Littérature scientifique sur le sujet « ELECTRON LASER »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « ELECTRON LASER ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "ELECTRON LASER"

1

Prasad, Vinod, Rinku Sharma et Man Mohan. « Laser Assisted Electron - Alkali Atom Collisions ». Australian Journal of Physics 49, no 6 (1996) : 1109. http://dx.doi.org/10.1071/ph961109.

Texte intégral
Résumé :
Lasar assisted inelastic scattering of electrons by alkali atoms is studied theoretically. The non-perturbative quasi-energy method, which is generalised for many atomic states, is used to describe the laser–atom interaction, and the electron–atom interaction is treated within the first Born approximation. We have calculated the total cross section for the excitation of sodium atoms due to simultaneous electron–photon collisions. We show the effect of laser and collision parameters, e.g. laser intensity, polarisation and incident electron energy, on the excitation process.
Styles APA, Harvard, Vancouver, ISO, etc.
2

MALKA, V., A. F. LIFSCHITZ, J. FAURE et Y. GLINEC. « GeV MONOENERGETIC ELECTRON BEAM WITH LASER PLASMA ACCELERATOR ». International Journal of Modern Physics B 21, no 03n04 (10 février 2007) : 277–86. http://dx.doi.org/10.1142/s0217979207042057.

Texte intégral
Résumé :
Laser plasma accelerators produce today ultra short, quasi-monoenergetic and collimated electron beams with potential applications in material science, chemistry and medicine. The laser plasma accelerator used to produce such an electron beam is presented. The design of a laser based accelerator designed to produce more energetic electron beams with a narrow relative energy spread is also proposed here. This compact approach should permit a miniaturization and cost reduction of future accelerators and associated X-Free Electrons Lasers (XFEL).
Styles APA, Harvard, Vancouver, ISO, etc.
3

Nicks, B. S., T. Tajima, D. Roa, A. Nečas et G. Mourou. « Laser-wakefield application to oncology ». International Journal of Modern Physics A 34, no 34 (10 décembre 2019) : 1943016. http://dx.doi.org/10.1142/s0217751x19430164.

Texte intégral
Résumé :
Recent developments in fiber lasers and nanomaterials have allowed the possibility of using laser wakefield acceleration (LWFA) as the source of low-energy electron radiation for endoscopic and intraoperative brachytherapy, a technique in which sources of radiation for cancer treatment are brought directly to the affected tissues, avoiding collateral damage to intervening tissues. To this end, the electron dynamics of LWFA is examined in the high-density regime. In the near-critical density regime, electrons are accelerated by the ponderomotive force followed by an electron sheath formation, resulting in a flow of bulk electrons. These low-energy electrons penetrate tissue to depths typically less than 1 mm. First a typical resonant laser pulse is used, followed by lower-intensity, longer-pulse schemes, which are more amenable to a fiber-laser application.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Li, Kai, et Wen Yi Huo. « The nonlocal electron heat transport under the non-Maxwellian distribution in laser plasmas and its influence on laser ablation ». Physics of Plasmas 30, no 4 (avril 2023) : 042702. http://dx.doi.org/10.1063/5.0130888.

Texte intégral
Résumé :
The electron heat transport plays an important role in laser driven inertial confinement fusion. For the plasmas created by intense laser, the traditional Spitzer–Härm theory cannot accurately describe the electron heat transport process mainly due to two physical effects. First, the electron distribution function would significantly differ from the Maxwellian distribution because of the inverse bremsstrahlung heating. Second, the long mean free paths of heat carrying electrons relative to the temperature scale length indicate that the electron heat flux has the nonlocal feature. In 2020, we have developed a nonlocal electron heat transport model based on the non-Maxwellian electron distribution function (NM-NL model) to describe the electron heat flux in laser plasmas. Recently, this model is successfully incorporated into our radiation hydrodynamical code RDMG. In this article, we numerically investigated the electron heat flux in laser plasmas, especially the nonlocal feature of heat flux and the influence of the non-Maxwellian distribution. The influence of electron heat transport on laser ablation is also discussed. The simulated plasma conditions based on different electron heat transport models are presented and compared with experiments. Our results show that the nonlocal feature of heat flux and the influence of non-Maxwellian distribution function are considerable in plasmas heated by intense lasers.
Styles APA, Harvard, Vancouver, ISO, etc.
5

MIZUNO, Koji, Kunioki MIMA et Shoichi ONO. « Tunable lasers. Free electron laser. » Review of Laser Engineering 17, no 11 (1989) : 749–58. http://dx.doi.org/10.2184/lsj.17.11_749.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

CHAUHAN, P. K., S. T. MAHMOUD, R. P. SHARMA et H. D. PANDEY. « Effect of laser ripple on the beat wave excitation and particle acceleration ». Journal of Plasma Physics 73, no 1 (février 2007) : 117–30. http://dx.doi.org/10.1017/s002237780600465x.

