Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Electron decay.

Articles de revues sur le sujet « Electron decay »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Electron decay ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Rao, N. Venkateswara, Bh Sankara Rao, S. Bhuloka Reddy et S. Venkata Ratnam. « Electron capture decay of170Tm ». Journal of Physics G : Nuclear Physics 12, no 1 (janvier 1986) : 45–49. http://dx.doi.org/10.1088/0305-4616/12/1/012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Siiskonen, T., et H. Toivonen. « Electron conversion decay of ». Radiation Physics and Chemistry 69, no 1 (janvier 2004) : 23–24. http://dx.doi.org/10.1016/s0969-806x(03)00438-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lowry, M. M., R. T. Kouzes, F. Loeser, A. B. McDonald et R. A. Naumann. « Electron capture decay of81Krm ». Physical Review C 35, no 5 (1 mai 1987) : 1950–53. http://dx.doi.org/10.1103/physrevc.35.1950.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

ZENG, X. H., P. X. ZHOU, B. GU, H. E. RUDA et BI QIAO. « ELECTRON SPIN RELAXATION OF A@C60 ». International Journal of Modern Physics B 19, no 15n17 (10 juillet 2005) : 2910–14. http://dx.doi.org/10.1142/s0217979205031894.

Texte intégral
Résumé :
The electron spin decoherence in endohedral fullerene A@C 60 is studied at low temperature using master equation under the Markov approximation. At lower magnetic field the polarization decay occurs with form e-(t/T1)2 consitent with previous reports having decays of the order of ℏ/A, and the relationship [Formula: see text] is satisfied. For the case of A@C 60 (A = N,P ) endohedral fullerenes, the decay times on the order of tens of ns are calculated. For a strong external magnetic field, polarization strongly depends on the external magnetic field, the decay time is suppressed.
Styles APA, Harvard, Vancouver, ISO, etc.
5

TRIANTAPHYLLOU, GEORGE. « QED RADIATIVE CORRECTIONS TO THE DECAY π0→e+e− ». Modern Physics Letters A 08, no 18 (14 juin 1993) : 1691–700. http://dx.doi.org/10.1142/s0217732393001434.

Texte intégral
Résumé :
In view of the recent interest in the decays of mesons into a pair of light leptons, a computation of the QED radiative corrections to the decay of π0 into an electron-positron pair is presented here. The analysis is based on the soft-photon resummation method, which, unlike first-order perturbation theory, allows for very strict invariant-mass cuts on the final electrons. When combined with the theoretical estimates for the non-radiatively corrected decay rate, the results of the present paper could help to determine if new physics affect this decay.
Styles APA, Harvard, Vancouver, ISO, etc.
6

García, A., Y.-D. Chan, M. T. F. da Cruz, R. M. Larimer, K. T. Lesko, E. B. Norman, R. G. Stokstad et al. « Electron-capture decay ofTc100and the double-β decay ofMo100 ». Physical Review C 47, no 6 (1 juin 1993) : 2910–15. http://dx.doi.org/10.1103/physrevc.47.2910.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Chiu, Chih-Wei, Yue-Lin Chung, Cheng-Hsueh Yang, Chang-Ting Liu et Chiun-Yan Lin. « Coulomb decay rates in monolayer doped graphene ». RSC Advances 10, no 4 (2020) : 2337–46. http://dx.doi.org/10.1039/c9ra05953a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Dessagne, Ph, Ch Miehé, P. Baumann, A. Huck, G. Klotz, M. Ramdane, G. Walter et J. M. Maison. « Erratum:β+-electron-capture decay ofSe69 ». Physical Review C 41, no 3 (1 mars 1990) : 1319–20. http://dx.doi.org/10.1103/physrevc.41.1319.2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Toth, K. S., D. C. Sousa, P. A. Wilmarth, J. M. Nitschke et K. S. Vierinen. « Electron capture andβ+decay ofTm147 ». Physical Review C 47, no 4 (1 avril 1993) : 1804–6. http://dx.doi.org/10.1103/physrevc.47.1804.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Igashov, S. Yu, et Yu M. Tchuvil’sky. « Alpha decay in electron surrounding ». Physics of Atomic Nuclei 76, no 12 (décembre 2013) : 1452–56. http://dx.doi.org/10.1134/s1063778813120090.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Simpson, J. J., P. Jagam et A. A. Pilt. « Electron capture decay rate ofV50 ». Physical Review C 31, no 2 (1 février 1985) : 575–76. http://dx.doi.org/10.1103/physrevc.31.575.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Dessagne, Ph, Ch Miehé, P. Baumann, A. Huck, G. Klotz, M. Ramdane, G. Walter et J. M. Maison. « β+–electron-capture decay ofSe69 ». Physical Review C 37, no 6 (1 juin 1988) : 2687–93. http://dx.doi.org/10.1103/physrevc.37.2687.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Browne, E., I. Ahmad, K. E. Gregorich, S. A. Kreek, D. M. Lee et D. C. Hoffman. « Electron-capture decay of 231U ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 339, no 1-2 (janvier 1994) : 209–17. http://dx.doi.org/10.1016/0168-9002(94)91806-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Németh, Zs, T. Sekine et K. Yoshihara. « Electron capture decay of 203Pb ». International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes 40, no 6 (janvier 1989) : 519–20. http://dx.doi.org/10.1016/0883-2889(89)90137-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kotera, Masatoshi, Keiji Yamamoto et Hiroshi Suga. « Applications of a direct simulation of electron scattering to quantitative electron-probe microanalysis ». Proceedings, annual meeting, Electron Microscopy Society of America 50, no 2 (août 1992) : 1670–71. http://dx.doi.org/10.1017/s0424820100132984.

Texte intégral
Résumé :
A direct simulation of electron scatterings in solids is developed. The simulation takes into account elastic processes, and inelastic processes including inner-shell electron ionization, conduction electron ionization, bulk plasmon excitation, and bulk plasmon decay. After the ionization and the plasmon decay processes, the trajectories of hot electrons which are liberated from atomic electrons are calculated, and cascade multiplication of hot electrons is simulated in the solid. The theoretical equations used in the present simulation are in the following. For the elastic scattering of electrons by an atomic potential, we use the Mott cross section, which is obtained by the partial wave expansion method of the solution of the Dirac wave equation. For the inner-shell electron ionization, we use the cross section obtained from the generalized oscillator strength for each sub-shell in an atom. Under a condition of the Born approximation, cross section of an inner-shell electron excitation to the various continuum angular momentum channels for ionization is calculated using the generalized oscillator strength.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Daywitt, William C. « This The Neutron Meta-Particles and their Decay as Viewed in the Planck Vacuum Theory ». European Journal of Engineering Research and Science 5, no 8 (13 août 2020) : 855–57. http://dx.doi.org/10.24018/ejers.2020.5.8.2052.

Texte intégral
Résumé :
The mean life of the free neutron is about fifteen minutes, after which it decays into a proton plus an electron and an electron-neutrino. According to the Planck vacuum (PV) theory, however, it is the neutron and ``antineutron" meta-particles (MP)s that decay, in roughly fifteen minutes, into the stable electron and proton cores. The electron and proton core spins remain constant during the transformations-so there is no need for the neutrino spin correction during the decay process, bringing into question the validity of the neutrino itself.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Daywitt, William C. « Neutron Meta-Particles and their Decay as Viewed in the Planck Vacuum Theory ». European Journal of Engineering and Technology Research 5, no 8 (13 août 2020) : 855–57. http://dx.doi.org/10.24018/ejeng.2020.5.8.2052.

Texte intégral
Résumé :
The mean life of the free neutron is about fifteen minutes, after which it decays into a proton plus an electron and an electron-neutrino. According to the Planck vacuum (PV) theory, however, it is the neutron and ``antineutron" meta-particles (MP)s that decay, in roughly fifteen minutes, into the stable electron and proton cores. The electron and proton core spins remain constant during the transformations-so there is no need for the neutrino spin correction during the decay process, bringing into question the validity of the neutrino itself.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Žlimen, I., E. Browne, Y. Chan, M. T. F. da Cruz, A. García, R. M. Larimer, K. T. Lesko, E. B. Norman, R. G. Stokstad et F. E. Wietfeldt. « Second-forbidden electron-capture decay ofFe55 ». Physical Review C 46, no 3 (1 septembre 1992) : 1136–38. http://dx.doi.org/10.1103/physrevc.46.1136.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Trubert, D., M. Hussonnois, L. Brillard, J. B. Kim, V. Barci, G. Ardisson, Z. Szeglowski et O. Constantinescu. « Study of the168Hf electron capture decay ». Journal of Radioanalytical and Nuclear Chemistry 215, no 2 (janvier 1997) : 223–27. http://dx.doi.org/10.1007/bf02034468.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Zito, Richard R., et David Schiferl. « Electron capture decay in Jovian planets ». Icarus 72, no 3 (décembre 1987) : 647–49. http://dx.doi.org/10.1016/0019-1035(87)90059-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Kündig, W., et E. Holzschuh. « Electron antineutrino mass from β-decay ». Progress in Particle and Nuclear Physics 32 (janvier 1994) : 131–51. http://dx.doi.org/10.1016/0146-6410(94)90015-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Bikit, I., M. Krmar, J. Slivka, I. Aničin, M. Veskovic et Lj Čonkič. « Electron - positron conversion decay of 64Zn ». Applied Radiation and Isotopes 46, no 6-7 (juin 1995) : 455–56. http://dx.doi.org/10.1016/0969-8043(95)00051-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Letaw, John R., J. H. Adams, Rein Silberberg et C. H. Tsao. « Electron capture decay of cosmic rays ». Astrophysics and Space Science 114, no 2 (septembre 1985) : 365–79. http://dx.doi.org/10.1007/bf00653983.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Von Dincklage, R. D., H. J. Hay et H. L. Ravn. « The electron capture decay of 158Tb ». Nuclear Physics A 445, no 1 (novembre 1985) : 113–23. http://dx.doi.org/10.1016/0375-9474(85)90363-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Valentini, F., T. M. O’Neil et D. H. E. Dubin. « Decay instability of electron acoustic waves ». Communications in Nonlinear Science and Numerical Simulation 13, no 1 (février 2008) : 215–20. http://dx.doi.org/10.1016/j.cnsns.2007.04.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Guha, S., et Meenu Asthana. « Parametric decay in a two-electron-temperature plasma ». Journal of Plasma Physics 43, no 3 (juin 1990) : 451–56. http://dx.doi.org/10.1017/s0022377800014896.

Texte intégral
Résumé :
Nonlinear decay of an ordinary electromagnetic pump wave into an electro-acoustic wave and an upper-hybrid wave in a two-electron-temperature plasma has been investigated analytically. In contrast with the work of Sharma, Ramamurthy & Yu (1984), it is found that the decay can take place in the absence of the restrictive condition Ti ≫ Te and the plasma be magnetized. Using a hydrodynamical model of the plasma, the nonlinear dispersion relation and growth rate are obtained. A comparison of the present investigation is made with earlier work, and its possible application to the ELMO bumpy torus is discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Guo, Z. J., H. B. Zhuo, H. L. Fan, M. Q. Li, S. Z. Wu, T. W. Huang, H. Zhang et C. T. Zhou. « Driven ion acoustic wave nonlinearities in superthermal electron plasmas ». Physics of Plasmas 30, no 2 (février 2023) : 022114. http://dx.doi.org/10.1063/5.0130013.

Texte intégral
Résumé :
The fluid nonlinearities of driven ion acoustic waves (IAWs) in superthermal electron plasmas are investigated by fluid theory and one-dimensional fluid simulation. A kappa velocity distribution function is used to model superthermal electrons. Under the condition of small wave amplitudes, simulation results are presented to verify the conclusion of fluid theory, showing that the presence of superthermal electrons leads to stronger harmonic generation and larger nonlinear frequency shifts of IAWs. In addition, the growth rate and threshold of the IAW decay instability from simulations are well predicted by a simple three-wave fluid theory. It is shown that the nonlinear frequency shift has a significant effect on IAW decay, and for a larger population of superthermal electrons, the IAW decay has a smaller onset threshold and threshold range.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Habenicht, Bradley F., Svetlana V. Kilina et Oleg V. Prezhdo. « Comparative analysis of electron-phonon relaxation in a semiconducting carbon nanotube and a PbSe quantum dot ». Pure and Applied Chemistry 80, no 7 (1 janvier 2008) : 1433–48. http://dx.doi.org/10.1351/pac200880071433.

Texte intégral
Résumé :
The key features of the phonon-induced relaxation of electronic excitations in the (7,0) zig-zag carbon nanotube (CNT) and the Pb16Se16 quantum dot (QD) are contrasted using a time-domain ab initio density functional theory (DFT) simulation. Upon excitation from the valence to the conduction band (CB), the electrons and holes nonradiatively decay to the band-edge in both materials. The paper compares the electronic structure, optical spectra, important phonon modes, and decay channels in the CNT and QD. The relaxation is faster in the CNT than in the QD. In the PbSe QD, the electronic energy decays by coupling to low-frequency acoustic modes. The decay is nonexponential, in agreement with non-Lorentzian line-shapes observed in optical experiments. In contrast to the QD, the excitation decay in the CNT occurs primarily via high-frequency optical modes. Even though the holes have a higher density of states (DOS), they relax more slowly than the electrons, due to better coupling to low-frequency vibrations. Further, the expected phonon bottleneck is not observed in the QD, as rationalized by a high density of optically dark states. The same argument applies to the CNT. The computed results agree well with experimentally measured ultrafast relaxation time-scales and provide a unique atomistic picture of the electron-phonon relaxation processes.
Styles APA, Harvard, Vancouver, ISO, etc.
29

PÉREZ ROJAS, H., et E. RODRÍGUEZ QUERTS. « ON PHOTON PARAMAGNETISM AND VACUUM DECAY IN A MAGNETIC FIELD ». International Journal of Modern Physics D 19, no 08n10 (août 2010) : 1711–19. http://dx.doi.org/10.1142/s0218271810017512.

Texte intégral
Résumé :
Previous results from the authors2 concerning the rising of a tiny photon anomalous paramagnetic moment μγ, that is due to its interaction with a magnetized virtual electron–positron background, are complemented and discussed. It is shown that in the region beyond the first threshold, where photons may decay into electron–positron pairs, for magnetic fields large enough, the vacuum becomes unstable and decays also into electron–positron pairs.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Glück, F. « Electron spectra and electron-proton asymmetries in polarized neutron decay ». Physics Letters B 436, no 1-2 (septembre 1998) : 25–32. http://dx.doi.org/10.1016/s0370-2693(98)00881-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Wraback, M., H. Shen, C. J. Eiting, J. C. Carrano et R. D. Dupuis. « Picosecond Photoinduced Reflectivity Studies of GaN Prepared by Lateral Epitaxial Overgrowth ». MRS Internet Journal of Nitride Semiconductor Research 5, S1 (2000) : 782–88. http://dx.doi.org/10.1557/s109257830000507x.

Texte intégral
Résumé :
The pump-probe technique has been used to perform room temperature studies of the photoinduced changes in the reflectivity ΔR associated with exciton and carrier dynamics in GaN prepared by lateral epitaxial overgrowth. For resonant excitation of cold excitons, the ΔR decay possesses a 720 ps component attributed to the free exciton lifetime in this high quality material. For electrons with small excess energy (< 50 meV), the strong increase in the ΔR decay rate with decreasing excitation density suggests that screening of the Coulomb interaction may play an important role in the processes of carrier relaxation and exciton formation. The faster decay times at a given carrier density observed for hot (> 100 meV) electron relaxation are attributed to electron-hole scattering in conjunction with the screened electron-LO phonon interaction.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Sudarshan, A., et S. K. Sharma. « Quasimode decay of a lower-hybrid wave in a two-electron-temperature plasma ». Journal of Plasma Physics 56, no 2 (octobre 1996) : 237–49. http://dx.doi.org/10.1017/s0022377800019243.

Texte intégral
Résumé :
We study the quasimode decay of a lower-hybrid wave and a damped ion cyclotron wave in a plasma having two kinds of electrons. This decay channel is also investigated for a cylindrical plasma. The behaviour of the threshold and growth rate with variations in Tn/Tc and non/noc are studied, and a comparison is made with previous results. Our results show that the growth rate and the threshold for the onset of parametric decay are influenced by the presence of the second electron species.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Rozpedzik, D., L. De Keukeleere, K. Bodek, L. Hayen, K. Lojek, M. Perkowski et N. Severijns. « Gas electron tracking detector for beta decay experiments ». Journal of Instrumentation 17, no 09 (1 septembre 2022) : C09005. http://dx.doi.org/10.1088/1748-0221/17/09/c09005.

Texte intégral
Résumé :
Abstract For identification and 3D-tracking of low-energy electrons a new type of gas-based detector was designed that minimizes scattering and energy loss. The current version of the detector is a combination of a plastic scintillator, serving as a trigger source and energy detector, and a hexagonally structured multi-wire drift chamber (MWDC), filled with a mixture of helium and isobutane gas. The drift time information is used to track particles in the plane perpendicular to the wires, while a charge division technique provides spatial information along the wires. The gas tracker was successfully used in the miniBETA project as a beta spectrometer for a measurement of the weak magnetism form factor in nuclear beta decay. The precision of the three-dimensional electron tracking, in combination with low-mass, low-Z materials and identification of backscattering from scintillator, facilitated a reduction of the main systematics effects. The results originate from performance studies with cosmic muons and low-energy electrons (<2 MeV) conducted for several pressures (300–700 mbar) and isobutane content in the gas mixture (10–50%). At certain conditions, a spatial resolution better than 0.5 mm was obtained in the plane perpendicular to the wires, while resolutions of about 6 mm were achieved along wires. Thanks to precise tracking information, it is possible to eliminate electrons and other particles not originating from the desired decay with high efficiency. Additionally, using the coincidence between MWDC and scintillator, background from gamma emission typically accompanying radioactive decays, was highly suppressed. An overview of different event topologies is presented together with the tracker’s ability to correctly recognize them. The analysis is supported by Monte Carlo simulations using Geant4 and Garfield++ packages. Finally, the preliminary results from the 114In spectrum study are presented.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Eberhardt, W. « Core Electron Excitations and Decay in Molecules ». Physica Scripta T17 (1 janvier 1987) : 28–38. http://dx.doi.org/10.1088/0031-8949/1987/t17/004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Galeazzi, M., F. Gatti, P. Meunier et S. Vitale. « BeOμcalorimeter for the7Be electron capture decay measurement ». Physical Review C 57, no 4 (1 avril 1998) : 2017–21. http://dx.doi.org/10.1103/physrevc.57.2017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Intemann, Robert L. « DoubleK-shell ionization in electron capture decay ». Physical Review C 31, no 5 (1 mai 1985) : 1961–64. http://dx.doi.org/10.1103/physrevc.31.1961.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Bondarev, B. V. « Kinetics of stabilized electron decay in polyethylene ». Polymer Science U.S.S.R. 27, no 12 (janvier 1985) : 2909–15. http://dx.doi.org/10.1016/0032-3950(85)90536-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Klingberg, Franziska J., Steven R. Biegalski, Amanda Prinke, Derek A. Haas et Justin D. Lowrey. « Analysis of 125Xe electron–photon coincidence decay ». Journal of Radioanalytical and Nuclear Chemistry 307, no 3 (26 octobre 2015) : 1933–39. http://dx.doi.org/10.1007/s10967-015-4519-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

MENNA, L., S. YÜCEL et E. Y. ANDREI. « Decay of a 2-D electron crystal ». Le Journal de Physique IV 03, no C2 (juillet 1993) : C2–221—C2–224. http://dx.doi.org/10.1051/jp4:1993244.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Kolorenč, P., V. Averbukh, J. Eland, R. Feifel et F. Tarantelli. « Three-electron collective Auger decay in CH3F ». Journal of Physics : Conference Series 635, no 11 (7 septembre 2015) : 112031. http://dx.doi.org/10.1088/1742-6596/635/11/112031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Miehé, Ch, Ph Dessagne, Ch Pujol, G. Walter, B. Jonson et M. Lindroos. « The β+-electron capture decay of 73Kr ». European Physical Journal A 5, no 2 (juin 1999) : 143–50. http://dx.doi.org/10.1007/s100500050270.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

FRAMPTON, PAUL H. « BILEPTON RESONANCE IN ELECTRON–ELECTRON SCATTERING ». International Journal of Modern Physics A 15, no 16 (30 juin 2000) : 2455–60. http://dx.doi.org/10.1142/s0217751x00002524.

Texte intégral
Résumé :
Theoretical background for bileptonic gauge bosons is reviewed — both the SU(15) GUT model and the 3-3-1 model. Mass limits on bileptons are discussed coming from e+e- scattering, polarized muon decay and muonium–antimuonium conversion. Discovery in e-e- at a linear collider at low energy (100 GeV) and high luminosity (1033/cm2/s) is emphasized.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Bhattacharyya, Saptashwa, Holger Motz, Yoichi Asaoka et Shoji Torii. « An interpretation of the cosmic ray e+ + e− spectrum from 10GeV to 3TeV measured by CALET on the ISS ». International Journal of Modern Physics D 28, no 02 (janvier 2019) : 1950035. http://dx.doi.org/10.1142/s0218271819500354.

Texte intégral
Résumé :
A combined interpretation of the Calorimetric Electron Telescope (CALET) [Formula: see text] spectrum up to 3[Formula: see text]TeV and the AMS-02 positron spectrum up to 500[Formula: see text]GeV was performed and the results are discussed. To parametrize the background electron flux, we assume a smoothly broken power-law spectrum with an exponential cutoff for electrons and fit this parametrization to the measurements, with either a pulsar or 3-body decay of fermionic Dark Matter (DM) as the extra electron–positron pair source responsible for the positron excess. We found that depending on the parameters for the background, both DM decay and the pulsar model can explain the combined measurements. While the DM decay scenario is constrained by the Fermi-LAT [Formula: see text]-ray measurement, we show that 3-body decay of a 800[Formula: see text]GeV DM can be compatible with the [Formula: see text]-ray flux measurement. We discuss the capability of CALET to discern decaying DM models from a generic pulsar source scenario, based on simulated data for five years of data-taking.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Saleem, H., et G. Murtaza. « Nonlinear excitation of electron-acoustic waves ». Journal of Plasma Physics 36, no 2 (octobre 1986) : 295–99. http://dx.doi.org/10.1017/s0022377800011764.

Texte intégral
Résumé :
It is shown that for a plasma with ion temperature greater than electron temperature, an extraordinary electro-magnetic pump wave can parametrically decay into upper-hybrid and electron-acoustic oscillations. The threshold power flux and the growth rate of the instability are obtained. Comparison of our investigation with an earlier work and its possible application to a mirror machine is pointed out.
Styles APA, Harvard, Vancouver, ISO, etc.
45

WIETFELDT, F. E. « THE ELECTRON–ANTINEUTRINO ANGULAR CORRELATION IN FREE NEUTRON DECAY ». Modern Physics Letters A 20, no 24 (10 août 2005) : 1783–96. http://dx.doi.org/10.1142/s0217732305017895.

Texte intégral
Résumé :
Free neutron beta decay is the simplest nuclear beta decay and the prototype charged-current semileptonic decay. It has some theoretical advantage over other nuclear decay systems in that there are no nuclear structure corrections, and it is the only mixed Fermi/Gamow–Teller beta decay for which the relative matrix elements can be directly calculated. The status of the electron–antineutrino angular correlation (a-coefficient) in neutron beta decay and its role in elucidating fundamental properties of the weak interaction are reviewed, with an emphasis on experiments. A new generation of experiments intended to reduce the uncertainty in the a-coefficient to less than 1% is described.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Ayers, Paul W., et Robert G. Parr. « Sufficient condition for monotonic electron density decay in many-electron systems ». International Journal of Quantum Chemistry 95, no 6 (2003) : 877–81. http://dx.doi.org/10.1002/qua.10622.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Li, Bochao, Hao Li, Chang Yang, Boyu Ji, Jingquan Lin et Toshihisa Tomie. « Picosecond Lifetime Hot Electrons in TiO2 Nanoparticles for High Catalytic Activity ». Catalysts 10, no 8 (10 août 2020) : 916. http://dx.doi.org/10.3390/catal10080916.

Texte intégral
Résumé :
A large number of studies have examined the origins of high-catalytic activities of nanoparticles, but very few have discussed the lifetime of high-energy electrons in nanoparticles. The lifetime is one of the factors determining electron transfer and thus catalytic activity. Much of the lifetime of electrons reported in the literature is too short for a high transfer-efficiency of photo-excited electrons from a catalyst to the attached molecules. We observed TiO2 nanoparticles using the femtosecond laser two-color pump-probe technique with photoemission electron microscopy having a 40 nm spatial resolution. A lifetime longer than 4 ps was observed together with a fast decay component of 100 fs time constant when excited by a 760 nm laser. The slow decay component was observed only when the electrons in an intermediate state pumped by the fundamental laser pulse were excited by the second harmonic pulse. The electronic structure for the asymmetry of the pump-probe signal and the origin of the two decay components are discussed based on the color center model of the oxygen vacancy.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Yamakata, Akira, Taka-aki Ishibashi et Hiroshi Onishi. « Pressure dependence of electron- and hole-consuming reactions in photocatalytic water splitting on Pt/TiO2studied by time-resolved IR absorption spectroscopy ». International Journal of Photoenergy 5, no 1 (2003) : 7–9. http://dx.doi.org/10.1155/s1110662x03000047.

Texte intégral
Résumé :
The decay kinetics of photogenerated electrons in the water splitting reaction on a Pt/TiO2photocatalyst was studied by time-resolved IR absorption spectroscopy. The decay of the photogenerated electrons within 2μs was decelerated when the catalyst was exposed to water vapor. The holes were consumed by the reaction with water instead of by the recombination with the electrons. On the other hand, the decay at 10–900μs was accelerated by the exposure. The electrons were consumed by the reaction with water. The rate of the hole-consuming reaction was independent of the pressure of water vapor, whereas that of the electron-consuming reaction increased with the pressure from 1 to 10 Torr. The different pressure dependences indicate different reactants involved in the oxidative and reductive reactants.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Xie, Mengjun, Dagang Liu, Huihui Wang et Laqun Liu. « Study on the Correlation between Magnetic Field Structure and Cold Electron Transport in Negative Hydrogen Ion Sources ». Applied Sciences 12, no 9 (19 avril 2022) : 4104. http://dx.doi.org/10.3390/app12094104.

Texte intégral
Résumé :
In most negative hydrogen ion sources, an external magnet is installed near the extraction region to reduce the electron temperature. In this paper, the self-developed CHIPIC code is used to simulate the mechanism of a magnetic filter system, in the expansion region of the negative hydrogen ion source, on “hot” electrons. The reflection and the filtering processes of “hot” electrons are analyzed in depth and the energy distribution of electrons on the extraction surface is calculated. Moreover, the effects of different collision types on the density distribution of “cold” electrons along the X-axis and the spatial distribution of “cold” electrons on the X−Z plane are discussed. The numerical results show that the electron reflection is caused by the magnetic mirror effect. The filtering of “hot” electrons is due to the fact that the magnetic field constrains most of the electrons from reaching the vicinity of the extraction surface, being that collisions cause a decay in electron energy. Excitation collision is the main decay mechanism for electron energy in the chamber. The numerical results help to explain the formation process of “cold” electrons at the extraction surface, thus providing a reference for reducing the loss probability of H−.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Dickinson, J. T., S. C. Langford et L. C. Jensen. « Recombination on fractal networks : Photon and electron emission following fracture of materials ». Journal of Materials Research 8, no 11 (novembre 1993) : 2921–32. http://dx.doi.org/10.1557/jmr.1993.2921.

Texte intégral
Résumé :
We report measurements and analysis of fracture-induced photon and electron emissions from several polymeric and inorganic systems on time scales of 10−2 to 103 s following fracture. The dominant mechanism for postfracture emission involves the recombination of mobile free carriers (usually electrons) with immobile recombination centers. The emission decays were modeled as (pseudo)unimolecular and bimolecular recombination on fractal lattices as described by Zumofen, Blumen, and Klafter.1 Although the decay kinetics shows a great deal of variability from material to material, this random walk description of the recombination process provides an excellent description of the emissions over long time scales. This analysis shows a strong correlation between the local structure at the fracture surface and the resulting decays.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie