Littérature scientifique sur le sujet « Electrochemistery »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Electrochemistery ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Electrochemistery"

1

Mohamad Ham, Lizawati, et Mohamad Syahrizal Ahmad. « Penggunaan Perisian Animasi Interaktif Sel Galvanik dalam Pembelajaran Elektrokimia : Kesan terhadap Pemahaman Konsep Dalam Topik Elektrokimia ». Journal of Science and Mathematics Letters 5 (1 décembre 2017) : 36–51. http://dx.doi.org/10.37134/jsml.vol5.4.2017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lipkowski, Jacek. « Biomimetics a New Paradigm for Surface Electrochemistry ». Review of Polarography 58, no 2 (2012) : 63–65. http://dx.doi.org/10.5189/revpolarography.58.63.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gao, Hang, Huangxian Ju, Qiuyun Li et Russell Li. « Publisher’s Note : Universal Journal of Electrochemistry—A New Open Access Journal ». Universal Journal of Electrochemistry 1, no 2 (21 juillet 2023) : 1. http://dx.doi.org/10.37256/ujec.1220232198.

Texte intégral
Résumé :
Electrochemistry is a branch of physical chemistry focusing on the movement of electrons. It is comprised of synthetic electrochemistry, quantum electrochemistry, semiconductor electrochemistry, organic conductor electrochemistry, spectroelectrochemistry, bioelectrochemistry and many other subcategories. At present, electrochemistry has been applied in various fields of physical, chemical and biological sciences.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Santos, Diogo M. F., Rui F. M. Lobo et César A. C. Sequeira. « On the Features of Ultramicroelectrodes ». Defect and Diffusion Forum 273-276 (février 2008) : 602–7. http://dx.doi.org/10.4028/www.scientific.net/ddf.273-276.602.

Texte intégral
Résumé :
Ultramicroelectrodes offer several unique characteristics which enable new types of electrochemical measurements. These include: 1) small size; 2) minimisation of iR effects; 3) rapid response; and 4) steady-state response at moderate times. These features enable experiments as diverse as in vivo electrochemistry, electrochemistry in pharmacology, nanoelectrochemistry, electrochemistry in solvents such as benzene, microsecond electrochemistry, and flow-rate independent electrochemistry. Thus, it is apparent that the use of ultramicroelectrodes has become a rapidly growing area of interest. In this paper, the attributes of ultramicroelectrodes, its construction, the equations of diffusion, and key applications of electrochemistry at ultramicroelectrodes, are analysed.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hadzi-Jordanov, Svetomir. « The third century of electrochemistry : Lowering the horizon or raising it further ? » Journal of the Serbian Chemical Society 78, no 12 (2013) : 2165–77. http://dx.doi.org/10.2298/jsc131104126h.

Texte intégral
Résumé :
A survey is given of the development of electrochemistry with an author?s non-hidden wish for more advanced development in future. The survey is based on past achievements of electrochemistry listed shortly here. As far as the recent state is concerned, dissatisfaction is expressed with the acceptance of electrochemistry both as profession of graduated students, and a priority field in financing research, as well. For the sake of truth an alternative view is mentioned that takes the recent state of electrochemistry as normal and in accordance with the usual course of development, (i.e. birth, rise, achieving of maximum and then decay, fading, etc.), that is common in the nature. This statement is based on a belief that today electrochemistry exists on a broader basis than before, and is mainly incorporated in other (new) branches of chemistry and science. Examples are given where recent electrochemistry failed to fulfill the promises (e.g., production of cheap hydrogen by means of electrocatalysts with high performance for H2 evolution, economical use of large scale fuel cells, etc.). In summarizing the recent fields of interest that covers electrochemistry, it is stressed out their diversification, specialization, complexness and interdisciplinary nature. A list of desirable highlights that could possibly help electrochemistry to improve its rating among other science branches is composed. Also, a list of author?s personal preferences is given.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sone, Masato. « Electrochem : An International Scientific Open Access Journal to Publish All Faces of Electrochemistry, Electrodeposition, Electrochemical Analysis, Electrochemical Sensing and Other Aspects about Electrochemical Reaction ». Electrochem 1, no 1 (25 février 2020) : 1–3. http://dx.doi.org/10.3390/electrochem1010001.

Texte intégral
Résumé :
Our aim of journal Electrochem is to provide reviews, regular research papers, and communications in all areas of electrochemistry including methodologies, techniques, and instrumentation in both fundamental and applied fields. In this Editorial, the various technological demands for electrochemistry from academic and industrial fields are discussed and some problems to be solved in electrochemistry are proposed for next-generation science and technology. Under these technological demands, open access journals such as Electrochem will provide the solutions and new technology in electrochemistry to the world.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Alexander, Christopher L. « Electrochemistry in Action ». Electrochemical Society Interface 31, no 3 (1 septembre 2022) : 49. http://dx.doi.org/10.1149/2.005223if.

Texte intégral
Résumé :
The goal of this column is to acknowledge novel contributions that advance particular fields while engaging a new audience through detailed and easy to understand descriptions of advances in electrochemistry. Each installment will include a topic area such as electrochemistry in archaeology, steel manufacturing, water treatment, etc. and will describe a novel or unconventional application of electrochemistry. We believe that, in doing so, not only will “Electrochemistry in Action” inform readers but perhaps it will even inspire creativity and broaden interest in the field.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Akbashev, Andrew. « Electrochemical Colloquium and Beyond : Opportunities for Online Education in Electrochemistry ». ECS Meeting Abstracts MA2023-01, no 44 (28 août 2023) : 2432. http://dx.doi.org/10.1149/ma2023-01442432mtgabs.

Texte intégral
Résumé :
Electrochemistry represents an exceptionally multifaceted and hard-to-teach subject. First, it requires knowledge of very distinct fields, including chemical thermodynamics, surface science, quantum mechanics, solid state ionics, catalysis, photovoltaics, cellular biology, and others. As a result, no electrochemistry curriculum can cover all the material needed for comprehensive understanding of the subject, meaning that the course is often shaped by the teacher’s personal preferences and agenda (e.g., fundamental electrochemistry, energy storage, corrosion, bioelectrochemistry, etc.). Second, the very core of electrochemistry – electrical double layer – is heavily debated within the professional community and does not have a satisfactory and consensual description suitable for textbooks and teaching. Unlike the kinetics of molecular reactions in solutions or at gas-solid interfaces, the kinetics of electrochemical reactions with the double layer region, even in simplest cases, is almost impossible to predict from first principles. All this causes confusion among both students and teachers – how should we teach when the key concept cannot be described adequately? Third, the field of electrochemistry is evolving, older concepts are reconsidered, and the new ones are introduced. This makes it difficult for students to relate course material to what is going on in real research. Finally, electrochemistry is vital for industry, which makes it particularly tempting for teachers to introduce a substantial “engineering” component into the curriculum and turn it into “applied electrochemistry course” (covering energy storage and conversion, corrosion, electroplating, etc.). While being well-intended, this leads to oversimplification of electrochemistry and offers a general (and often confusing) overview of the field. In my talk, I will discuss the difficulties of teaching electrochemistry courses and how online platforms can offer possible solutions. Specifically, I will draw on my experience with the Electrochemical Online Colloquium, which aims to make fundamental science and essential knowledge freely accessible to the public. My argument is that a holistic understanding of electrochemistry cannot be achieved if one ignores knowledge gained in neighboring fields. At the same time, discussion of open questions and critical assessment of concepts by experts helps a student understand what is truly well-established in the field and what is not. I will also discuss future opportunities for online education in electrochemistry and how we can improve the quality of research in this field.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Nagatani, Hirohisa, et Hiroki Sakae. « The 65th Annual Meeting of the International Society of Electrochemistry (ISE2014) ». Review of Polarography 61, no 1 (2015) : 46–50. http://dx.doi.org/10.5189/revpolarography.61.46.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Abe, Hiroya, Tomoki Iwama et Yuanyuan Guo. « Light in Electrochemistry ». Electrochem 2, no 3 (26 août 2021) : 472–89. http://dx.doi.org/10.3390/electrochem2030031.

Texte intégral
Résumé :
Electrochemistry represents an important analytical technique used to acquire and assess chemical information in detail, which can aid fundamental investigations in various fields, such as biological studies. For example, electrochemistry can be used as simple and cost-effective means for bio-marker tracing in applications, such as health monitoring and food security screening. In combination with light, powerful spatially-resolved applications in both the investigation and manipulation of biochemical reactions begin to unfold. In this article, we focus primarily on light-addressable electrochemistry based on semiconductor materials and light-readable electrochemistry enabled by electrochemiluminescence (ECL). In addition, the emergence of multiplexed and imaging applications will also be introduced.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Electrochemistery"

1

Brookes, Benjamin A. « Computational electrochemistry ». Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270000.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Fisher, Adrian Charles. « Mechanistic electrochemistry ». Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293419.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Klymenko, O. V. « Computational electrochemistry ». Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.409030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hunt, Nicholas Imber. « Biological electrochemistry ». Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386592.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lane, R. L. « Semiconductor electrochemistry ». Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370280.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Melville, James. « Computational electrochemistry ». Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249179.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Thompson, Mary. « Computational electrochemistry ». Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432256.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Chevallier, François Gregory. « Computational electrochemistry ». Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433380.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Alden, John. « Computational electrochemistry ». Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297935.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Du, G. « Computational electrochemistry ». Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598660.

Texte intégral
Résumé :
This thesis describes the development and application of the lattice Boltzmann method for the investigation of electrolysis mechanisms. Hydrodynamic, mass transport and potential distributions models have been implemented by this method and used to simulate the different electrochemical problems. Chapter 2 introduces a Lattice Bhatnagar-Gross-Krook (LBGK) model, the simplest and most popular lattice Boltzmann method. The theory and implementation of the LBGK for hydrodynamic and mass transport were demonstrated. Chapter 3 describes the development of two and three-dimensional lattice Boltzmann models for the simulation of a reversible system for a range of microelectrode geometries under the measurement of potential step, linear sweep and the cyclic voltammetry. Excellent agreement between the numerical models and the analytical solutions was observed. To illustrate the flexibility of the lattice Boltzmann method the simulation of the current response for a range of electrode geometries, distorted from microband electrode geometries the micro hemicylinder electrode, is also described. Chapter 4 investigates the modification of voltammetric behaviour when an obstruction was placed close to a working electrode. The current responses are largely affected by the position and shape of the obstruction. Chapter 5 details the lattice Boltzmann hydrodynamic and mass transport model in a rectangular duct and clearly shows the influence of chronoamperometric behaviour affected by the channel edge. The current responses of the suspended square cylinder shaped electrodes have also been investigated. In the final results chapter the influence of IR drop on the shape of the current voltage curves is demonstrated. The model has been extended to simulate two generator-collector systems, demonstrating the ability of the numerical model to be used for simulating different geometries.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Electrochemistery"

1

Electrochemistry. Englewood Cliffs, N.J : Prentice-Hall, 1987.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Banks, Craig, Roger Mortimer et Steven McIntosh, dir. Electrochemistry. Cambridge : Royal Society of Chemistry, 2015. http://dx.doi.org/10.1039/9781782620273.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Banks, Craig, et Steven McIntosh, dir. Electrochemistry. Cambridge : Royal Society of Chemistry, 2017. http://dx.doi.org/10.1039/9781782622727.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wadhawan, Jay D., et Richard G. Compton, dir. Electrochemistry. Cambridge : Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737333.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Banks, Craig, et Steven McIntosh, dir. Electrochemistry. Cambridge : Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781788017039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Banks, Craig, et Steven McIntosh, dir. Electrochemistry. Cambridge : Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788013895.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Thirsk, H. R., dir. Electrochemistry. Cambridge : Royal Society of Chemistry, 2007. http://dx.doi.org/10.1039/9781849732635.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wadhawan, Jay D., et Richard G. Compton, dir. Electrochemistry. Cambridge : Royal Society of Chemistry, 2012. http://dx.doi.org/10.1039/9781849734820.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Pletcher, Derek, dir. Electrochemistry. Cambridge : Royal Society of Chemistry, 1985. http://dx.doi.org/10.1039/9781847559951.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Holze, Rudolf. Electrochemistry. Sous la direction de M. D. Lechner. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-02723-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Electrochemistery"

1

Freiesleben Hansen, Per. « Electrochemistry ». Dans The Science of Construction Materials, 196–235. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70898-8_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Perez, Nestor. « Electrochemistry ». Dans Electrochemistry and Corrosion Science, 25–52. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24847-9_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Astarita, Gianni. « Electrochemistry ». Dans Thermodynamics, 291–318. Boston, MA : Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-0771-4_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Plascencia, Gabriel, et David Jaramillo. « Electrochemistry ». Dans Basic Thermochemistry in Materials Processing, 65–94. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53815-0_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Vidakovic-Koch, Tanja. « Electrochemistry ». Dans Encyclopedia of Membranes, 630–31. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_200.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Freemantle, Michael. « Electrochemistry ». Dans Chemistry in Action, 345–94. London : Macmillan Education UK, 1987. http://dx.doi.org/10.1007/978-1-349-18541-2_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ilich, Predrag-Peter. « Electrochemistry ». Dans Selected Problems in Physical Chemistry, 111–26. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-04327-7_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Duffey, George H. « Electrochemistry ». Dans Modern Physical Chemistry, 207–40. Boston, MA : Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4297-1_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Klostermeier, Dagmar, et Markus G. Rudolph. « Electrochemistry ». Dans Biophysical Chemistry, 101–16. Names : Klostermeier, Dagmar, author. | Rudolph, Markus G., author. Title : Biophysical chemistry / Dagmar Klostermeier and Markus G. Rudolph. Description : Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017] : CRC Press, 2018. http://dx.doi.org/10.1201/9781315156910-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Battaglia, Franco, et Thomas F. George. « Electrochemistry ». Dans Understanding Molecules, 259–76. Boca Raton : Taylor & Francis, 2019. : CRC Press, 2018. http://dx.doi.org/10.1201/9780429448263-14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Electrochemistery"

1

Flores Tapia, Nelly Eshter. « Environmental Electrochemistry ». Dans 1er Congreso Universal de las Ciencias y la Investigación Medwave 2022 ;. Medwave Estudios Limitada, 2022. http://dx.doi.org/10.5867/medwave.2022.s2.uta052.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Vesely, S. L. « Modeling electrochemistry ». Dans 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0163178.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Subramanian, A., J. P. Sullivan, J. Y. Huang, N. Hudak, Y. Zhan, J. Lou et C. M. Wang. « On-chip electrochemistry : A nanofabricated platform for single nanowire battery electrochemistry ». Dans 2010 IEEE Nanotechnology Materials and Devices Conference (NMDC). IEEE, 2010. http://dx.doi.org/10.1109/nmdc.2010.5651972.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Tiginyanu, Ion, Eduard Monaico et Veaceslav Popa. « Electrochemistry-based maskless nanofabrication ». Dans 2012 International Semiconductor Conference (CAS 2012). IEEE, 2012. http://dx.doi.org/10.1109/smicnd.2012.6400703.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Pajkossy, Tamas, et Lajos Nyikos. « Electrochemistry at fractal interfaces ». Dans 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.5761403.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Pajkossy et Nyikos. « Electrochemistry At Fractal Interfaces ». Dans Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.592700.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Maldonado, Stephen. « 2022 Electrochemistry GRC/GRS ». Dans 2022 Electrochemistry GRC/GRS took place September 10-16, 2022 at the Four Points Sheraton in Ventura, California. US DOE, 2022. http://dx.doi.org/10.2172/1972677.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Tada, Hiroaki. « Electrochemistry of tungsten compound film ». Dans Institutes for Advanced Optical Technologies, sous la direction de Carl M. Lampert et Claes-Göran Granqvist. SPIE, 1990. http://dx.doi.org/10.1117/12.2283617.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Xie, Wei-hong, H. Allen, O. Hill et Luet L. Wong. « Direct electrochemistry of pentachlorophenol hydroxylase ». Dans International Conference on Sensing units and Sensor Technology, sous la direction de Yikai Zhou et Shunqing Xu. SPIE, 2001. http://dx.doi.org/10.1117/12.440184.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Gogotsi, Yury. « MXenes for Electrochemistry and Electrocatalysis ». Dans nanoGe Fall Meeting 2021. València : Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.nfm.2021.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Electrochemistery"

1

Murgaeva, S. I., et D. E. Samtanova. Manual "Electrochemistry". OFERNIO, décembre 2022. http://dx.doi.org/10.12731/ofernio.2022.25079.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Glenn, D. F. Laser-assisted electrochemistry. Office of Scientific and Technical Information (OSTI), mai 1995. http://dx.doi.org/10.2172/204652.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Abruna, Hector D. Electrochemistry in Liquid Crystals. Fort Belvoir, VA : Defense Technical Information Center, février 1988. http://dx.doi.org/10.21236/ada191554.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Oster, C. A., et M. J. Danielson. Model of crack electrochemistry. Office of Scientific and Technical Information (OSTI), mars 1986. http://dx.doi.org/10.2172/5973736.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Payne, G. (Electrochemistry in nonaqueous solvents). Office of Scientific and Technical Information (OSTI), janvier 1988. http://dx.doi.org/10.2172/6816349.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Osseo-Asare, K. Semiconductor electrochemistry of coal pyrite. Office of Scientific and Technical Information (OSTI), mai 1992. http://dx.doi.org/10.2172/7205370.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Maya, L. Aluminum electrochemistry in liquid ammonia. Office of Scientific and Technical Information (OSTI), septembre 1985. http://dx.doi.org/10.2172/5132741.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Osseo-Asare, K., et D. Wei. Semiconductor electrochemistry of coal pyrite. Office of Scientific and Technical Information (OSTI), février 1993. http://dx.doi.org/10.2172/6939018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Osseo-Asare, K., et D. Wei. Semiconductor electrochemistry of coal pyrite. Office of Scientific and Technical Information (OSTI), janvier 1992. http://dx.doi.org/10.2172/6815957.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Osseo-Asare, K., et D. Wei. Semiconductor electrochemistry of coal pyrite. Office of Scientific and Technical Information (OSTI), janvier 1992. http://dx.doi.org/10.2172/6857273.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie