Littérature scientifique sur le sujet « Electrodeposited film »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Electrodeposited film ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Electrodeposited film"
Son, Min-Kyu. « Effect of Deposition Parameters on Morphological and Compositional Characteristics of Electrodeposited CuFeO2 Film ». Coatings 12, no 12 (25 novembre 2022) : 1820. http://dx.doi.org/10.3390/coatings12121820.
Texte intégralNoorbakhsh Nezhad, Amir Hossein, Ehsan Rahimi, Reza Arefinia, Ali Davoodi et Saman Hosseinpour. « Effect of Substrate Grain Size on Structural and Corrosion Properties of Electrodeposited Nickel Layer Protected with Self-Assembled Film of Stearic Acid ». Materials 13, no 9 (28 avril 2020) : 2052. http://dx.doi.org/10.3390/ma13092052.
Texte intégralCetina-Dorantes, Marco, Francisco Lizama-Tzec, Dallely Herrera-Zamora, Octavio García-Valladares, Victor Gómez-Espinoza, Geonel Rodriguez Gattorno et Gerko Oskam. « (Digital Presentation) Electrodeposition and Characterization of a Selective Coating on Aluminum for Scale-up in Thermo-Solar Applications ». ECS Meeting Abstracts MA2022-02, no 22 (9 octobre 2022) : 936. http://dx.doi.org/10.1149/ma2022-0222936mtgabs.
Texte intégralQiu, C. X., et I. Shih. « Photovoltaic devices fabricated on electrodeposited CuInSe2 films ». Canadian Journal of Physics 67, no 4 (1 avril 1989) : 444–47. http://dx.doi.org/10.1139/p89-079.
Texte intégralXiong, Wei, Fei Hu, Hua Bing Fang et Yue Hui Hu. « The Linear Sweep Voltammetric Study and Two-Step Electrodeposition of CuIn 0.95 Se2.1Thin Film in a Citric Acid Electrolyte ». Advanced Materials Research 472-475 (février 2012) : 2744–47. http://dx.doi.org/10.4028/www.scientific.net/amr.472-475.2744.
Texte intégralKobayashi, Tatsuya, et Ikuo Shohji. « Fabrication of Three-Dimensional Microstructure Film by Ni-Cu Alloy Electrodeposition for Joining Dissimilar Materials ». Materials Science Forum 1016 (janvier 2021) : 738–43. http://dx.doi.org/10.4028/www.scientific.net/msf.1016.738.
Texte intégralWang, Zi Feng, Yong Zhao Liu, Yu Shan Liu et Jian Min Zhang. « Fabrication of the ZnS-ZnO Composite Film by Sulfurizing the as-Electrodeposited ZnO Film ». Advanced Materials Research 881-883 (janvier 2014) : 909–13. http://dx.doi.org/10.4028/www.scientific.net/amr.881-883.909.
Texte intégralKim, Young-Soo, Jin-Kyu Lee, Jae-Hoon Ahn, Eun-Kyung Park, Gil-Pyo Kim et Sung-Hyeon Baeck. « Fabrication of Mesoporous Cerium Dioxide Films by Cathodic Electrodeposition ». Journal of Nanoscience and Nanotechnology 7, no 11 (1 novembre 2007) : 4198–201. http://dx.doi.org/10.1166/jnn.2007.109.
Texte intégralChowdhury, RI, MS Islam, F. Sabeth, G. Mustafa, SFU Farhad, DK Saha, FA Chowdhury, S. Hussain et ABMO Islam. « Characterization of Electrodeposited Cadmium Selenide Thin Films ». Dhaka University Journal of Science 60, no 1 (15 avril 2012) : 137–40. http://dx.doi.org/10.3329/dujs.v60i1.10352.
Texte intégralKUDO, TERUHISA, MUTSUMI KIMURA, KENJI HANABUSA et HIROFUSA SHIRAI. « Fabrication of p-n Junction Diodes from Phthalocyanine and Electropolymerized Perylene Derivatives ». Journal of Porphyrins and Phthalocyanines 02, no 03 (mai 1998) : 231–35. http://dx.doi.org/10.1002/(sici)1099-1409(199805/06)2:3<231 ::aid-jpp82>3.0.co;2-s.
Texte intégralThèses sur le sujet "Electrodeposited film"
Echendu, Obi Kingsley. « Thin film solar cells using all-electrodeposited ZnS, CdS and CdTe materials ». Thesis, Sheffield Hallam University, 2014. http://shura.shu.ac.uk/19597/.
Texte intégralKayishaer, Aihemaiti. « Détection de l’ammoniac par des capteurs résistifs à base de films de polyaniline électrodéposés ». Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCD037.
Texte intégralThe thesis aims to develop electrosynthesized polyaniline-based resistive sensors to detect ammonia at low concentrations (ppb). Polyaniline is a conductive polymer chosen for its high electrical conductivity, flexibility and thermal stability. The influence of the nature of the acid, the presence of surfactant and the use of fluorinated aniline during electropolymerization was studied. Thus, the synthesis and optimization of the polymer film were carried out by electrochemistry accompanied by a complete study of its morphology, roughness and physicochemical properties. Then, the impact of the formulation on the response to ammonia was characterized. The study of metrological performances (reversibility, repeatability, sensitivity, reproducibility, detection limit, influence of humidity and selectivity) was carried out under controlled conditions of temperature and relative humidity. The response of the sensors was found to be influenced by the nature of the counterions present in the polymer film. Thus, polyaniline/camphorsulfonic acid films make it possible to obtain very reproducible, reversible, humidity-stable and sensitive films with a detection limit of 4 ppb. The addition of surfactant provides better sensitivity. The addition of fluorinated aniline also improves the performance of the sensors, in particular by limiting the influence of humidity
Campbell-Rance, Debbie. « Electrodeposited Silica Thin Films ». VCU Scholars Compass, 2010. http://scholarscompass.vcu.edu/etd/2123.
Texte intégralVarea, Espelt Aïda. « Multifunctional Electrodeposited Nanocrystalline Cu-Ni Films ». Doctoral thesis, Universitat Autònoma de Barcelona, 2013. http://hdl.handle.net/10803/117274.
Texte intégralThis Thesis dissertation encompasses the fabrication of nanocrystalline Cu-Ni films in all range of compositions by means of electrodeposition and their morphological (using scanning electron and atomic force microscopies), microstructural (by X-ray diffraction and transmission electron microscopy), mechanical (by nanoindentation) and magnetic (using magneto-optical Kerr effect and superconductor quantum interferometer device –SQUID- magnetometers) characterization, as well as their corrosion resistance (by potentiodynamic polarization method) and thermal stability. The electrodeposition process has been carried out by direct current in a conventional three-electrode cell configuration. The baths used throughout the work contain the same metallic salts (Cu and Ni sulphates) and additives (citrate, sodium dodecylsulphate and saccharine), but the [Cu(II)]/Ni(II)] concentration ratio in solution has been changed to obtain Cu-Ni films in all range of compositions (Cu1-xNix). Saccharine exerts a key role as a grain-refining agent since its addition to the bath leads to smooth, nanocrystalline films (crystallite size ~30 nm) with markedly improved mechanical performance compared to films with similar composition but larger crystallite sizes (~400 nm). For all the baths, an increase of the absolute value of the current density causes an increase in the overpotential which, in turns, yields to the deposits with larger Ni contents. Within the fabricated nanocrystalline films series, larger hardness, improved wear resistance and resistance to plastic deformation and larger elastic recovery are observed as the Ni content in the alloy increases. Hardness values around 8.2 GPa have been achieved for Cu0.13Ni0.87 films, which are larger than those found in the literature for films of similar nature. Even so, the presence of Cu can be beneficial for certain applications where the material has to operate at high temperatures. Namely, the presence of Cu increases the thermal stability by delaying grain growth toward higher annealing temperatures (T = 575 K for Cu0.44Ni0.56) as compared to films with lower Cu contents (T = 525 K for Cu0.12Ni0.88 and T = 425 K for pure Ni). Accordingly, a delay in the deterioration of the mechanical properties is seen. Regarding magnetic behaviour, tuneable ferromagnetic behaviour for Ni contents beyond 70 at% has been found and the changes in the magnetic hysteresis loops with the annealing temperature have been explored. Concerning the corrosion resistance in chloride environments, it improves as the Ni content increases in the deposits. It is also shown that the nanostructuring process does not significantly worsen the corrosion resistance of the material. It is thus demonstrated that, owing to their tuneable mechanical and magnetic properties, Cu-Ni alloys are good candidates for their implementation in electromechanical systems both at micro- and nanoscales. For this reason, this Thesis dissertation ends up with the presentation of the results about the miniaturization of this alloy using the same synthetic concept. In this sense, the fabrication of arrays of ordered nanopillars of 100 and 200 nm in diameter is demonstrated and their composition and magnetic properties are disclosed.
Lafouresse, Manon. « Kinetic roughening and composition of electrodeposited films ». Thesis, University of Bristol, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.443266.
Texte intégralQiu, C. X. (Xing Xing). « Investigation of electrodeposited CuInSe2 films for photovoltaic cells ». Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=39267.
Texte intégralQiu, Chunong. « Development of photovoltaic cells on electrodeposited CuInSe2 films ». Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=39982.
Texte intégralThe high resistivity CdS and low resistivity ZnO thin films were then deposited on electrodeposited CuInSe$ sb2$ to fabricate cells of the form ZnO/CdS(high $ rho$)/CuInSe$ sb2$. For comparison, cells of CdS(low $ rho$)/CdS(high $ rho$)/CuInSe$ sb2$ were also fabricated by evaporation of low resistivity CdS. The CuInSe$ sb2$ films used were treated either in vacuum or Ar. For those treated in vacuum, very poor properties were observed. The properties improved after a post fabrication heat treatment in air, however, the efficiency of these cells was below 2%. The low conversion efficiency was due to the low open circuit voltage. From capacitance-voltage measurements, this was found to be due to a high acceptor concentration on the surface of the vacuum treated CuInSe$ sb2$ films (10$ sp{17}$ cm$ sp{-3}$). For the cells fabricated on the CuInSe$ sb2$ films treated in Ar, photovoltaic effects were present before the air heat treatment. An efficiency of 6.8% was obtained for one of the best cells, sample J8-4 (with low resistivity CdS window). For cells with ZnO window, a conversion efficiency of 6.3% was obtained (cell O51). For these cells, the acceptor concentration in CuInSe$ sb2$ was 10$ sp{16}$ cm$ sp{-3}$, which was one order of magnitude lower than that of CuInSe$ sb2$ films treated in vacuum.
The diffusion length of minority carriers (electrons) in the electrodeposited, p-type CuInSe$ sb2$ was first measured using the photocurrent and capacitance methods. For the vacuum treated CuInSe$ sb2$ films, the electron diffusion length was small (less than 0.1 $ mu$m). For those treated in Ar, values of the electron diffusion length were about 0.5 $ mu$m. These values are close to those reported for evaporated CuInSe$ sb2$ thin films.
Some of the fabricated cells were also studied using an electron beam induced current (EBIC) method. From the EBIC experiments, the effective diffusion lengths of electrons with values greater than 1 $ mu$m were obtained. Considering the surface recombination effect, the electron diffusion length of the electrodeposited CuInSe$ sb2$ was finally found to be 2.4 $ mu$m. This large electron diffusion length was consistent with the high short circuit current density observed in I-V measurements of the electrodeposited CuInSe$ sb2$ cells.
Teng, Chien-Lung. « Investigation of Electrodeposited Magnetite Films : Formation and Characterization ». Thesis, Imperial College London, 2008. http://hdl.handle.net/10044/1/4260.
Texte intégralCampbell, S. A. « Structural and photoelectrochemical studies of electrodeposited lead dioxide films ». Thesis, University of Southampton, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378266.
Texte intégralMcGregor, Stephen Mark. « Solar cells based on electrodeposited Cds and CdTe films ». Thesis, Sheffield Hallam University, 1999. http://shura.shu.ac.uk/20043/.
Texte intégralLivres sur le sujet "Electrodeposited film"
P, Raffaelle R., et Lewis Research Center, dir. Electrodeposited CuInSe₂ thin film junctions. [Cleveland, Ohio] : National Aeronautics and Space Administration, Lewis Research Center, 1997.
Trouver le texte intégralPontifex, Gregory H. A combined scanning tunnelling microscopy and electron microscopy study of metal electrodeposits isolated from anodic aluminum oxide films and silver colloid particles isolated from a hydrosol. Ottawa : National Library of Canada = Bibliothèque nationale du Canada, 1991.
Trouver le texte intégralElectrodeposited CuInSe₂ thin film junctions. [Cleveland, Ohio] : National Aeronautics and Space Administration, Lewis Research Center, 1997.
Trouver le texte intégralEffect of Bath Temperature on Structural and Magnetic properties of Electrodeposited Ni-Co-B Magnetic Thin Films. Tiruchengode, India : ASDF International, 2017.
Trouver le texte intégralChapitres de livres sur le sujet "Electrodeposited film"
Wang, Heng, Bing Li et Zuxin Zhao. « Electrodeposited Si-Al Thin Film as Anode for Li Ion Batteries ». Dans TMS 2014 : 143rd Annual Meeting & ; Exhibition, 891–97. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-48237-8_105.
Texte intégralWang, Heng, Bing Li et Zuxin Zhao. « Electrodeposited Si-Al Thin Film as Anode for Li Ion Batteries ». Dans TMS 2014 Supplemental Proceedings, 891–97. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118889879.ch105.
Texte intégralTurner, A. K., J. M. Woodcock, M. E. Őzsan et J. G. Summers. « Stable, High Efficiency Thin Film Solar Cells Based on Electrodeposited Cadmium Telluride ». Dans Tenth E.C. Photovoltaic Solar Energy Conference, 791–93. Dordrecht : Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_202.
Texte intégralIino, Y. « Effect of Thickness on Grain Growth in Electrodeposited Copper Film by Cyclic Stressing ». Dans Key Engineering Materials, 581–87. Stafa : Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-978-4.581.
Texte intégralLee, Sang Baek, Yung Keun Kim et Byung Il Kim. « Effect of Colloidal Silica Addition and Pre-Coating on the Microstructure Change of Cathode Copper Electrodeposited Film ». Dans Materials Science Forum, 3931–34. Stafa : Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.3931.
Texte intégralNasirpouri, Farzad. « Electrodeposited Nanocomposite Films ». Dans Electrodeposition of Nanostructured Materials, 289–310. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44920-3_7.
Texte intégralAugustin, Arun, Harsha Thaira, K. Udaya Bhat et K. Rajendra Udupa. « Effect of Electrodeposited Copper Thin Film on the Morphology and Cell Death of E. Coli ; an Electron Microscopic Study ». Dans Biotechnology and Biochemical Engineering, 227–32. Singapore : Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1920-3_25.
Texte intégralNasirpouri, Farzad. « Electrodeposited Nanocrystalline Films and Coatings ». Dans Electrodeposition of Nanostructured Materials, 261–88. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44920-3_6.
Texte intégralBastos, A., Stefan Zaefferer et Dierk Raabe. « Orientation Microscopy on Nanostructured Electrodeposited NiCo-Films ». Dans THERMEC 2006 Supplement, 953–58. Stafa : Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-429-4.953.
Texte intégralVitina, I., I. Zalite, V. Belmane, J. Grabis, V. Rubene et O. Kovalova. « Nanodispersed Refractory Compounds in the Electrodeposited Metal Coatings ». Dans Nanostructured Films and Coatings, 103–11. Dordrecht : Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4052-2_9.
Texte intégralActes de conférences sur le sujet "Electrodeposited film"
Rummaja, Iskandar Dzulkarnain, Muhammad Idzdihar Idris, Radi Husin Ramlee, Zul Atfyi Mohammed Napiah, Marziani Rashid et Ahmad Muhajer Abdul Aziz. « Effect of pH on Electrochemical, Morphological and Optical Properties of Electrodeposited Molybdenum Sulfide Thin Film ». Dans 2024 IEEE International Conference on Semiconductor Electronics (ICSE), 21–24. IEEE, 2024. http://dx.doi.org/10.1109/icse62991.2024.10681359.
Texte intégralKobayashi, T., K. Yamazaki et I. Shohji. « Joining Dissimilar Materials Using Three-Dimensional Electrodeposited Film ». Dans 2022 International Conference on Electronics Packaging (ICEP). IEEE, 2022. http://dx.doi.org/10.23919/icep55381.2022.9795513.
Texte intégralRead, D. T., Y. W. Cheng et R. Geiss. « Mechanical Behavior of Electrodeposited Copper Film at Elevated Temperatures ». Dans ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61320.
Texte intégralDalavi, D. S., S. S. Kalagi, S. S. Mali, A. J. More, R. S. Patil et P. S. Patil. « Electrochromic properties of electrodeposited tungsten oxide (WO3) thin film ». Dans SOLID STATE PHYSICS : Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4710074.
Texte intégralDhakal, Rabin, Joshua Kofford, Brian Logue, Michael Ropp, David Galipeau et Xingzhong Yan. « Electrodeposited AlSb compound semiconductor for thin film solar cells ». Dans 2009 34th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2009. http://dx.doi.org/10.1109/pvsc.2009.5411427.
Texte intégralKayishaer, Aihemaiti, Caroline Duc, Nathalie Redon, Claire Magnenet, Boris Lakard et Sophie Lakard. « Room Temperature Ammonia Sensor Based on Electrodeposited Polyaniline Film ». Dans 2023 IEEE SENSORS. IEEE, 2023. http://dx.doi.org/10.1109/sensors56945.2023.10325142.
Texte intégralGanchev, Maxim, Dimiter Dimitrov, Stanka Stankova, Atanas Katerski, Iliya Gadjov, Olga Volobujeva, Arvo Mere, Sergey Bereznev et Malle Krunks. « Electrodeposited molybdenum oxide coatings for thin film chalcopyrite solar cells ». Dans 10th Jubilee International Conference of the Balkan Physical Union. Author(s), 2019. http://dx.doi.org/10.1063/1.5091317.
Texte intégralYang, Ying, Juan Han, Xiaohui Ning et Hongsheng Tang. « Effect of potential on the conductivity of electrodeposited Cu2O film ». Dans SPIE Optics + Photonics for Sustainable Energy, sous la direction de Shaohua Shen. SPIE, 2015. http://dx.doi.org/10.1117/12.2189800.
Texte intégralLohar, G. M., J. V. Thombare, S. K. Shinde, V. J. Fulari et S. S. More. « Photoelectrochemical cell performance of electrodeposited iron doped zinc selenide thin film ». Dans 2013 International Conference on Energy Efficient Technologies for Sustainability (ICEETS). IEEE, 2013. http://dx.doi.org/10.1109/iceets.2013.6533417.
Texte intégralPandey, R. K., Archana Mishra, Meera Ramrakhani et B. P. Chandra. « Optical properties of electrodeposited CuInSe2-based thin film photoelectrochemical solar cells ». Dans Symposium on Integrated Optics, sous la direction de Ghassan E. Jabbour et Hideomi Koinuma. SPIE, 2001. http://dx.doi.org/10.1117/12.424753.
Texte intégralRapports d'organisations sur le sujet "Electrodeposited film"
Zangari, Giovanni. Prediction and Control of Atomic Ordering in Electrodeposited Binary Alloy Films : Direct Synthesis of L10 Magnetic Phases. Office of Scientific and Technical Information (OSTI), août 2023. http://dx.doi.org/10.2172/1994142.
Texte intégralCIGS-Based Solar Cells Prepared from Electrodeposited Precursor Films (Fact Sheet). Office of Scientific and Technical Information (OSTI), juin 2011. http://dx.doi.org/10.2172/1018090.
Texte intégral