Texte intégral
Résumé :
Abstract.This paper presents the effect of ripple on the plasma wave excitation process and acceleration of electrons in a laser produced plasma. The plasma wave is generated by the beating of two coaxial lasers of frequencies ω1 and ω2, such that ω1-ω2≅ωp. One of the main laser beams also has intensity spikes. The nonlinearity due to the relativistic mass variation depends not only on the intensity of one laser beam but also on the second laser beam. Therefore the behavior of the first laser beam affects the second laser beam, hence cross-focusing takes place. Owing to the interaction of ripple and the main laser beams, the ripple grows inside the plasma. The behavior of the ripple in the plasma affects the excitation of the electron plasma wave as well as the electron acceleration. The amplitude of the electron plasma wave and the electron energy are calculated, in the presence of ripple.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Joachain, C. J. « Laser-Assisted Electron-Atom Collisions ». Laser Chemistry 11, no 3-4 (1 janvier 1991) : 273–77. http://dx.doi.org/10.1155/lc.11.273.

Texte intégral
Résumé :
The theoretical methods which have been developed to analyze laser-assisted electron-atom collisions are reviewed. Firstly, the scattering of an electron by a potential in the presence of a laser field is considered. The analysis is then generalized to laser-assisted collisions of electrons with “real” atoms having an internal structure. Two methods are discussed: a semi-perturbative approach suitable for fast incident electrons and a fully non-perturbative theory—the R-matrix-Floquet method—which is applicable to the case of slow incident electrons. In particular it is shown how the dressing of the atomic states by the laser field can affect the collision cross sections.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Masters, AT, RT Sang, WR MacGillivray et MC Standage. « New Data from Laser Interrogation of Electron-Atom Collisions Experiments ». Australian Journal of Physics 49, no 2 (1996) : 499. http://dx.doi.org/10.1071/ph960499.

Texte intégral
Résumé :
Recent data from two methods in which high resolution laser radiation is used to assist in determining electron-atom collision parameters are presented. The electron superelastic method has yielded the first measurement of Stokes parameters for electron de-excitation of the 32D5/2–32P3/2,1/2 transition of atomic Na, the upper level having been optically prepared by resonant, stepwise excitation from the 32S1/2 ground level via the 32P3/2 level using two single mode lasers. As well, we report on the development of a model to determine the optical pumping parameters for superelastic scattering from the 32P3/2 level when it is prepared by two lasers exciting from the F = 1 and F = 2 states respectively of the 32S1/ 2 ground level. Data are also presented for collision parameters for the excitation of the 61So–61 PI transition of the I = 0 isotope of Hg by electrons of 50 eV incident energy. The technique employed for these measurements is the stepwise electron–laser excitation coincidence method, in which the electron excited atom is further excited by resonant laser radiation, and fluorescence photons emitted by relaxation from the laser excited state are detected in coincidence with the scattered electron.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Huang, Kai, Zhan Jin, Nobuhiko Nakanii, Tomonao Hosokai et Masaki Kando. « Experimental demonstration of 7-femtosecond electron timing fluctuation in laser wakefield acceleration ». Applied Physics Express 15, no 3 (14 février 2022) : 036001. http://dx.doi.org/10.35848/1882-0786/ac5237.

Texte intégral
Résumé :
Abstract We report on an experimental investigation of the jitter of electrons from laser wakefield acceleration. The relative arrival timings of the generated electron bunches were detected via electro-optic spatial decoding on the coherent transition radiation emitted when the electrons pass through a 100 μm thick stainless steel foil. The standard deviation of electron timing was measured to be 7 fs at a position outside the plasma. Preliminary analysis suggested that the electron bunches might have durations of a few tens of femtoseconds. This research demonstrated the potential of laser wakefield acceleration for femtosecond pump–probe studies.
Styles APA, Harvard, Vancouver, ISO, etc.
10

WANG, P. X., Y. K. HO, Q. KONG, X. Q. YUAN, N. CAO et L. FENG. « CHARACTERISTICS OF GeV ELECTRON BUNCHES ACCELERATED BY INTENSE LASERS IN VACUUM ». Modern Physics Letters B 14, no 19 (20 août 2000) : 693–99. http://dx.doi.org/10.1142/s0217984900000902.

Texte intégral
Résumé :
This paper studies the characteristics of GeV electron bunches driven by ultra-intense lasers in vacuum based on the mechanism of capture and violent acceleration scenario [CAS, see, e.g. J. X. Wang et al., Phys. Rev.E58, 6575 (1998)], which shows an interesting prospect of becoming a new principle of laser-driven accelerators. It has been found that the accelerated GeV electron bunch is a macro-pulse composed of a lot of micro-pulses, which is analogous to the structure of the bunches produced by conventional linacs. The macro-pulse corresponds to the duration of the laser pulse while the micro-pulse corresponds to the periodicity of the laser wave. Therefore, provided that the incoming electron bunch with comparable sizes as that of the laser pulse synchronously impinges on the laser pulse, the total fraction of electrons captured and accelerated to GeV energy can reach more than 20%. These results demonstrate that the mechanisms of CAS is a relatively effective accelerator mechanism.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "ELECTRON LASER"

1

Bajlekov, Svetoslav. « Towards a free-electron laser driven by electrons from a laser-wakefield accelerator : simulations and bunch diagnostics ». Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:99f9f13a-d0c2-4dd8-a9a4-13926621c352.

Texte intégral
Résumé :
This thesis presents results from two strands of work towards realizing a free-electron laser (FEL) driven by electron bunches generated by a laser-wakefield accelerator (LWFA). The first strand focuses on selecting operating parameters for such a light source, on the basis of currently achievable bunch parameters as well as near-term projections. The viability of LWFA-driven incoherent undulator sources producing nanojoule-level pulses of femtosecond duration at wavelengths of 5 nm and 0.5 nm is demonstrated. A study on the prospective operation of an FEL at 32 nm is carried out, on the basis of scaling laws and full 3-D time-dependent simulations. A working point is selected, based on realistic bunch parameters. At that working point saturation is expected to occur within a length of 1.6 m with peak power at the 0.1 GW-level. This level, as well as the stability of the amplification process, can be improved significantly by seeding the FEL with an external radiation source. In the context of FEL seeding, we study the ability of conventional simulation codes to correctly handle seeds from high-harmonic generation (HHG) sources, which have a broad bandwidth and temporal structure on the attosecond scale. Namely, they violate the slowly-varying envelope approximation (SVEA) that underpins the governing equations in conventional codes. For this purpose we develop a 1-D simulation code that works outside the SVEA. We carry out a set of benchmarks that lead us to conclude that conventional codes are adequately capable of simulating seeding with broadband radiation, which is in line with an analytical treatment of the interaction. The second strand of work is experimental, and focuses on on the use of coherent transition radiation (CTR) as an electron bunch diagnostic. The thesis presents results from two experimental campaigns at the MPI für Quantenoptik in Garching, Germany. We present the first set of single-shot measurements of CTR over a continuous wavelength range from 420 nm to 7 μm. Data over such a broad spectral range allows for the first reconstruction of the longitudinal profiles of electron bunches from a laser-wakefield accelerator, indicating full-width at half-maximum bunch lengths around 1.4 μm (4.7 fs), corresponding to peak currents of several kiloampères. The bunch profiles are reconstructed through the application of phase reconstruction algorithms that were initially developed for studying x-ray diffraction data, and are adapted here for the first time to the analysis of CTR data. The measurements allow for an analysis of acceleration dynamics, and suggest that upon depletion of the driving laser the accelerated bunch can itself drive a wake in which electrons are injected. High levels of coherence at optical wavelengths indicate the presence of an interaction between the bunch and the driving laser pulse.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Restivo, Rick A. « Free electron laser weapons and electron beam transport ». Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1997. http://handle.dtic.mil/100.2/ADA333358.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Stetler, Aaron M. « Active vibration control for free electron lasers ». Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Dec%5FStetler.pdf.

Texte intégral
Résumé :
Thesis (M.S. in Applied Physics)--Naval Postgraduate School, December 2003.
Thesis advisor(s): Bruce C. Denardo, Thomas J. Hofler. Includes bibliographical references (p. 81). Also available online.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Dearden, Geoffrey. « An industrial free electron laser ». Thesis, University of Liverpool, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240478.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Petichakis, Christos. « The Cerenkov free electron laser ». Thesis, University of Liverpool, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399079.

Texte intégral
Résumé :
This thesis reports on an investigation into Cerenkov Free Electron Lasers. These devices are basically travelling wave tubes but having a dielectrically lined cylinder as the slow wave structure rather than a helix. If an electron beam is injected into the centre of this structure, an interaction between the electrons and the electromagnetic (e-m) TMo I mode can occur which can lead to amplification of the e-m wave. Two different systems have been constructed. The first one was designed to operate as an oscillator at 12.4GHz and used a rectangular X-band waveguide microwave coupler. It was thought that the non-operation of this device could have been due to a lack of net gain, and so a second system was designed having a smaller diameter dielectric liner in order to achieve higher gain but at a slightly higher frequency of operation (l6.9GHz). In both systems, the interception of the electron beam with the dielectric liner was small. Unfortunately, even though a maximum electron beam current of 120mA was achieved, leading to an expected small signal gain of 1200%, no microwave output was observed either. At this stage it was considered that there must he something more fundamental at fault with these systems. After a thorough investigation. it was discovered that the small gap which always exists between the dielectric liner and the waveguide affected the dispersion relation of a Cerenkov system. Theoretically, gaps as small as 1 % of the diameter of the waveguide were found to have a serious effect, and although these gaps would not stop the operation of the Cerenkov device, microwave output would only be expected at a voltage far from that expected. It was found that the problem could be overcome by coating the outer surface of the dielectric tube with a layer of conducting material, such as silver paint, which effectively removes the gap. Further tests of a Cerenkov free electron laser with this improvement are in progress.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Evtushenko, Pavel. « Electron beam diagnostic at the ELBE free electron laser ». Doctoral thesis, [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972779876.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Evtushenko, P. « Electron Beam Diagnostic at the ELBE Free Electron Laser ». Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-28802.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Evtushenko, P. « Electron Beam Diagnostic at the ELBE Free Electron Laser ». Forschungszentrum Rossendorf, 2004. https://hzdr.qucosa.de/id/qucosa%3A21707.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mitchell, Ethan D. « Multiple beam directors for naval free electron laser weapons ». Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Mar%5FMitchell.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Massey, Daniel S. « Simulation of DARMSTADT Free Electron Laser and a comparison of high gain Free Electron Laser ». Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2000. http://handle.dtic.mil/100.2/ADA387394.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "ELECTRON LASER"

1

Dattoli, G. Free-electron laser theory. Geneva : CERN, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Schmid, Karl. Laser Wakefield Electron Acceleration. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19950-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Restivo, Rick A. Free electron laser weapons and electron beam transport. Monterey, Calif : Naval Postgraduate School, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kassel, Simon. Soviet free-electron laser research. Santa Monica, CA : Rand Corp., 1985.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Massey, Daniel S. Simulation of DARMSTADT Free Electron Laser and a comparison of high gain Free Electron Laser. Monterey, Calif : Naval Postgraduate School, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Short, Lee R. Damage produced by the free electron laser. Monterey, Calif : Naval Postgraduate School, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

V, Fedorov M. Interaction of intense laser light with free electrons. Chur, Switzerland : Harwood Academic Publishers, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Buskirk, Fred Ramon. Radiation produced by the modulated electron beam of a free electron laser. Monterey, California : Naval Postgraduate School, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

1949-, Miller J. C., et Haglund R. F. 1942-, dir. Laser ablation and desorption. San Diego : Academic Press, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

International Free Electron Laser Conference (14th 1992 Kobe, Japan). Free electron lasers : Proceedings of the fourteenth International Free Electron Laser Conference, Kobe, Japan, August 23-28, 1992. Sous la direction de Yamanaka Chiyoe 1923- et Mima K. Amsterdam : North-Holland, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "ELECTRON LASER"

1

Kneubühl, Fritz Kurt, et Markus Werner Sigrist. « Free-Electron-Laser ». Dans Laser, 384–89. Wiesbaden : Vieweg+Teubner Verlag, 1999. http://dx.doi.org/10.1007/978-3-322-93875-6_18.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kneubühl, Fritz Kurt, et Markus Werner Sigrist. « Free-Electron Laser ». Dans Laser, 391–95. Wiesbaden : Vieweg+Teubner Verlag, 1989. http://dx.doi.org/10.1007/978-3-322-91806-2_18.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kneubühl, Fritz Kurt, et Markus Werner Sigrist. « Free-Electron Laser ». Dans Laser, 391–95. Wiesbaden : Vieweg+Teubner Verlag, 1989. http://dx.doi.org/10.1007/978-3-663-01450-8_18.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Schächter, Levi. « Free-Electron Laser ». Dans Particle Acceleration and Detection, 335–83. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19848-9_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Renk, Karl F. « Free-Electron Laser ». Dans Basics of Laser Physics, 333–67. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23565-8_19.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sigrist, Markus Werner. « Free-Electron-Laser ». Dans Laser : Theorie, Typen und Anwendungen, 403–10. Berlin, Heidelberg : Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-57515-4_18.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kneubühl, Fritz Kurt, et Markus Werner Sigrist. « Free-Electron-Laser ». Dans Teubner Studienbücher Physik, 384–89. Wiesbaden : Vieweg+Teubner Verlag, 2005. http://dx.doi.org/10.1007/978-3-322-99688-6_18.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Renk, Karl F. « Free-Electron Laser ». Dans Basics of Laser Physics, 347–412. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50651-7_19.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Schächter, Levi. « Free-Electron Laser ». Dans Beam-Wave Interaction in Periodic and Quasi-Periodic Structures, 273–313. Berlin, Heidelberg : Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03398-2_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Morgner, Harald. « Penning Ionization in Intense Laser Fields ». Dans The Electron, 341–51. Dordrecht : Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3570-2_18.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "ELECTRON LASER"

1

Melissinos, A. C. « Laser Electron Interactions at Critical Field Strength ». Dans International Conference on Ultrafast Phenomena. Washington, D.C. : Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.wa.1.

Texte intégral
Résumé :
The electric field in the focus of an ultrafast laser pulse of sufficient energy can reach extremely high values; for I = 1019 W/cm2, Erms=Z0I∼6×1010V/cm. When a high energy electron traverses the laser focus, it experiences in its own rest-frame a field E * = 2γErms where γ = ε/mc2 is the Lorentz factor of the electron [ε is the energy and mc2 the rest mass of the electron]. In the present experiment, electrons from the Stanford Linear Accelerator collided with a frequency doubled pulse from a Nd:glass laser system.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Bamber, C., S. Boege, T. Koffas, T. Kotseroglou, A. C. Melissinos, D. D. Meverhofer, D. Reis et al. « Observation of nonlinear laser-electron and laser-photon scattering ». Dans Applications of High Field and Short Wavelength Sources. Washington, D.C. : Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.fc2.

Texte intégral
Résumé :
Nonlinear laser-electron and laser-photon scattering has been observed during the interaction of an intense laser with 46.6 GeV electrons in the Final Focus Test Beam at SLAC. Nonlinear laser-electron and laser-photon scattering is characterized by two dimensionless parameters.1-3
Styles APA, Harvard, Vancouver, ISO, etc.
3

Meyer, Neal, Kunyan Zhu, Fang Fang et David S. Weiss. « An Electron Electric Dipole Moment with Atoms in Optical Lattices ». Dans Laser Science. Washington, D.C. : OSA, 2008. http://dx.doi.org/10.1364/ls.2008.ltud2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lee, J., J. Chen et A. E. Leanhardt. « Continuous Supersonic Beams for an Electron Electric Dipole Moment Search ». Dans Laser Science. Washington, D.C. : OSA, 2010. http://dx.doi.org/10.1364/ls.2010.lthg5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Fill, Ernst E. « Electron Diffraction Experiments using Laser Plasma Electrons ». Dans SUPERSTRONG FIELDS IN PLASMAS : Third International Conference on Superstrong Fields in Plasmas. AIP, 2006. http://dx.doi.org/10.1063/1.2195222.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Knappenberger, Kenneth L., et Hongjun Zheng. « Probing Metal Electron and Plasmon Dynamics using Two-Dimensional Electronic Spectroscopy ». Dans Laser Science. Washington, D.C. : OSA, 2019. http://dx.doi.org/10.1364/ls.2019.lw6e.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

KEEFER, DENNIS, AHAD SEDGHINASAB, NEWTON WRIGHT et QUAN ZHANG. « Laser propulsion using free electron lasers ». Dans 21st International Electric Propulsion Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-2636.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Fallahi, Arya, Niels Kuster et Lukas Novotny. « Confined Electron Laser ». Dans 2021 34th International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2021. http://dx.doi.org/10.1109/ivnc52431.2021.9600726.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Xie, Xinhua. « Probing and Controlling Electron Dynamics in Atoms and Molecules with Attosecond Electron Wave Packets ». Dans Laser Science. Washington, D.C. : OSA, 2014. http://dx.doi.org/10.1364/ls.2014.lw5h.2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Auerhammer, J. M., E. H. Haselhoff, G. M. H. Knippels, A. F. G. van der Meer, D. Oepts, H. H. Weits et P. W. van Amersfoort. « Fast manipulation of the gain medium of an infrared free electron laser ». Dans The European Conference on Lasers and Electro-Optics. Washington, D.C. : Optica Publishing Group, 1994. http://dx.doi.org/10.1364/cleo_europe.1994.cwm1.

Texte intégral
Résumé :
A free electron laser is similar to regular lasers in the sense that a light pulse is amplified on multiple passes through an optical cavity. Although the pump and gain processes are completely different, manipulation of the stored field is possible using similar tricks as in regular lasers, for instance phase locking by means of an intracavity interferometer.1,2 In addition, however, a free electron laser has the unique feature that also the properties of the gain medium (a beam of relativistic electrons) can be manipulated on a time scale essentially down to the cavity roundtrip time.
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "ELECTRON LASER"

1

Smith, Todd. Free Electron Laser Program. Fort Belvoir, VA : Defense Technical Information Center, octobre 1994. http://dx.doi.org/10.21236/ada285906.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Colson, W. B. Free Electron Laser Theory. Fort Belvoir, VA : Defense Technical Information Center, juillet 1986. http://dx.doi.org/10.21236/ada172996.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Matthews, J. L. Biomedical Free Electron Laser Studies. Fort Belvoir, VA : Defense Technical Information Center, janvier 1988. http://dx.doi.org/10.21236/ada199122.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Cowan, T., T. Ditmire et G. LeSage. Intense Laser - Electron Beam Interactions. Office of Scientific and Technical Information (OSTI), février 2000. http://dx.doi.org/10.2172/802605.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Elias, Luis R. A Submillimeter Free Electron Laser. Fort Belvoir, VA : Defense Technical Information Center, septembre 1985. http://dx.doi.org/10.21236/ada221738.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lumpkin, A. H., D. W. Rule, LaBerge M. LaBerge M. et M. C. Downer. Observations on Microbunching of Electrons in Laser-Driven Plasma Accelerators and Free-Electron Lasers. Office of Scientific and Technical Information (OSTI), janvier 2019. http://dx.doi.org/10.2172/1596020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Chen, Pisin. ELECTRON TRAJECTORIES IN INTENSE LASER PULSES. Office of Scientific and Technical Information (OSTI), septembre 1999. http://dx.doi.org/10.2172/12473.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Garrison, Barbara J., et Leonid V. Zhigilei. Modeling of Free Electron Laser Ablation. Fort Belvoir, VA : Defense Technical Information Center, octobre 2002. http://dx.doi.org/10.21236/ada407589.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Smith, Todd. Infra-Red Free Electron Laser Facility. Fort Belvoir, VA : Defense Technical Information Center, octobre 1994. http://dx.doi.org/10.21236/ada286256.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

McGinnis, R. D., R. W. Thomson, L. R. Short, P. A. Herbert et D. Lampiris. Free Electron Laser Material Damage Studies. Fort Belvoir, VA : Defense Technical Information Center, novembre 2000. http://dx.doi.org/10.21236/ada389509.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie