodynamic Standpoint5 Mechanism of Electron Transfer in ATRP6 Electroanalytical Techniques for the Kinetics of ATRP Activation7 Electrochemically Mediated ATRP8 Conclusions
Styles APA, Harvard, Vancouver, ISO, etc.
3

Nablo, Sam V. « Transfer coating by electron initiated polymerization ». Radiation Physics and Chemistry (1977) 25, no 4-6 (janvier 1985) : 599–608. http://dx.doi.org/10.1016/0146-5724(85)90139-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ciardelli, Francesco, Angelina Altomare, Guillermo Arribas, Giuseppe Conti et Renato Colle. « Electron transfer mechanism in olefin polymerization ». Polymers for Advanced Technologies 6, no 3 (mars 1995) : 159–67. http://dx.doi.org/10.1002/pat.1995.220060310.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Rosen, Brad M., et Virgil Percec. « Single-Electron Transfer and Single-Electron Transfer Degenerative Chain Transfer Living Radical Polymerization ». Chemical Reviews 109, no 11 (11 novembre 2009) : 5069–119. http://dx.doi.org/10.1021/cr900024j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tsarevsky, Nicolay V., Wade A. Braunecker et Krzysztof Matyjaszewski. « Electron transfer reactions relevant to atom transfer radical polymerization ». Journal of Organometallic Chemistry 692, no 15 (juillet 2007) : 3212–22. http://dx.doi.org/10.1016/j.jorganchem.2007.01.051.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Rosen, Brad M., et Virgil Percec. « ChemInform Abstract : Single-Electron Transfer and Single-Electron Transfer Degenerative Chain Transfer Living Radical Polymerization ». ChemInform 41, no 11 (19 février 2010) : no. http://dx.doi.org/10.1002/chin.201011273.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Jakubowski, Wojciech, et Krzysztof Matyjaszewski. « Activator Generated by Electron Transfer for Atom Transfer Radical Polymerization ». Macromolecules 38, no 10 (mai 2005) : 4139–46. http://dx.doi.org/10.1021/ma047389l.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Paterson, Stefan M., David H. Brown, Jeremy A. Shaw, Traian V. Chirila et Murray V. Baker. « Synthesis of Poly(2-Hydroxyethyl Methacrylate) Sponges via Activators Regenerated by Electron-transfer Atom-transfer Radical Polymerization ». Australian Journal of Chemistry 65, no 7 (2012) : 931. http://dx.doi.org/10.1071/ch12161.

Texte intégral
Résumé :
Activators regenerated by electron-transfer atom-transfer radical polymerization, catalyzed by tris(2-pyridylmethyl)amine/CuBr2 and Na{Cu(Gly3)}, was used to synthesize poly(2-hydroxyethyl methacrylate) sponges from 80 : 20 H2O/2-hydroxyethyl methacrylate mixtures. Polymerization-induced phase separations resulted in sponges having morphologies based on agglomerated polymer droplets. During the synthesis of poly(2-hydroxyethyl methacrylate) sponges, first-order kinetics were observed up to a maximum of ~50 % conversion regardless of the catalyst used. The morphologies of the sponges were dependent on the rate of polymerization, slower polymerization rates resulting in polymers with larger morphological features (pores and polymer droplets).
Styles APA, Harvard, Vancouver, ISO, etc.
10

LINDEN, LARS-AKE, JERZY PACZKOWSKI, JAN F. RABEK et ANDRZEJ WRZYSZCZYNSKI. « Photodissociative and electron-transfer photoinitiators of radical polymerization ». Polimery 44, no 03 (mars 1999) : 161–76. http://dx.doi.org/10.14314/polimery.1999.161.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Kung, Andrew C., Sean P. McIlroy et Daniel E. Falvey. « Diphenylnitrenium Ion : Cyclization, Electron Transfer, and Polymerization Reactions ». Journal of Organic Chemistry 70, no 13 (juin 2005) : 5283–90. http://dx.doi.org/10.1021/jo050598z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Hacioglu, B., U. Akbulut et L. Toppare. « Electroinitiated polymerization of acrylamide by direct electron transfer ». Journal of Polymer Science Part A : Polymer Chemistry 27, no 11 (octobre 1989) : 3875–80. http://dx.doi.org/10.1002/pola.1989.080271127.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Yagci, Yusuf. « Initiation of cationic polymerization by photoinduced electron transfer ». Macromolecular Symposia 134, no 1 (février 1998) : 177–88. http://dx.doi.org/10.1002/masy.19981340117.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Quirk, Roderic P., Deanna L. Pickel et Hiroaki Hasegawa. « Anionic Polymerization Chemistry of Epoxides : Electron-Transfer Processes ». Macromolecular Symposia 226, no 1 (mai 2005) : 69–78. http://dx.doi.org/10.1002/masy.200550807.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Peng, Biyun, Jian Wang, Meng Li, Miao Wang, Shaobo Tan et Zhicheng Zhang. « Activation of different C–F bonds in fluoropolymers for Cu(0)-mediated single electron transfer radical polymerization ». Polymer Chemistry 12, no 21 (2021) : 3132–41. http://dx.doi.org/10.1039/d1py00376c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Wu, Yafeng, Songqin Liu et Lin He. « Activators generated electron transfer for atom transfer radical polymerization for immunosensing ». Biosensors and Bioelectronics 26, no 3 (15 novembre 2010) : 970–75. http://dx.doi.org/10.1016/j.bios.2010.08.041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Bellotti, Valentina, et Roberto Simonutti. « New Light in Polymer Science : Photoinduced Reversible Addition-Fragmentation Chain Transfer Polymerization (PET-RAFT) as Innovative Strategy for the Synthesis of Advanced Materials ». Polymers 13, no 7 (1 avril 2021) : 1119. http://dx.doi.org/10.3390/polym13071119.

Texte intégral
Résumé :
Photochemistry has attracted great interest in the last decades in the field of polymer and material science for the synthesis of innovative materials. The merging of photochemistry and reversible-deactivation radical polymerizations (RDRP) provides good reaction control and can simplify elaborate reaction protocols. These advantages open the doors to multidisciplinary fields going from composite materials to bio-applications. Photoinduced Electron/Energy Transfer Reversible Addition-Fragmentation Chain-Transfer (PET-RAFT) polymerization, proposed for the first time in 2014, presents significant advantages compared to other photochemical techniques in terms of applicability, cost, and sustainability. This review has the aim of providing to the readers the basic knowledge of PET-RAFT polymerization and explores the new possibilities that this innovative technique offers in terms of industrial applications, new materials production, and green conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Xu, Jiangtao, Sivaprakash Shanmugam, Hien T. Duong et Cyrille Boyer. « Organo-photocatalysts for photoinduced electron transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization ». Polymer Chemistry 6, no 31 (2015) : 5615–24. http://dx.doi.org/10.1039/c4py01317d.

Texte intégral
Résumé :
In this work, we demonstrate the use of organophotoredox catalysts under visible light to perform photoinduced electron transfer-reversible addition fragmentation chain transfer (PET-RAFT) for the polymerization of methacrylate monomers.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Anastasaki, Athina, Vasiliki Nikolaou et David M. Haddleton. « Cu(0)-mediated living radical polymerization : recent highlights and applications ; a perspective ». Polymer Chemistry 7, no 5 (2016) : 1002–26. http://dx.doi.org/10.1039/c5py01916h.

Texte intégral
Résumé :
Cu(0)-mediated living radical polymerization or single electron transfer living radical polymerization (Cu(0)-mediated LRP or SET-LRP) is a versatile polymerization technique that has attracted considerable interest during the past few years for the facile preparation of advanced materials.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Yeow, Jonathan, Jiangtao Xu et Cyrille Boyer. « Polymerization-Induced Self-Assembly Using Visible Light Mediated Photoinduced Electron Transfer–Reversible Addition–Fragmentation Chain Transfer Polymerization ». ACS Macro Letters 4, no 9 (27 août 2015) : 984–90. http://dx.doi.org/10.1021/acsmacrolett.5b00523.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Saçak, Mehmet, Ural Akbulut et Bilge Hacioglu. « Electroinitiated Polymerization of N-Vinylcarbazole by Direct Electron Transfer ». Journal of Macromolecular Science : Part A - Chemistry 27, no 8 (août 1990) : 1041–52. http://dx.doi.org/10.1080/00222339009349674.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

WRZYSZCZYNSKI, ANDRZEJ, et JERZY PACZKOWSKI. « Novel dissociative electron transfer photoniniciators for free radical polymerization ». Polimery 49, no 09 (septembre 2004) : 606–14. http://dx.doi.org/10.14314/polimery.2004.606.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Saçak, Mehmet, Ural Akbulut et Bilge Hacioglu. « Electroinitiated Polymerization of N-Vinylcarbazole By Direct Electron Transfer ». Journal of Macromolecular Science, Part A 27, no 8 (1990) : 1041–52. http://dx.doi.org/10.1080/10601329008544821.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Akbulut, Ural, et B??lge Hacio??lu. « Electronitiated polymerization of maleic anhydride by direct electron transfer ». Journal of Polymer Science Part A : Polymer Chemistry 29, no 2 (février 1991) : 219–24. http://dx.doi.org/10.1002/pola.1991.080290209.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Jakubowski, Wojciech, Ke Min et Krzysztof Matyjaszewski. « Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization of Styrene ». Macromolecules 39, no 1 (janvier 2006) : 39–45. http://dx.doi.org/10.1021/ma0522716.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Li, Zheng, Zijian He, Xiaodan Chen, Yi Tang, Shiwen You, Yufang Chen et Tao Jin. « Preparation of hydrophobically modified cotton filter fabric with high hydrophobic stability using ARGET-ATRP mechanism ». RSC Advances 9, no 43 (2019) : 24659–69. http://dx.doi.org/10.1039/c9ra04123k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Xue, Wentao, Jie Wang, Ming Wen, Gaojian Chen et Weidong Zhang. « Integration of CuAAC Polymerization and Controlled Radical Polymerization into Electron Transfer Mediated “Click-Radical” Concurrent Polymerization ». Macromolecular Rapid Communications 38, no 6 (3 février 2017) : 1600733. http://dx.doi.org/10.1002/marc.201600733.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Wu, Weibing, Fang Huang, Shaobo Pan, Wei Mu, Xianzhi Meng, Haitao Yang, Zhaoyang Xu, Arthur J. Ragauskas et Yulin Deng. « Thermo-responsive and fluorescent cellulose nanocrystals grafted with polymer brushes ». Journal of Materials Chemistry A 3, no 5 (2015) : 1995–2005. http://dx.doi.org/10.1039/c4ta04761c.

Texte intégral
Résumé :
Fluorescent and thermo-responsive cellulose nanocrystals (CNCs) with tuned polymer brushes were prepared via surface initiated activators generated by electron transfer for atom transfer radical polymerization.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Ng, Gervase, Kenward Jung, Jun Li, Chenyu Wu, Liwen Zhang et Cyrille Boyer. « Screening RAFT agents and photocatalysts to mediate PET-RAFT polymerization using a high throughput approach ». Polymer Chemistry 12, no 45 (2021) : 6548–60. http://dx.doi.org/10.1039/d1py01258d.

Texte intégral
Résumé :
We report a high throughput approach for the screening of RAFT agents and photocatalysts to mediate photoinduced electron/energy transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Pyszka, Ilona, et Beata Jędrzejewska. « Acenaphthoquinoxaline Derivatives as Dental Photoinitiators of Acrylates Polymerization ». Materials 14, no 17 (27 août 2021) : 4881. http://dx.doi.org/10.3390/ma14174881.

Texte intégral
Résumé :
A series of dyes based on the acenaphthoquinoxaline skeleton was synthesized. Their structure was modified by introducing electron-withdrawing and electron-donating groups, increasing the number of conjugated double bonds and the number and position of nitrogen atoms, as well as the arrangement of aromatic rings (linear or angular). The dyes were investigated as a component in the photoinitiating systems of radical polymerization for a potential application in dentistry. They acted as the primary absorber of visible light and the acceptor of an electron, which was generated from a second component being an electron donor. Thus, the radicals were generated by the photoinduced intermolecular electron transfer (PET) process. Electron donors used differed in the type of heteroatom, i.e., O, S and N and the number and position of methoxy substituents. To test the ability to initiate the polymerization reaction by photoinduced hydrogen atom transfer, we used 2-mercaptobenzoxazole as a co-initiator. The effectiveness of the photoinitiating systems clearly depends on both the modified acenaphthoquinocaline structure and the type of co-initiator. The lower amount of heat released during the chain reaction and the polymerization rate comparable to this achieved for the photoinitiator traditionally used in dentistry (camphorquinone) indicates that the studied dyes may be valuable in this field.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Thompson, Vanessa C., Penelope J. Adamson, Jessirie Dilag, Dhanushka Bandara Uswatte Uswatte Liyanage, Kagithiri Srikantharajah, Andrew Blok, Amanda V. Ellis, David L. Gordon et Ingo Köper. « Biocompatible anti-microbial coatings for urinary catheters ». RSC Advances 6, no 58 (2016) : 53303–9. http://dx.doi.org/10.1039/c6ra07678e.

Texte intégral
Résumé :
Using a simple dip-coating mechanism, urinary catheters have been coated with poly(2-methacryloyloxyethyl)trimethylammonium chloride (pMTAC) using activator regenerated by electron transfer (ARGET)–atom transfer radical polymerization (ATRP).
Styles APA, Harvard, Vancouver, ISO, etc.
32

Lee, In-Hwan, Emre H. Discekici, Athina Anastasaki, Javier Read de Alaniz et Craig J. Hawker. « Controlled radical polymerization of vinyl ketones using visible light ». Polymer Chemistry 8, no 21 (2017) : 3351–56. http://dx.doi.org/10.1039/c7py00617a.

Texte intégral
Résumé :
Herein we report the photoinduced electron transfer–reversible addition–fragmentation chain transfer (PET-RAFT) polymerization of a range of vinyl ketone monomers including methyl, ethyl and phenyl derivatives, using Eosin Y as an organic photoredox catalyst and visible light.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Li, Mengya, Junle Zhang, Yanjie He, Xiaomeng Zhang, Zhe Cui, Peng Fu, Minying Liu, Ge Shi, Xiaoguang Qiao et Xinchang Pang. « Dual enhancement of carrier generation and migration on Au/g-C3N4 photocatalysts for highly-efficient broadband PET-RAFT polymerization ». Polymer Chemistry 13, no 8 (2022) : 1022–30. http://dx.doi.org/10.1039/d1py01590g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Hu, Lingjuan, Qi Wang, Xiaomeng Zhang, Haitao Zhao, Zhe Cui, Peng Fu, Minying Liu et al. « Light and magnetism dual-gated photoinduced electron transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization ». RSC Advances 10, no 12 (2020) : 6850–57. http://dx.doi.org/10.1039/d0ra00401d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Lee, Hui-Chun, Markus Antonietti et Bernhard V. K. J. Schmidt. « A Cu(ii) metal–organic framework as a recyclable catalyst for ARGET ATRP ». Polymer Chemistry 7, no 47 (2016) : 7199–203. http://dx.doi.org/10.1039/c6py01844k.

Texte intégral
Résumé :
A Cu(ii) MOF can serve as an comprehensive catalyst for activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) in the synthesis of benzyl methacrylate, styrene, isoprene and 4-vinylpyridine.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Tao, Huazhen, Lei Xia, Guang Chen, Tianyou Zeng, Xuan Nie, Ze Zhang et Yezi You. « PET-RAFT Polymerization Catalyzed by Small Organic Molecule under Green Light Irradiation ». Polymers 11, no 5 (15 mai 2019) : 892. http://dx.doi.org/10.3390/polym11050892.

Texte intégral
Résumé :
Photocatalyzed polymerization using organic molecules as catalysts has attracted broad interest because of its easy operation in ambient environments and low toxicity compared with metallic catalysts. In this work, we reported that 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (DTBT) can act as an efficient photoredox catalyst for photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under green light irradiation. Well-defined (co)polymers can be obtained using this technique without any additional additives like noble metals and electron donors or acceptors. The living characteristics of polymerization were verified by kinetic study and the narrow dispersity (Đ) of the produced polymer. Excellent chain-end fidelity was demonstrated through chain extension as well. In addition, this technique showed great potential for various RAFT agents and monomers including acrylates and acrylamides.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Fan, Gang, Christopher M. Dundas, Austin J. Graham, Nathaniel A. Lynd et Benjamin K. Keitz. « Shewanella oneidensis as a living electrode for controlled radical polymerization ». Proceedings of the National Academy of Sciences 115, no 18 (16 avril 2018) : 4559–64. http://dx.doi.org/10.1073/pnas.1800869115.

Texte intégral
Résumé :
Metabolic engineering has facilitated the production of pharmaceuticals, fuels, and soft materials but is generally limited to optimizing well-defined metabolic pathways. We hypothesized that the reaction space available to metabolic engineering could be expanded by coupling extracellular electron transfer to the performance of an exogenous redox-active metal catalyst. Here we demonstrate that the electroactive bacterium Shewanella oneidensis can control the activity of a copper catalyst in atom-transfer radical polymerization (ATRP) via extracellular electron transfer. Using S. oneidensis, we achieved precise control over the molecular weight and polydispersity of a bioorthogonal polymer while similar organisms, such as Escherichia coli, showed no significant activity. We found that catalyst performance was a strong function of bacterial metabolism and specific electron transport proteins, both of which offer potential biological targets for future applications. Overall, our results suggest that manipulating extracellular electron transport pathways may be a general strategy for incorporating organometallic catalysis into the repertoire of metabolically controlled transformations.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Ketut Umiati, Ngurah Ayu, Kamsul Abraha et Kuwat Triyana. « Electrical Conductivity of Polyaniline Fiber Synthesized by Interfacial Polymerization and Electrospinning ». Indonesian Journal of Electrical Engineering and Computer Science 5, no 1 (1 janvier 2017) : 85. http://dx.doi.org/10.11591/ijeecs.v5.i1.pp85-89.

Texte intégral
Résumé :
<p align="justify">Polyaniline fiber is a promising biosensor material due to the capability of this material as an effective mediator for electron transfer. The polyaniline in fibre has wider surface to increase the electron transfer. In this work, polyaniline structure synthesized by interfacial polymerization was compared to polyaniline structure obtained from electrospinning to get a better fibre structure. Interfacial polymerization was carried out to form a polymerization between the water phase and the organic phase. The water phase was prepared from dopants, initiator and aquadestilata and the organic phase was was made from toluene as an organic solvent and aniline monomer. Electrospinning was conducted by using a dc high voltage 15 kV and 0.5 mm syringe needle to produce fibers from a melt polymer solution taken from interfacial polymerization. The scanning electro microscope results confimed the formation of polyaniline in structure of fiber. Resistance measurement by using LCR meter showed that polyaniline fiber resulted from electrospinning is more conductive than polyaniline fiber formed by interfacial polymerization method. </p><p align="justify"> </p>
Styles APA, Harvard, Vancouver, ISO, etc.
39

Matyjaszewski, Krzysztof. « Inner sphere and outer sphere electron transfer reactions in atom transfer radical polymerization ». Macromolecular Symposia 134, no 1 (février 1998) : 105–18. http://dx.doi.org/10.1002/masy.19981340112.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Mu, Yi, Lan Wang, Ming Hua Wu et Jun Xiong Lin. « Structure and Properties of Modifier for Heat Transfer Printing on Cotton Fabric ». Advanced Materials Research 331 (septembre 2011) : 426–29. http://dx.doi.org/10.4028/www.scientific.net/amr.331.426.

Texte intégral
Résumé :
Modifier for heat transfer printing on cotton fabrics was prepared by semi-continuous emulsion polymerization process with butyl acrylate (BA), styrene (St), acrylonitrile (AN) and cross-linking monomer. FT-IR characterization of modifier groups showed that individual monomer well carried out polymerization. Transmission electron microscopy (TEM) photos demonstrated that latex particles had regular spherical shape and uniform distribution. TGA curves indicated that thermal decomposition temperature of modifier was 439 oC. As for the transfer printing products had good colour fastness, high transfer rate and no formaldehyde.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Zhou, Wenhui, Miaozhen Li et Erjian Wang. « Photoinduced Polymerization via an Intra-Ion-Pair Electron Transfer Process. » Journal of Photopolymer Science and Technology 10, no 2 (1997) : 335–40. http://dx.doi.org/10.2494/photopolymer.10.335.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Janeczek, Henryk, et Zbigniew Jedliński. « Progress in carbanionic polymerization via a two-electron transfer mechanism ». Polymer 43, no 25 (janvier 2002) : 7219–23. http://dx.doi.org/10.1016/s0032-3861(02)00464-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Bai, Xiongxiong, Ying Hu, Xu Zhang, Lingling Ai et Chuanjie Cheng. « Single Electron Transfer Living Radical Polymerization via a New Initiator ». IOP Conference Series : Materials Science and Engineering 62 (8 août 2014) : 012008. http://dx.doi.org/10.1088/1757-899x/62/1/012008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Ohtsuka, Toshiharu, Yukio Yamamoto et Koichiro Hayashi. « Photosensitized cationic polymerization of cyclohexene oxide via electron-transfer reactions ». Journal of Polymer Science : Polymer Letters Edition 26, no 11 (octobre 1988) : 481–83. http://dx.doi.org/10.1002/pol.1988.140261106.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Yu, Jialuo, Xiaoyan Wang, Qi Kang, Jinhua Li, Dazhong Shen et Lingxin Chen. « One-pot synthesis of a quantum dot-based molecular imprinting nanosensor for highly selective and sensitive fluorescence detection of 4-nitrophenol in environmental waters ». Environmental Science : Nano 4, no 2 (2017) : 493–502. http://dx.doi.org/10.1039/c6en00395h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Min, Ke, et Krzysztof Matyjaszewski. « Atom transfer radical polymerization in aqueous dispersed media ». Open Chemistry 7, no 4 (1 décembre 2009) : 657–74. http://dx.doi.org/10.2478/s11532-009-0092-1.

Texte intégral
Résumé :
AbstractDuring the last decade, atom transfer radical polymerization (ATRP) received significant attention due to its exceptional capability of synthesizing polymers with pre-determined molecular weight, well-defined molecular architectures and various functionalities. It is economically and environmentally attractive to adopt ATRP to aqueous dispersed media, although the process is challenging. This review summarizes recent developments of conducting ATRP in aqueous dispersed media. The issues related to retaining “controlled/living” character as well as colloidal stability during the polymerization have to be considered. Better understanding the ATRP mechanism and development of new initiation techniques, such as activators generated by electron transfer (AGET) significantly facilitated ATRP in aqueous systems. This review covers the most important progress of ATRP in dispersed media from 1998 to 2009, including miniemulsion, microemulsion, emulsion, suspension and dispersed polymerization.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Goto, Eisuke, Hideharu Mori, Mitsuru Ueda et Tomoya Higashihara. « Controlled Polymerization of Electron-deficient Naphthalene-diimide Containing Monomer by Negishi-type Catalyst-transfer Polymerization ». Journal of Photopolymer Science and Technology 28, no 2 (2015) : 279–83. http://dx.doi.org/10.2494/photopolymer.28.279.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Thornton, Georgia L., Ryan Phelps et Andrew J. Orr-Ewing. « Transient absorption spectroscopy of the electron transfer step in the photochemically activated polymerizations of N-ethylcarbazole and 9-phenylcarbazole ». Physical Chemistry Chemical Physics 23, no 34 (2021) : 18378–92. http://dx.doi.org/10.1039/d1cp03137f.

Texte intégral
Résumé :
Transient absorption spectroscopy of electron transfer reactions between a carbazole and an iodonium salt reveals structure and solvent-dependent kinetic and mechanistic details important to initiation of polymerization.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Pollit, Adam A., Nimrat K. Obhi, Alan J. Lough et Dwight S. Seferos. « Evaluation of an external initiating Ni(ii) diimine catalyst for electron-deficient π-conjugated polymers ». Polymer Chemistry 8, no 28 (2017) : 4108–13. http://dx.doi.org/10.1039/c7py00873b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Li, Mingxiao, Michele Fromel, Dhanesh Ranaweera, Sergio Rocha, Cyrille Boyer et Christian W. Pester. « SI-PET-RAFT : Surface-Initiated Photoinduced Electron Transfer-Reversible Addition–Fragmentation Chain Transfer Polymerization ». ACS Macro Letters 8, no 4 (21 mars 2019) : 374–80. http://dx.doi.org/10.1021/acsmacrolett.9b00089.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie