Articles de revues sur le sujet « Electron Localization Function »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Electron Localization Function.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Electron Localization Function ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Savin, Andreas, Reinhard Nesper, Steffen Wengert et Thomas F. Fässler. « ELF : The Electron Localization Function ». Angewandte Chemie International Edition in English 36, no 17 (17 septembre 1997) : 1808–32. http://dx.doi.org/10.1002/anie.199718081.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Nalewajski, Roman F., Andreas M. Köster et Sigfrido Escalante. « Electron Localization Function as Information Measure ». Journal of Physical Chemistry A 109, no 44 (novembre 2005) : 10038–43. http://dx.doi.org/10.1021/jp053184i.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Pilmé, Julien. « Electron localization function from density components ». Journal of Computational Chemistry 38, no 4 (17 novembre 2016) : 204–10. http://dx.doi.org/10.1002/jcc.24672.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Tsirelson, Vladimir, et Adam Stash. « Determination of the electron localization function from electron density ». Chemical Physics Letters 351, no 1-2 (janvier 2002) : 142–48. http://dx.doi.org/10.1016/s0009-2614(01)01361-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Matito, Eduard, Bernard Silvi, Miquel Duran et Miquel Solà. « Electron localization function at the correlated level ». Journal of Chemical Physics 125, no 2 (14 juillet 2006) : 024301. http://dx.doi.org/10.1063/1.2210473.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Krokidis, Xénophon, Nigel W. Moriarty, William A. Lester, Jr et Michael Frenklach. « Propargyl radical : an electron localization function study ». Chemical Physics Letters 314, no 5-6 (décembre 1999) : 534–42. http://dx.doi.org/10.1016/s0009-2614(99)00880-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kohout, Miroslav, Frank Richard Wagner et Yuri Grin. « Electron localization function for transition-metal compounds ». Theoretical Chemistry Accounts : Theory, Computation, and Modeling (Theoretica Chimica Acta) 108, no 3 (1 octobre 2002) : 150–56. http://dx.doi.org/10.1007/s00214-002-0370-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

SAVIN, A., R. NESPER, S. WENGERT et T. F. FAESSLER. « ChemInform Abstract : ELF : The Electron Localization Function ». ChemInform 28, no 48 (2 août 2010) : no. http://dx.doi.org/10.1002/chin.199748342.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Shukla, Padma Kant, et Bengt Eliasson. « Localization of intense electromagnetic waves in plasmas ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 366, no 1871 (24 janvier 2008) : 1757–69. http://dx.doi.org/10.1098/rsta.2007.2184.

Texte intégral
Résumé :
We present theoretical and numerical studies of the interaction between relativistically intense laser light and a two-temperature plasma consisting of one relativistically hot and one cold component of electrons. Such plasmas are frequently encountered in intense laser–plasma experiments where collisionless heating via Raman instabilities leads to a high-energetic tail in the electron distribution function. The electromagnetic waves (EMWs) are governed by the Maxwell equations, and the plasma is governed by the relativistic Vlasov and hydrodynamic equations. Owing to the interaction between the laser light and the plasma, we can have trapping of electrons in the intense wakefield of the laser pulse and the formation of relativistic electron holes (REHs) in which laser light is trapped. Such electron holes are characterized by a non-Maxwellian distribution of electrons where we have trapped and free electron populations. We present a model for the interaction between laser light and REHs, and computer simulations that show the stability and dynamics of the coupled electron hole and EMW envelopes.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Maurya, V., et K. B. Joshi. « Electron Localization Function and Compton Profiles of Cu2O ». Journal of Physical Chemistry A 123, no 10 (4 mars 2019) : 1999–2007. http://dx.doi.org/10.1021/acs.jpca.8b12102.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Fuentealba, Patricio, et Juan C. Santos. « Electron Localization Function as a Measure of Electron Delocalization and Aromaticity ». Current Organic Chemistry 15, no 20 (1 octobre 2011) : 3619–26. http://dx.doi.org/10.2174/138527211797636200.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Malozovsky, Y. M., J. D. Fan et B. Rambabu. « Electron Correlation in Carbon Nanotubes : Superconductivity Versus Localization ». International Journal of Modern Physics B 17, no 18n20 (10 août 2003) : 3648–54. http://dx.doi.org/10.1142/s0217979203021551.

Texte intégral
Résumé :
We study the effect of electron correlation in the armchair carbon nanotubes (CNT). We model the carbon nanotube as a tubule with electrons confined to the surface of the tubule by an attractive δ-function potential. We derived the pair interaction potential between two electrons in the tubule incorporating short-range and exchange correlation. Dispersions of plasmon modes at different values of orbital momentum (ℓ) and single-particle excitations are derived as well. We find that the plasma modes are not Landau damped and the lowest mode has acoustic behavior. We also find that the multiple scattering of an electron on the plasma acoustic mode leads to the so-called plasmaron quasiparticle and self-localization of an electron in the polarization well. We also show that there is a competition between superconducting correlation and self-localization due to the electron plasma interaction.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Tian, LU, et CHEN Fei-Wu. « Meaning and Functional Form of the Electron Localization Function ». Acta Physico-Chimica Sinica 27, no 12 (2011) : 2786–92. http://dx.doi.org/10.3866/pku.whxb20112786.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Chesnut, D. B. « An Electron Localization Function Study of the Lone Pair ». Journal of Physical Chemistry A 104, no 49 (décembre 2000) : 11644–50. http://dx.doi.org/10.1021/jp002957u.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Noury, Stéphane, Xénophon Krokidis, Franck Fuster et Bernard Silvi. « Computational tools for the electron localization function topological analysis ». Computers & ; Chemistry 23, no 6 (novembre 1999) : 597–604. http://dx.doi.org/10.1016/s0097-8485(99)00039-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Gadre, Shridhar R., Sudhir A. Kulkarni et Rajeev K. Pathak. « Density‐based electron localization function via nonlocal density approximation ». Journal of Chemical Physics 98, no 4 (15 février 1993) : 3574–76. http://dx.doi.org/10.1063/1.464082.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Fuentealba, P. « A modified version of the electron localization function (ELF) ». International Journal of Quantum Chemistry 69, no 4 (1998) : 559–65. http://dx.doi.org/10.1002/(sici)1097-461x(1998)69:4<559 ::aid-qua13>3.0.co;2-v.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Kohout, Miroslav, et Andreas Savin. « Influence of core-valence separation of electron localization function ». Journal of Computational Chemistry 18, no 12 (septembre 1997) : 1431–39. http://dx.doi.org/10.1002/(sici)1096-987x(199709)18:12<1431 ::aid-jcc1>3.0.co;2-k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Melin, Junia, et P. Fuentealba. « Application of the electron localization function to radical systems ». International Journal of Quantum Chemistry 92, no 4 (2003) : 381–90. http://dx.doi.org/10.1002/qua.10515.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Tupitsyn I. I., Kaygorodov M. Y., Glazov D. A., Ryzhkov A. M., Usov D. P. et Shabaev V. M. « Application of the Relativistic Electron Localization Function to Study the Electronic Structure of Superheavy Elements ». Optics and Spectroscopy 130, no 7 (2022) : 824. http://dx.doi.org/10.21883/eos.2022.07.54722.3459-22.

Texte intégral
Résumé :
A formula for calculating the relativistic electron localization function (RELF) within the framework of the Dirac-Fock method is obtained. An approach similar to that used earlier in [A.D. Becke and K.E. Edgecombe, The Journal of Chemical Physics 92, 5397 (1990)] in deriving an expression for the nonrelativistic electron localization function (ELF) is applied. It is demonstrated that the expression for RELF differs from the expression for ELF with replacement of the nonrelativistic electron density by its relativistic counterpart. Relativistic calculations of ELF and RELF for a number of superheavy elements are performed and the results are compared. By several examples it is shown that the ELF value equal to 0.5 does not necessarily correspond to the distribution density of homogeneous electron gas. Keywords: relativistic electron localization function, Dirac-Fock method, superheavy elements, electron gas.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Scemama, Anthony, Patrick Chaquin et Michel Caffarel. « Electron pair localization function : A practical tool to visualize electron localization in molecules from quantum Monte Carlo data ». Journal of Chemical Physics 121, no 4 (22 juillet 2004) : 1725–35. http://dx.doi.org/10.1063/1.1765098.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Fuentealba, Patricio, et Juan C. Santos. « ChemInform Abstract : Electron Localization Function as a Measure of Electron Delocalization and Aromaticity ». ChemInform 43, no 12 (23 février 2012) : no. http://dx.doi.org/10.1002/chin.201212278.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Oña, Ofelia B., Diego R. Alcoba, William Tiznado, Alicia Torre et Luis Lain. « An orbital localization criterion based on the topological analysis of the electron localization function ». International Journal of Quantum Chemistry 113, no 9 (25 septembre 2012) : 1401–8. http://dx.doi.org/10.1002/qua.24332.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Nesper, Reinhard, et Steffen Wengert. « Localization Patterns in Interstitial Space : A Special Property of the Electron Localization Function (ELF) ». Chemistry - A European Journal 3, no 6 (juin 1997) : 985–91. http://dx.doi.org/10.1002/chem.19970030621.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Saraf, Sarvin Hossien, et Reza Ghiasi. « Quantum theory of atoms in molecules, electron localization function, and localized-orbital locator investigations on trans-(NHC)PtI2(para-NC5H4X) complexes ». Journal of Chemical Research 44, no 7-8 (17 février 2020) : 482–86. http://dx.doi.org/10.1177/1747519820907243.

Texte intégral
Résumé :
In this study, the MPW1PW91 method is applied to analyze the quantum theory of atoms in molecules, the electron localization function, and the localized-orbital locator in trans-(NHC)PtI2( para-NC5H4X) (X = H, F, COOH, CN, NO2, Me, OH, NH2) complexes. The substituent effect is assessed in the presence of electron-withdrawing groups and electron-donating groups and their influence on the Pt–C and Pt–N bonds of the molecules is analyzed using quantum theory of atoms in molecules, electron localization function, and localized-orbital locator methods. In addition, the eta index (η) is used to evaluate the Pt–C and Pt–N bonds in the studied complexes. The correlations between electron localization function, localized-orbital locator, and the η index values of Pt–C and Pt–N bonds with Hammett constants (σp) and dual parameters (σI and σR) are given.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Santos, J. C., W. Tiznado, R. Contreras et P. Fuentealba. « Sigma–pi separation of the electron localization function and aromaticity ». Journal of Chemical Physics 120, no 4 (22 janvier 2004) : 1670–73. http://dx.doi.org/10.1063/1.1635799.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Ormeci, A., H. Rosner, F. R. Wagner, M. Kohout et Yu Grin. « Electron Localization Function in Full-Potential Representation for Crystalline Materials ». Journal of Physical Chemistry A 110, no 3 (janvier 2006) : 1100–1105. http://dx.doi.org/10.1021/jp054727r.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Gibbs, G. V., D. F. Cox, N. L. Ross, T. D. Crawford, J. B. Burt et K. M. Rosso. « A mapping of the electron localization function for earth materials ». Physics and Chemistry of Minerals 32, no 3 (20 mai 2005) : 208–21. http://dx.doi.org/10.1007/s00269-005-0463-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Savin, A., B. Silvi et F. Colonna. « Topological analysis of the electron localization function applied to delocalized bonds ». Canadian Journal of Chemistry 74, no 6 (1 juin 1996) : 1088–96. http://dx.doi.org/10.1139/v96-122.

Texte intégral
Résumé :
What is a local viewpoint of delocalized bonds? We try to provide an answer to this paradoxical question by investigating representative conjugated organic molecules (namely, allyl cation, trans-butadiene, and benzene) together with reference nonconjugated systems (ethylene and propene) by means of topological analysis of the electron localization function ELF. The valence attractors of the ELF gradient field are classified according to their synaptic order (i.e., connections with core attractors). The basin populations [Formula: see text] (i.e., the integrated density over the attractor basins) and their standard deviation, σ, have been calculated and are discussed. The basin populations and their relative fluctuations, defined as [Formula: see text] are sensitive criteria of delocalization. In the case of well-localized C—C or C=C bonds, λ ~0.4, whereas for delocalized bonds λ increases to about 0.5. Another criterion of delocalization is provided by the basin hierarchy, which is defined from the reduction of the localization domains. For most systems, delocalization occurs not only for neighboring carbon-carbon disynaptic attractor basins, but also for nearest neighbor disynaptic protonated attractor basins. Key words: electron localization function, topological analysis, delocalization, population analysis.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Modak, P., et Ashok K. Verma. « Pressure induced multi-centre bonding and metal–insulator transition in PtAl2 ». Physical Chemistry Chemical Physics 21, no 24 (2019) : 13337–46. http://dx.doi.org/10.1039/c9cp02034a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Kanazawa, I. « The Electron Localization in the Quasicrystal-Like System ». Modern Physics Letters B 17, no 15 (30 juin 2003) : 841–45. http://dx.doi.org/10.1142/s0217984903005834.

Texte intégral
Résumé :
By using the thermal Green's function technique, we consider the transport properties in a randomly distributed system of the aggregation that corresponds to the correlated unit-cell configurations, in which the nearest distance between each configuration is ~ 2π/2k F . We introduce the temperature dependence of the conductivity of the quasicrystal-like system.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Werstiuk, Nick H., Heidi M. Muchall et Stéphane Noury. « An Electron Localization Function (ELF) Study of the 2-Norbornyl Cation† ». Journal of Physical Chemistry A 104, no 49 (décembre 2000) : 11601–5. http://dx.doi.org/10.1021/jp001978l.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Pavarini, E., A. Yamasaki, J. Nuss et O. K. Andersen. « How chemistry controls electron localization in 3d1perovskites : a Wannier-function study ». New Journal of Physics 7 (5 septembre 2005) : 188. http://dx.doi.org/10.1088/1367-2630/7/1/188.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Feixas, Ferran, Eduard Matito, Miquel Duran, Miquel Solà et Bernard Silvi. « Electron Localization Function at the Correlated Level : A Natural Orbital Formulation ». Journal of Chemical Theory and Computation 6, no 9 (23 août 2010) : 2736–42. http://dx.doi.org/10.1021/ct1003548.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Feixas, Ferran, Eduard Matito, Miquel Duran, Miquel Solà et Bernard Silvi. « Electron Localization Function at the Correlated Level : A Natural Orbital Formulation ». Journal of Chemical Theory and Computation 7, no 4 (4 mars 2011) : 1231. http://dx.doi.org/10.1021/ct2001123.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Joubert, L. « Electron localization function view of bonding in selected aluminum fluoride molecules ». Journal of Molecular Structure : THEOCHEM 463, no 1-2 (23 avril 1999) : 75–80. http://dx.doi.org/10.1016/s0166-1280(98)00395-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Savin, Andreas. « The electron localization function (ELF) and its relatives : interpretations and difficulties ». Journal of Molecular Structure : THEOCHEM 727, no 1-3 (août 2005) : 127–31. http://dx.doi.org/10.1016/j.theochem.2005.02.034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Silvi, B. « Chemical Bonds in Minerals : Topological Analysis of the Electron Localization Function ». Mineralogical Magazine 58A, no 2 (1994) : 842–43. http://dx.doi.org/10.1180/minmag.1994.58a.2.174.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Chesnut, D. B., et L. J. Bartolotti. « The electron localization function description of aromaticity in five-membered rings ». Chemical Physics 253, no 1 (février 2000) : 1–11. http://dx.doi.org/10.1016/s0301-0104(99)00366-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Fuentealba, P., et A. Savin. « Bonding Analysis of Hydrogenated Lithium Clusters Using the Electron Localization Function ». Journal of Physical Chemistry A 105, no 51 (décembre 2001) : 11531–33. http://dx.doi.org/10.1021/jp012004b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

BURKHARDT, A., U. WEDIG, H. G. VON SCHNERING et A. SAVIN. « ChemInform Abstract : The Electron Localization Function (ELF) in closo Boron Clusters ». ChemInform 24, no 18 (20 août 2010) : no. http://dx.doi.org/10.1002/chin.199318001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Kalinowski, Jaroslaw, Slawomir Berski et Agnieszka J. Gordon. « Electron Localization Function Study on Intramolecular Electron Transfer in the QTTFQ and DBTTFI Radical Anions ». Journal of Physical Chemistry A 115, no 46 (24 novembre 2011) : 13513–22. http://dx.doi.org/10.1021/jp204585s.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Parise, Angela, Aurelio Alvarez-Ibarra, Xiaojing Wu, Xiaodong Zhao, Julien Pilmé et Aurélien de la Lande. « Quantum Chemical Topology of the Electron Localization Function in the Field of Attosecond Electron Dynamics ». Journal of Physical Chemistry Letters 9, no 4 (31 janvier 2018) : 844–50. http://dx.doi.org/10.1021/acs.jpclett.7b03379.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Gibbs, G. V., D. F. Cox, N. L. Ross, T. D. Crawford, R. T. Downs et J. B. Burt. « Comparison of the Electron Localization Function and Deformation Electron Density Maps for Selected Earth Materials ». Journal of Physical Chemistry A 109, no 44 (novembre 2005) : 10022–27. http://dx.doi.org/10.1021/jp052661u.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

ŠETRAJČIĆ, JOVAN P., STEVAN ARMAKOVIĆ, IGOR J. ŠETRAJČIĆ et LJUBIŠA D. DŽAMBAS. « SURFACE LOCALIZATION OF ELECTRONS IN ULTRATHIN CRYSTALLINE STRUCTURES ». Modern Physics Letters B 28, no 04 (4 février 2014) : 1450023. http://dx.doi.org/10.1142/s0217984914500237.

Texte intégral
Résumé :
Electron subsystem of ultrathin films was analyzed using Green's function method including quantum size effect and effect of boundaries on Hamiltonian parameters. We have calculated basic physical properties of electrons in crystalline films: energy spectra, possible states, space distribution of electrons and the position of Fermi level, which enabled the complete insight into the thermodynamic or conducting characteristics of observed film-structure. The comparison with crystal bulk have shown that electronic properties of the materials are strongly influenced by both the sample dimensions and boundary conditions. The numerical calculations performed for very thin crystalline metallic-like films show that localized states and spatial distribution of the (quasi)free electrons might be manipulated by varying the surface parameters which is significant for operation of devices based on thin films.
Styles APA, Harvard, Vancouver, ISO, etc.
46

GODA, MASAKI, MARK YA AZBEL et HIROAKI YAMADA. « NON-EXPONENTIALLY LOCALIZED STATES IN A TWO-DIMENSIONAL DISORDERED SYSTEM ? » International Journal of Modern Physics B 13, no 21n22 (10 septembre 1999) : 2705–25. http://dx.doi.org/10.1142/s0217979299002605.

Texte intégral
Résumé :
We study the length L dependence of the forward component of the transfer matrix for an electron passing through a strip with δ-function impurity potentials, with particular attention to the slowest growth-rate characteristic. In the first step of our microscopic study we obtain the inverse localization length for low energy electron in a weakly perturbed system. We show by considering an ensemble averaged mixed tensor a critical energy dividing exponential localization and non-exponential localization in the two-dimensional disordered system.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Alcoba, Diego R., Ofelia B. Oña, Alicia Torre, Luis Lain et William Tiznado. « An orbital localization criterion based on the topological analysis of the electron localization function at correlated level ». International Journal of Quantum Chemistry 118, no 14 (6 février 2018) : e25588. http://dx.doi.org/10.1002/qua.25588.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Koumpouras, Konstantinos, et J. Andreas Larsson. « Distinguishing between chemical bonding and physical binding using electron localization function (ELF) ». Journal of Physics : Condensed Matter 32, no 31 (6 mai 2020) : 315502. http://dx.doi.org/10.1088/1361-648x/ab7fd8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Chesnut, D. B. « Atoms-in-Molecules and Electron Localization Function Study of the Phosphoryl Bond ». Journal of Physical Chemistry A 107, no 21 (mai 2003) : 4307–13. http://dx.doi.org/10.1021/jp022292r.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Contreras-García, Julia, Ángel Martín Pendás, Bernard Silvi et J. Manuel Recio. « Useful applications of the electron localization function in high-pressure crystal chemistry ». Journal of Physics and Chemistry of Solids 69, no 9 (septembre 2008) : 2204–7. http://dx.doi.org/10.1016/j.jpcs.2008.03.028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie