Articles de revues sur le sujet « Electrochemistery »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Electrochemistery.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Electrochemistery ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Mohamad Ham, Lizawati, et Mohamad Syahrizal Ahmad. « Penggunaan Perisian Animasi Interaktif Sel Galvanik dalam Pembelajaran Elektrokimia : Kesan terhadap Pemahaman Konsep Dalam Topik Elektrokimia ». Journal of Science and Mathematics Letters 5 (1 décembre 2017) : 36–51. http://dx.doi.org/10.37134/jsml.vol5.4.2017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lipkowski, Jacek. « Biomimetics a New Paradigm for Surface Electrochemistry ». Review of Polarography 58, no 2 (2012) : 63–65. http://dx.doi.org/10.5189/revpolarography.58.63.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gao, Hang, Huangxian Ju, Qiuyun Li et Russell Li. « Publisher’s Note : Universal Journal of Electrochemistry—A New Open Access Journal ». Universal Journal of Electrochemistry 1, no 2 (21 juillet 2023) : 1. http://dx.doi.org/10.37256/ujec.1220232198.

Texte intégral
Résumé :
Electrochemistry is a branch of physical chemistry focusing on the movement of electrons. It is comprised of synthetic electrochemistry, quantum electrochemistry, semiconductor electrochemistry, organic conductor electrochemistry, spectroelectrochemistry, bioelectrochemistry and many other subcategories. At present, electrochemistry has been applied in various fields of physical, chemical and biological sciences.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Santos, Diogo M. F., Rui F. M. Lobo et César A. C. Sequeira. « On the Features of Ultramicroelectrodes ». Defect and Diffusion Forum 273-276 (février 2008) : 602–7. http://dx.doi.org/10.4028/www.scientific.net/ddf.273-276.602.

Texte intégral
Résumé :
Ultramicroelectrodes offer several unique characteristics which enable new types of electrochemical measurements. These include: 1) small size; 2) minimisation of iR effects; 3) rapid response; and 4) steady-state response at moderate times. These features enable experiments as diverse as in vivo electrochemistry, electrochemistry in pharmacology, nanoelectrochemistry, electrochemistry in solvents such as benzene, microsecond electrochemistry, and flow-rate independent electrochemistry. Thus, it is apparent that the use of ultramicroelectrodes has become a rapidly growing area of interest. In this paper, the attributes of ultramicroelectrodes, its construction, the equations of diffusion, and key applications of electrochemistry at ultramicroelectrodes, are analysed.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hadzi-Jordanov, Svetomir. « The third century of electrochemistry : Lowering the horizon or raising it further ? » Journal of the Serbian Chemical Society 78, no 12 (2013) : 2165–77. http://dx.doi.org/10.2298/jsc131104126h.

Texte intégral
Résumé :
A survey is given of the development of electrochemistry with an author?s non-hidden wish for more advanced development in future. The survey is based on past achievements of electrochemistry listed shortly here. As far as the recent state is concerned, dissatisfaction is expressed with the acceptance of electrochemistry both as profession of graduated students, and a priority field in financing research, as well. For the sake of truth an alternative view is mentioned that takes the recent state of electrochemistry as normal and in accordance with the usual course of development, (i.e. birth, rise, achieving of maximum and then decay, fading, etc.), that is common in the nature. This statement is based on a belief that today electrochemistry exists on a broader basis than before, and is mainly incorporated in other (new) branches of chemistry and science. Examples are given where recent electrochemistry failed to fulfill the promises (e.g., production of cheap hydrogen by means of electrocatalysts with high performance for H2 evolution, economical use of large scale fuel cells, etc.). In summarizing the recent fields of interest that covers electrochemistry, it is stressed out their diversification, specialization, complexness and interdisciplinary nature. A list of desirable highlights that could possibly help electrochemistry to improve its rating among other science branches is composed. Also, a list of author?s personal preferences is given.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sone, Masato. « Electrochem : An International Scientific Open Access Journal to Publish All Faces of Electrochemistry, Electrodeposition, Electrochemical Analysis, Electrochemical Sensing and Other Aspects about Electrochemical Reaction ». Electrochem 1, no 1 (25 février 2020) : 1–3. http://dx.doi.org/10.3390/electrochem1010001.

Texte intégral
Résumé :
Our aim of journal Electrochem is to provide reviews, regular research papers, and communications in all areas of electrochemistry including methodologies, techniques, and instrumentation in both fundamental and applied fields. In this Editorial, the various technological demands for electrochemistry from academic and industrial fields are discussed and some problems to be solved in electrochemistry are proposed for next-generation science and technology. Under these technological demands, open access journals such as Electrochem will provide the solutions and new technology in electrochemistry to the world.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Alexander, Christopher L. « Electrochemistry in Action ». Electrochemical Society Interface 31, no 3 (1 septembre 2022) : 49. http://dx.doi.org/10.1149/2.005223if.

Texte intégral
Résumé :
The goal of this column is to acknowledge novel contributions that advance particular fields while engaging a new audience through detailed and easy to understand descriptions of advances in electrochemistry. Each installment will include a topic area such as electrochemistry in archaeology, steel manufacturing, water treatment, etc. and will describe a novel or unconventional application of electrochemistry. We believe that, in doing so, not only will “Electrochemistry in Action” inform readers but perhaps it will even inspire creativity and broaden interest in the field.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Akbashev, Andrew. « Electrochemical Colloquium and Beyond : Opportunities for Online Education in Electrochemistry ». ECS Meeting Abstracts MA2023-01, no 44 (28 août 2023) : 2432. http://dx.doi.org/10.1149/ma2023-01442432mtgabs.

Texte intégral
Résumé :
Electrochemistry represents an exceptionally multifaceted and hard-to-teach subject. First, it requires knowledge of very distinct fields, including chemical thermodynamics, surface science, quantum mechanics, solid state ionics, catalysis, photovoltaics, cellular biology, and others. As a result, no electrochemistry curriculum can cover all the material needed for comprehensive understanding of the subject, meaning that the course is often shaped by the teacher’s personal preferences and agenda (e.g., fundamental electrochemistry, energy storage, corrosion, bioelectrochemistry, etc.). Second, the very core of electrochemistry – electrical double layer – is heavily debated within the professional community and does not have a satisfactory and consensual description suitable for textbooks and teaching. Unlike the kinetics of molecular reactions in solutions or at gas-solid interfaces, the kinetics of electrochemical reactions with the double layer region, even in simplest cases, is almost impossible to predict from first principles. All this causes confusion among both students and teachers – how should we teach when the key concept cannot be described adequately? Third, the field of electrochemistry is evolving, older concepts are reconsidered, and the new ones are introduced. This makes it difficult for students to relate course material to what is going on in real research. Finally, electrochemistry is vital for industry, which makes it particularly tempting for teachers to introduce a substantial “engineering” component into the curriculum and turn it into “applied electrochemistry course” (covering energy storage and conversion, corrosion, electroplating, etc.). While being well-intended, this leads to oversimplification of electrochemistry and offers a general (and often confusing) overview of the field. In my talk, I will discuss the difficulties of teaching electrochemistry courses and how online platforms can offer possible solutions. Specifically, I will draw on my experience with the Electrochemical Online Colloquium, which aims to make fundamental science and essential knowledge freely accessible to the public. My argument is that a holistic understanding of electrochemistry cannot be achieved if one ignores knowledge gained in neighboring fields. At the same time, discussion of open questions and critical assessment of concepts by experts helps a student understand what is truly well-established in the field and what is not. I will also discuss future opportunities for online education in electrochemistry and how we can improve the quality of research in this field.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Nagatani, Hirohisa, et Hiroki Sakae. « The 65th Annual Meeting of the International Society of Electrochemistry (ISE2014) ». Review of Polarography 61, no 1 (2015) : 46–50. http://dx.doi.org/10.5189/revpolarography.61.46.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Abe, Hiroya, Tomoki Iwama et Yuanyuan Guo. « Light in Electrochemistry ». Electrochem 2, no 3 (26 août 2021) : 472–89. http://dx.doi.org/10.3390/electrochem2030031.

Texte intégral
Résumé :
Electrochemistry represents an important analytical technique used to acquire and assess chemical information in detail, which can aid fundamental investigations in various fields, such as biological studies. For example, electrochemistry can be used as simple and cost-effective means for bio-marker tracing in applications, such as health monitoring and food security screening. In combination with light, powerful spatially-resolved applications in both the investigation and manipulation of biochemical reactions begin to unfold. In this article, we focus primarily on light-addressable electrochemistry based on semiconductor materials and light-readable electrochemistry enabled by electrochemiluminescence (ECL). In addition, the emergence of multiplexed and imaging applications will also be introduced.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Arrigan, D. « Electrochemistry ». Chromatographia 71, no 3-4 (15 décembre 2009) : 351. http://dx.doi.org/10.1365/s10337-009-1435-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Bard, A. J., et R. W. Murray. « Electrochemistry ». Proceedings of the National Academy of Sciences 109, no 29 (16 juillet 2012) : 11484–86. http://dx.doi.org/10.1073/pnas.1209943109.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Perkins, Ronald I. « Electrochemistry ». Journal of Chemical Education 62, no 11 (novembre 1985) : 1018. http://dx.doi.org/10.1021/ed062p1018.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Rieger, PhilipH. « Electrochemistry ». Electrochimica Acta 34, no 10 (octobre 1989) : 1489–90. http://dx.doi.org/10.1016/0013-4686(89)87193-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Pleskov, Yu V. « Electrochemistry ». Russian Journal of Electrochemistry 36, no 3 (mars 2000) : 342–43. http://dx.doi.org/10.1007/bf02827983.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Parsons, R. « Electrochemistry ». Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 274, no 1-2 (décembre 1989) : 336–37. http://dx.doi.org/10.1016/0022-0728(89)87059-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Necor, Dexter. « Perceptions and Achievement in Electrochemistry Using Flipped Classroom Model ». JPAIR Multidisciplinary Research 37, no 1 (8 juillet 2019) : 25–46. http://dx.doi.org/10.7719/jpair.v37i1.699.

Texte intégral
Résumé :
The potential of flipped classroom instruction was undertaken to enhance the performance of students in learning electrochemistry. This study was to investigate the effects of the Flipped Classroom Model (FCM) on students’ performance in electrochemistry as well as their general perceptions. The study used a quasi-experimental method that utilized pre-test-post-test nonequivalent groups design. Students’ perception of FCM was based on a questionnaire. Results of the independent t-test noted that there was a significant difference between the two groups (t (26) =-2.281, p-value=0.031). The results suggested that the Flipped Classroom Group and Conventional Classroom Group are incomparable in terms of performance in electrochemistry after the intervention. The experimental group has a medium gain while the control group has a low gain as reflected by the normalized gain (Hake factor) values of 0.45 (SD = 8.32) and 0.22 (SD = 6.48), respectively. This only means that flipped classroom instruction has a generally positive effect on the achievement of students in learning electrochemistry. The students’ perceptions were positive. Students perceived that FCM helped them understand the concepts in electrochemistry easily. They also suggested that FCM was enjoyable, timely, and engaging. Lastly, the majority of the students agreed about the use of Flipped classroom instruction as an effective way to learn electrochemistry.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Nakiboğlu, Canan, et Nuri Nakiboğlu. « Views of Prospective Chemistry Teachers on the Use of Graphic Organizers Supported with Interactive PowerPoint Presentation Technology in Teaching Electrochemistry Concepts ». International Journal of Physics & ; Chemistry Education 13, no 3 (20 décembre 2021) : 47–63. http://dx.doi.org/10.51724/ijpce.v13i3.216.

Texte intégral
Résumé :
The purpose of this study is to evaluate the views and experiences of the prospective chemistry teachers (PCTs) about the use of graphic organizers (GOs) supported with interactive PowerPoint presentation technology in teaching electrochemistry concepts. Ten GOs were developed and a pair of slides for all of them which contains partial and complete versions of the GOs was constructed. Participants of this study consisted of two different study groups. The preliminary trial of the study was carried out with four senior PCTs who have previously taken both an Electrochemistry course and an elective course concerning graphic organizers. Data from the first group of the study were collected by semi-structured interview and the experiences of the first group regarding the difficulties experienced during traditional electrochemistry teaching (didactic lecture) were examined. The second study group was eight PCTs who were in the fifth semester and were taking the Electrochemistry course while the study was being undertaken. In the last three weeks of the Electrochemistry course in the second study group, the course was taught with GOs supported with interactive PowerPoint presentation technology, and then the views of them were taken by a written opinion form. At the end of the study, three themes emerged regarding the experiences of the PCTs for the traditionally taught electrochemistry course. These are "difficulties", "inadequacy", and "not being beneficial". It was also concluded that the PCTs thought that the use of GOs supported with interactive PowerPoint presentation technology in teaching electrochemistry could enhance the comprehension and motivation of students.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Lv, Xu Dong, Xue Tao Yuan, Zhi Qiang Hua, Lei Wang, Tao Li, Yu Gao Zhou et Zhi Wei Wei. « Fabrication Lead Dioxide Coating by Pulse Current Method ». Advanced Materials Research 581-582 (octobre 2012) : 590–94. http://dx.doi.org/10.4028/www.scientific.net/amr.581-582.590.

Texte intégral
Résumé :
Prepared lead dioxide(PbO2) coating on a Ti substrate by pulse current technique. The effect of the pulse current density, pulse time and relaxation time on the morphology and electrochemistry properties of the coating was studied by means of scanning electron microscopy and electrochemistry station. Compared with lead dioxide fabricate by common electroplate technique, lead dioxide coating prepared by pulse current technique is more dense, without hole, better corrosion resisting property and more stable electrochemistry properties.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Robbs, Peter H., et Neil V. Rees. « Nanoparticle electrochemistry ». Physical Chemistry Chemical Physics 18, no 36 (2016) : 24812–19. http://dx.doi.org/10.1039/c6cp05101d.

Texte intégral
Résumé :
This perspective article provides a survey of recent advances in nanoscale electrochemistry, with a brief theoretical background and a detailed discussion of experimental results of nanoparticle based electrodes, including the rapidly expanding field of “impact electrochemistry”.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Burbank, Paul B., James R. Gibson, Harry C. Dorn et Mark R. Anderson. « Electrochemistry of C82 : relationship to metallofullerene electrochemistry ». Journal of Electroanalytical Chemistry 417, no 1-2 (novembre 1996) : 1–4. http://dx.doi.org/10.1016/s0022-0728(96)01015-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

von Eschwege, Karel G., Lydia van As et Jannie C. Swarts. « Electrochemistry and spectro-electrochemistry of dithizonatophenylmercury(II) ». Electrochimica Acta 56, no 27 (novembre 2011) : 10064–68. http://dx.doi.org/10.1016/j.electacta.2011.08.094.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Abbott, Andrew. « Focus on electrochemistry : bringing electrochemistry to life ». Chemical Society Reviews 26, no 3 (1997) : iiib. http://dx.doi.org/10.1039/cs997260iiib.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Kucerova, Radka, Lucie Jezova, Stepanka Bendova, Anna Belusova, Yuvraj Bhardwaj et Jan Krejci. « Perspective—Thick Film Technology ». Journal of The Electrochemical Society 169, no 2 (1 février 2022) : 027519. http://dx.doi.org/10.1149/1945-7111/ac5546.

Texte intégral
Résumé :
Thick Film Technology (TFT) offers a new platform for analytical procedures in Electrochemistry. The most routine technology is screen printing. However, it can introduce new procedures connected with miniaturisation or combination of microfluidic and electrodes. TFT use in electrochemistry is discussed. Examples of different sensors are demonstrated. Details are referred to in the original literature. Advanced applications combining TFT with other technologies are demonstrated (capillary electrophoresis on a chip and a sensor with integrated heating and thermometer). Future of TFT in electrochemistry is discussed, also the drawbacks, connection to production and commercial application are noticed.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Bazant, Martin Z. « Teaching Electrochemical Science and Engineering Online ». ECS Meeting Abstracts MA2023-01, no 44 (28 août 2023) : 2434. http://dx.doi.org/10.1149/ma2023-01442434mtgabs.

Texte intégral
Résumé :
In many schools of science and engineering where electrochemistry is beginning to play a major role in research and advanced study, it is still missing from the curriculum, especially at the undergraduate level. One way to address this problem and draw students into electrochemistry is to teach online. This talk will describe the teaching of electrochemistry online at MIT by two different approaches: free course materials for 10.626/10.426 Electrochemical Energy Systems on OpenCourseWare and massive open online courses (MOOCs) for 10.50 Analysis of Transport Phenomena on edX and MITx Online.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Peroff, A. G., E. Weitz et R. P. Van Duyne. « Mechanistic studies of pyridinium electrochemistry : alternative chemical pathways in the presence of CO2 ». Physical Chemistry Chemical Physics 18, no 3 (2016) : 1578–86. http://dx.doi.org/10.1039/c5cp04757a.

Texte intégral
Résumé :
Pyridinium has been described as a catalyst for CO2 reduction, however with low faradaic efficiency. This article discusses a series of electrochemistry experiments to study other chemical processes occurring during pyridinium electrochemistry which might provide insight into the low faradaic efficiency.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Kumar, Anup, Prakash Mondal et Claudio Fontanesi. « Chiral Magneto-Electrochemistry ». Magnetochemistry 4, no 3 (18 août 2018) : 36. http://dx.doi.org/10.3390/magnetochemistry4030036.

Texte intégral
Résumé :
Magneto-electrochemistry (MEC) is a unique paradigm in science, where electrochemical experiments are carried out as a function of an applied magnetic field, creating a new horizon of potential scientific interest and technological applications. Over time, detailed understanding of this research domain was developed to identify and rationalize the possible effects exerted by a magnetic field on the various microscopic processes occurring in an electrochemical system. Notably, until a few years ago, the role of spin was not taken into account in the field of magneto-electrochemistry. Remarkably, recent experimental studies reveal that electron transmission through chiral molecules is spin selective and this effect has been referred to as the chiral-induced spin selectivity (CISS) effect. Spin-dependent electrochemistry originates from the implementation of the CISS effect in electrochemistry, where the magnetic field is used to obtain spin-polarized currents (using ferromagnetic electrodes) or, conversely, a magnetic field is obtained as the result of spin accumulation.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Sobral, A. V. C., et César V. Franco. « Study of Corrosion Resistance of Sintered Fe-2%Ni, Fe-5%Ni and Fe 10%Ni with Electroactive Polymeric Coating of Poly trans-[RuCl2(vpy)4] ». Materials Science Forum 530-531 (novembre 2006) : 78–84. http://dx.doi.org/10.4028/www.scientific.net/msf.530-531.78.

Texte intégral
Résumé :
The use of generated coated polymeric films by electrochemistry means in the sintered metallic surfaces has been being the focus of our research aimed at the corrosion protection of small mechanical components obtained from powder metallurgy. The sintered alloys Fe- 2%Ni, Fe-5%Ni and 10%Ni with polymeric coating were tested using electrochemistry methods in corrosive solutions of NaCl 3%, KNO3 1.25M, H2SO4 0.5M, HNO3 0.5M, acetic acid 1%, oxalic acid 1% and lactic acid 1%. The electrochemistry corrosion tests were performed using two techniques, Eocp vs. Time and Potentiodynamic and they proved the efficiency of the polymeric coating on the corrosion protection of sintered alloys.
Styles APA, Harvard, Vancouver, ISO, etc.
29

GERISCHER, Heinz. « Electrochemistry Today ». Denki Kagaku oyobi Kogyo Butsuri Kagaku 58, no 6 (5 juin 1990) : 488. http://dx.doi.org/10.5796/kogyobutsurikagaku.58.488.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Hubbard, Arthur T. « Surface electrochemistry ». Langmuir 6, no 1 (janvier 1990) : 97–105. http://dx.doi.org/10.1021/la00091a014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Schilter, David. « Extraterrestrial electrochemistry ». Nature Reviews Chemistry 2, no 12 (21 novembre 2018) : 395. http://dx.doi.org/10.1038/s41570-018-0061-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Matthews, Jermey N. A. « Nanoscale electrochemistry ». Physics Today 64, no 10 (octobre 2011) : 20. http://dx.doi.org/10.1063/pt.3.1284.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Saji, Viswanathan S., et Chi-Woo Lee. « Selenium electrochemistry ». RSC Advances 3, no 26 (2013) : 10058. http://dx.doi.org/10.1039/c3ra40678d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Schuster, R., V. Kirchner, X. H. Xia, A. M. Bittner et G. Ertl. « Nanoscale Electrochemistry ». Physical Review Letters 80, no 25 (22 juin 1998) : 5599–602. http://dx.doi.org/10.1103/physrevlett.80.5599.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Denio, Allen A. « Misplaced electrochemistry ». Journal of Chemical Education 62, no 11 (novembre 1985) : 1020. http://dx.doi.org/10.1021/ed062p1020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Yudin, Andrei K., et Tung Siu. « Combinatorial electrochemistry ». Current Opinion in Chemical Biology 5, no 3 (juin 2001) : 269–72. http://dx.doi.org/10.1016/s1367-5931(00)00202-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Mallouk, Thomas E. « Miniaturized electrochemistry ». Nature 343, no 6258 (février 1990) : 515–16. http://dx.doi.org/10.1038/343515b0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Oja, Stephen M., Marissa Wood et Bo Zhang. « Nanoscale Electrochemistry ». Analytical Chemistry 85, no 2 (16 novembre 2012) : 473–86. http://dx.doi.org/10.1021/ac3031702.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Diamond, Dermot. « Analytical electrochemistry ». TrAC Trends in Analytical Chemistry 15, no 1 (janvier 1996) : X—XI. http://dx.doi.org/10.1016/s0165-9936(96)90116-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Bartlett, P. N. « Interfacial electrochemistry ». Journal of Electroanalytical Chemistry 421, no 1-2 (janvier 1997) : 227. http://dx.doi.org/10.1016/s0022-0728(97)80108-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Peter, L. M. « Semiconductor electrochemistry ». Electrochimica Acta 33, no 1 (janvier 1988) : 175. http://dx.doi.org/10.1016/0013-4686(88)80055-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Scott, K. « Industrial Electrochemistry ». Electrochimica Acta 36, no 14 (janvier 1991) : 2193. http://dx.doi.org/10.1016/0013-4686(91)85229-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Pletcher, D. « Analytical electrochemistry ». Journal of Electroanalytical Chemistry 385, no 2 (avril 1995) : 283. http://dx.doi.org/10.1016/0022-0728(95)90215-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Hassel, Achim Walter. « Pervasive electrochemistry ». Journal of Solid State Electrochemistry 24, no 9 (4 août 2020) : 2083–85. http://dx.doi.org/10.1007/s10008-020-04772-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Speiser, Bernd. « Molecular electrochemistry ». Analytical and Bioanalytical Chemistry 372, no 1 (8 décembre 2001) : 29–30. http://dx.doi.org/10.1007/s00216-001-1153-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Hill, H. Allen O. « Enzyme Electrochemistry ». Australian Journal of Chemistry 59, no 4 (2006) : 231. http://dx.doi.org/10.1071/ch06120.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

« Electrochemistry : Electrochemical Cell, Thermodynamic and Kinetic Aspects ». Journal of Marine Science Research and Oceanography 5, no 2 (4 avril 2022). http://dx.doi.org/10.33140/jmsro.05.02.01.

Texte intégral
Résumé :
The field of electrochemistry can be defined as the set of physical and chemical phenomena involved by the passage of an electric current in an ionic conductor. These phenomena involve the use of electrodes characterized by at least one interface common to two conductors of different nature. They manifest themselves in various ways in electrochemical reactors made up of two electronic conductors or electrodes separated by an ionic conductive medium. After having defined the main phenomena involved in the flow of current, the article presents the thermodynamic and kinetic aspects of electrochemistry (electrochemical cell). The main industrial applications of electrochemistry are briefly presented.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Scholz, Fritz. « Benefits of electrochemistry studies for the majority of students who will not become electrochemists ». Journal of Solid State Electrochemistry, 4 février 2023. http://dx.doi.org/10.1007/s10008-023-05415-y.

Texte intégral
Résumé :
AbstractIn teaching electrochemistry, it is of primary importance to make students always aware of the relations between electrochemistry and all the non-electrochemical topics, which are taught. The vast majority of students will not specialise in electrochemistry, but they all can very much benefit from the basics and concepts of electrochemistry. This paper is aimed to give suggestions how the teaching of electrochemistry can easily be interrelated to topics of inorganic, organic, analytical, environmental chemistry, biochemistry and biotechnology.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Pikma, Piret, Heigo Ers, Liis Siinor, Jinfeng Zhao, Ove Oll, Tavo Romann, Vitali Grozovski et al. « The review of advances in interfacial electrochemistry in Estonia : electrochemical double layer and adsorption studies for the development of electrochemical devices ». Journal of Solid State Electrochemistry, 8 décembre 2022. http://dx.doi.org/10.1007/s10008-022-05338-0.

Texte intégral
Résumé :
AbstractThe electrochemistry nowadays has many faces and challenges. Although the focus has shifted from fundamental electrochemistry to applied electrochemistry, one needs to acknowledge that it is impossible to develop and design novel green energy transition devices without a comprehensive understanding of the electrochemical processes at the electrode and electrolyte interface that define the performance mechanisms. The review gives an overview of the systematic research in the field of electrochemistry in Estonia which reflects on the excellent collaboration between fundamental and applied electrochemistry.
Styles APA, Harvard, Vancouver, ISO, etc.
50

« Electrochemistry ». Choice Reviews Online 36, no 05 (1 janvier 1999) : 36–2765. http://dx.doi.org/10.5860/choice.36-2765.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie