Littérature scientifique sur le sujet « Electrochemical Materials Science »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Electrochemical Materials Science ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Electrochemical Materials Science"

1

Schultze, J. W. « Electrochemical Materials Science ». Electrochimica Acta 45, no 20 (juin 2000) : 3193–203. http://dx.doi.org/10.1016/s0013-4686(00)00413-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kolbasov, Gennadii, Valeriy Kublanovsky, Oksana Bersirova, Mykola Sakhnenko, Maryna Ved, Orest Kuntyi, Oleksandr Reshetnyak et Oleg Posudievsky. « ELECTROCHEMISTRY OF FUNCTIONAL MATERIALS AND SYSTEMS (EFMS) ». Ukrainian Chemistry Journal 87, no 3 (23 avril 2021) : 61–76. http://dx.doi.org/10.33609/2708-129x.87.03.2021.61-76.

Texte intégral
Résumé :
The work is presented by the V. I. Vernad­skii Institute of General and Inorganic Chemi­stry of the National Academy of Sciences of Ukraine for the State Prize of Ukraine in the field of science and technology. A new paradigm of the processes of electrochemical synthesis of functional materials has been created on the basis of the proposed theory of discharge-ionization of electrochemically active complexes and the laws of correlation between the functional properties of coatings and the fundamental characteristics and parameters of electrochemical kinetics. New approaches of surface engineering to the electrochemical synthesis and processing of materials that are capable of operating under extreme thermomechanical conditions under the simultaneous action of an aggressive medium have been developed. Innovatively promising technologies have been proposed for the formation of nanomaterials of new generation based on superalloys, metal oxide composites, photosensitive hetero- and nanostructures, electrically conductive polymers and their composites, etc. The main research directions in this work concern electrochemistry, both directly the me­thod for the synthesis of new materials and the study and design of the electrochemical pro­perties of materials / coatings / nanoparticles that cannot be obtained by other methods. The aim of the work was to develop the theoretical foundations of directed synthesis and to create a wide range of new competitive materials and systems on the basis of establishing the structural and functional patterns of their electrochemi­cal formation. А number of novel compe­titive electrochemical materials (electrode and electrolyte materials for electrochemical po­wer sources and supercapacitors, electro- and photocatalysts, sorption and optical materials, functional coatings, etc.) have been created as a result of the performed research. These materials are used in various fields of science and technology, namely, for alternative po­wer ge­neration, electrochemical power sources, nano- and microelectronics, electrochromic systems, electrocatalysis, ecosensorics, electro­chemical synthesis of commercial products, photoelectrochemical systems, corrosion protection. The number of publications: 700, including 30 monographs (7 of them published abroad) and 39 chapters in collective monographs (30 of them published abroad), 36 textbooks (manuals), and 500 articles (350 of them published in foreign periodicals). The total number of refe­rences to the publications of the authors/h-index/i10-index (regarding the whole work) according to the databases is, respectively: Web of Science, 1856/21/52; Scopus, 2185/22/71; Google Scholar, 4903/33/148. The novelty and competitiveness of the technical solutions are protected by 33 valid patents (7 patents of Kazakhstan, China, USA). Eight doctoral dissertations (DSc) and 47 candidate's dissertations (PhD theses) on this subject matter have been defended.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Szunerits, Sabine, Sascha E. Pust et Gunther Wittstock. « Multidimensional electrochemical imaging in materials science ». Analytical and Bioanalytical Chemistry 389, no 4 (30 juin 2007) : 1103–20. http://dx.doi.org/10.1007/s00216-007-1374-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Miller, J. R., et P. Simon. « MATERIALS SCIENCE : Electrochemical Capacitors for Energy Management ». Science 321, no 5889 (1 août 2008) : 651–52. http://dx.doi.org/10.1126/science.1158736.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kurihara, Kazue. « Surface forces measurement for materials science ». Pure and Applied Chemistry 91, no 4 (24 avril 2019) : 707–16. http://dx.doi.org/10.1515/pac-2019-0101.

Texte intégral
Résumé :
Abstract This article reviews the surface forces measurement as a novel tool for materials science. The history of the measurement is briefly described in the Introduction. The general overview covers specific features of the surface forces measurement as a tool for studying the solid-liquid interface, confined liquids and soft matter. This measurement is a powerful way for understanding interaction forces, and for characterizing (sometime unknown) phenomena at solid-liquid interfaces and soft complex matters. The surface force apparatus (SFA) we developed for opaque samples can study not only opaque samples in various media, but also electrochemical processes under various electrochemical conditions. Electrochemical SFA enables us to determine the distribution of counterions between strongly bound ones in the Stern layer and those diffused in the Gouy-Chapman layer. The shear measurement is another active area of the SFA research. We introduced a resonance method, i.e. the resonance shear measurement (RSM), that is used to study the effective viscosity and lubricity of confined liquids in their thickness from μm to contact. Advantages of these measurements are discussed by describing examples of each measurement. These studies demonstrate how the forces measurement is used for characterizing solid-liquid interfaces, confined liquids and reveal unknown phenomena. The readers will be introduced to the broad applications of the forces measurement in the materials science field.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Landolt, D. « Electrochemical and materials science aspects of alloy deposition ». Electrochimica Acta 39, no 8-9 (juin 1994) : 1075–90. http://dx.doi.org/10.1016/0013-4686(94)e0022-r.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Mitchell, James B., Matthew Chagnot et Veronica Augustyn. « Hydrous Transition Metal Oxides for Electrochemical Energy and Environmental Applications ». Annual Review of Materials Research 53, no 1 (3 juillet 2023) : 1–23. http://dx.doi.org/10.1146/annurev-matsci-080819-124955.

Texte intégral
Résumé :
Hydrous transition metal oxides (TMOs) are redox-active materials that confine structural water within their bulk, organized in 1D, 2D, or 3D networks. In an electrochemical cell, hydrous TMOs can interact with electrolyte species not only via their outer surface but also via their hydrous inner surface, which can transport electrolyte species to the interior of the material. Many TMOs operating in an aqueous electrochemical environment transform to hydrous TMOs, which then serve as the electrochemically active phase. This review summarizes the physicochemical properties of hydrous TMOs and recent mechanistic insights into their behavior in electrochemical reactions of interest for energy storage, conversion, and environmental applications. Particular focus is placed on first-principles calculations and operando characterization to obtain an atomistic view of their electrochemical mechanisms. Hydrous TMOs represent an important class of energy and environmental materials in aqueous and nonaqueous environments. Further understanding of their interaction with electrolyte species is likely to yield advancements in electrochemical reactivity and kinetics for energy and environmental applications.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Chen, Ji, Chun Li et Gaoquan Shi. « Graphene Materials for Electrochemical Capacitors ». Journal of Physical Chemistry Letters 4, no 8 (avril 2013) : 1244–53. http://dx.doi.org/10.1021/jz400160k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Huang, Jian Yu, Li Zhong, Chong Min Wang, John P. Sullivan, Wu Xu, Li Qiang Zhang, Scott X. Mao et al. « In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode ». Science 330, no 6010 (9 décembre 2010) : 1515–20. http://dx.doi.org/10.1126/science.1195628.

Texte intégral
Résumé :
We report the creation of a nanoscale electrochemical device inside a transmission electron microscope—consisting of a single tin dioxide (SnO2) nanowire anode, an ionic liquid electrolyte, and a bulk lithium cobalt dioxide (LiCoO2) cathode—and the in situ observation of the lithiation of the SnO2 nanowire during electrochemical charging. Upon charging, a reaction front propagated progressively along the nanowire, causing the nanowire to swell, elongate, and spiral. The reaction front is a “Medusa zone” containing a high density of mobile dislocations, which are continuously nucleated and absorbed at the moving front. This dislocation cloud indicates large in-plane misfit stresses and is a structural precursor to electrochemically driven solid-state amorphization. Because lithiation-induced volume expansion, plasticity, and pulverization of electrode materials are the major mechanical effects that plague the performance and lifetime of high-capacity anodes in lithium-ion batteries, our observations provide important mechanistic insight for the design of advanced batteries.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Musiani, Marco. « Electrodeposition of composites : an expanding subject in electrochemical materials science ». Electrochimica Acta 45, no 20 (juin 2000) : 3397–402. http://dx.doi.org/10.1016/s0013-4686(00)00438-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Electrochemical Materials Science"

1

Carney, Thomas J. Ph D. (Thomas Joseph) Massachusetts Institute of Technology. « Convection enhanced electrochemical energy storage ». Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120204.

Texte intégral
Résumé :
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2018.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 119-136).
Electrochemical energy storage will play a pivotal role in our society's energy future, providing vital services to the transportation, grid, and residential markets. Depending on the power and duration requirements of a specific application, numerous electrochemical technologies exist. For the majority of the markets, lithium-ion (Li-ion) batteries are the state-of-the-art technology owing to their good cycle life and high energy density and efficiency. Their widespread penetration, however, is limited by high production cost and inherent safety concerns. Understanding the solid-electrolyte interphase (SEI) which governs the performance and lifetime of these batteries is critical to developing the next generation Li-ion batteries. As an alternative to Li-ion, redox flow batteries store energy in solutions of electroactive species, which are housed in external tanks and pumped to a power-converting electroreactor. This configuration decouples power and energy, improving the safety and flexibility of the system, however, flow battery energy density is inherently lower than Li-ion and expensive ion-selective membranes are required for efficient operation. As a contrast to Li-ion and redox flow batteries, convection batteries harnesses the key benefits of Li-ion batteries and redox flow batteries while overcoming their individual limitations. By incorporating thick electrodes into the cell, the energy density is increased and the cost of the system is reduced. To overcome the diffusive losses in the thick electrodes, electrolyte is pumped through the electrodes, enabling uniform ion transport throughout the porous structure. However, thick electrodes can lead to large ohmic losses in the cell resulting in lower energy efficiency. In this thesis, I discuss my work on understanding the SEI in Li-ion batteries, highlighting the thermodynamics of its origin, characterization of its structure, and strategies for future development. I then detail my work understanding redox active molecules from molecule characterization and mechanistic generation to redox flow cell level engineering. Finally, I highlight my work in the development of the convection battery technology explaining the synthesis of active materials, thick electrode design, and fabrication of the prototype convection cell architecture. Taken together, these projects highlight the theme of achieving low-cost electrochemical energy storage through various technical pathways.
by Thomas J. Carney.
Ph. D.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Chin, Timothy Edward. « Electrochemical to mechanical energy conversion ». Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/63015.

Texte intégral
Résumé :
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references.
Electrode materials for rechargeable lithium ion batteries are well-known to undergo significant dimensional changes during lithium-ion insertion and extraction. In the battery community, this has often been looked upon negatively as a degradation mechanism. However, the crystallographic strains are large enough to warrant investigation for use as actuators. Lithium battery electrode materials lend themselves to two separate types of actuators. On one hand, intercalation oxides and graphite provide moderate strains, on the order of a few percent, with moderate bandwidth (frequency). Lithium intercalation of graphite can achieve actuation energy densities of 6700 kJ m-3 with strains up to 6.7%. Intercalation oxides provide strains on the order of a couple percent, but allow for increased bandwidth. Using a conventional stacked electrode design, a cell consisting of lithium iron phosphate (LiFePO4) and carbon achieved 1.2% strain with a mechanical power output of 1000 W m 3 . Metals, on the other hand, provide colossal strains (hundreds of percent) upon lithium alloying, but do not cycle well. Instead, a self-amplifying device was designed to provide continuous, prolonged, one-way actuation over longer time scales. This was still able to achieve an energy density of 1700 kJ n 3, significantly greater than other actuation technologies such as shape-memory alloys and conducting polymers, with displacements approaching 10 mm from a 1 mm thick disc. Further, by using lithium metal as the counterelectrode in an electrochemical couple, these actuation devices can be selfpowered: mechanical energy and electrical energy can be extracted simultaneously.
by Timothy Edward Chin.
Ph.D.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Woodford, William Henry IV. « Electrochemical shock : mechanical degradation of ion-intercalation materials ». Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/80889.

Texte intégral
Résumé :
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2013.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 173-195).
The ion-intercalation materials used in high-energy batteries such as lithium-ion undergo large composition changes-which correlate to high storage capacity-but which also induce structural changes and stresses that can cause performance metrics such as power, achievable storage capacity, and life to degrade. "Electrochemical shock"-the electrochemical cycling-induced fracture of materials-contributes to impedance growth and performance degradation in ion-intercalation batteries. Using a combination of micromechanical models and in operando acoustic emission experiments, the mechanisms of electrochemical shock are identified, classified, and modeled in targeted model systems with different composition and microstructure. Three distinct mechanisms of electrochemical shock in ion-intercalation mate- rials are identified: 1) concentration-gradient stresses which arise during fast cycling, 2) two- phase coherency stresses which arise during first-order phase-transformations, and 3) inter-granular compatibility stresses in anisotropic polycrystalline materials. While concentration- gradient stresses develop in proportion to the electrochemical cycling rate, two-phase coherency stresses and intergranular compatibility stresses develop independent of the electro- chemical cycling rate and persist to arbitrarily low rates. For each mechanism, a micromechanical model with a fracture mechanics failure criterion is developed. This fundamental understanding of electrochemical shock leads naturally to microstructure design criteria and materials selection criteria for ion-intercalation materials with improved life and energy storage efficiency. In a given material system, crystal symmetry and phase-behavior determine the active mechanisms. Layered materials, as exemplified by LiCoO₂, are dominated by intergranular compatibility stresses when prepared in polycrystalline form, and two-phase coherency when prepared as single crystal powders. Spinel materials such as LiMn₂O₄, and LiMn₁.₅Ni₀.₅O₄ undergo first-order cubic-to-cubic phase- transformations, and are subject to two-phase coherency stresses even during low-rate electrochemical cycling. This low-rate electrochemical shock is averted in iron-doped material, LiMn₁.₅Ni₀.₄₂Fe₀.₀₈O₄, which has continuous solid solubility and is therefore not subject to two-phase coherency stresses; this enables a wider range of particle sizes and duty cycles to be used without electrochemical shock. While lithium-storage materials are used as model systems, the physical phenomena are common to other ion-intercalation systems, including sodium-, magnesium-, and aluminum-storage compounds.
by William Henry Woodford IV.
Ph.D.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wagner, Mary Elizabeth S. B. Massachusetts Institute of Technology. « Advanced electrochemical characterization of copper deposition ». Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/110960.

Texte intégral
Résumé :
Thesis: S.B., Massachusetts Institute of Technology, Department of Materials Science and Engineering, February 2016.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 51-52).
The electrodeposition of copper metal in a concentrated sulfuric acid solution is reported to occur through a four-step mechanism: (I) the dehydration of Cu2+ (H2O)6, (II) the reduction of Cu2+ to cu+, (III) the dehydration cu+ (H2O)6-x, (IV) the reduction of Cu+ to copper metal. The dehydration steps have been found to be responsible for the pH-dependence of the electrodeposition reaction. It is also reported, although not well understood, that the presence of Fe2+ ions affects the reaction kinetics. In this work, the kinetics of copper electrodeposition were studied using alternating current cyclic voltammetry. The reaction was studied at a copper rotating disk electrode with varying concentrations of Cu2+ and Fe2+ . At sufficiently low pH, and a sufficiently high concentration of Fe2+ , the deposition kinetics may be slowed enough to separately observe the two electron transfer steps involved in copper reduction. It was found that Fe2+ ions affect the electrodeposition kinetic by slowing down reaction kinetics, particularly the second electron transfer reaction.
by Mary Elizabeth Wagner.
S.B.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Soral, Prashant 1974. « Scaleup of electrochemical-metal-refining process ». Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/39628.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yang, Hao. « Graphene-based Materials for Electrochemical Energy Storage ». The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1512095146429831.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Hashaikeh, Raed. « Fabrication of thermal barrier coating using electrochemical methods ». Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33331.

Texte intégral
Résumé :
An electrochemical method of fabrication of (NiCoCrAlY)/MgO/Yttria stabilized zirconia (YSZ) multilayered coating was proposed. This multilayered coat is expected to work as a thermal barrier coating (TBC) for nickel superalloy substrates. The (NiCoCrAlY) layer was deposited using the electrophoretic deposition technique, the MgO layer was deposited by the electrolytic deposition technique and the YSZ layer was electrophoretically deposited.
In order to study the deposit morphology and to determine the appropriate processing parameters for the multilayered coat, one-layer coatings of (NiCoCrAlY), MgO and YSZ were deposited and characterized. At first, the process of depositing (NiCoCrAlY) alloy particles using an aqueous media with AlCl3 or Al(NO3)3 as an electrolyte revealed that the alloy particles were deposited at the same time as aluminium oxide. The co-deposited aluminium oxide worked as a binder between the particles and the substrate.
In the electrolytic deposition process of the MgO coating, the layer deposited from Mg(NO3)2 solution was mainly magnesium hydroxide and it had to be calcinated to form a MgO coating. An optimization of the deposition process demonstrated that a crack free deposit of MgO could be obtained at low current density.
An optimum condition of the electrophoretic deposition process was established for YSZ; it was found that adding 5% water to the acetone bath increased the deposition rate of the YSZ particles, and had increased the porosity in the coat.
A composite coating of (NiCoCrAlY)/MgO was formed after heat treatment at 850°C for 1 hr. The electrochemically deposited MgO was easily sintered at 850°C, which resulted in a dense ceramic coating that protects the substrate and the (NiCoCrAlY) coating from oxidation during sintering of the electrophoretically deposited YSZ layer at 1100°C.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Isaksson, Joakim. « Organic Bioelectronics : Electrochemical Devices using Conjugated Polymers ». Doctoral thesis, Linköpings universitet, Institutionen för teknik och naturvetenskap, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-9679.

Texte intégral
Résumé :
Since the Nobel Prize awarded discovery that some polymers or “plastics” can be made electronically conducting, the scientific field of organic electronics has arisen. The use of conducting polymers in electronic devices is appealing, because the materials can be processed from a liquid phase, much like ordinary non-conducting plastics. This gives the opportunity to utilize printing technologies and manufacture electronics roll-to-roll on flexible substrates, ultimately at very low costs. Even more intriguing are the possibilities to achieve completely novel functionalities in combination with the inherent compatibility of these materials with biological species. Therefore, organic electronics can be merged with biology and medicine to create organic bioelectronics, i.e. organic electronic devices that interact with biological samples directly or are used for biological applications. This thesis aims at giving a background to the field of organic bioelectronics and focuses on how electrochemical devices may be utilized. An organic electronic wettability switch that can be used for lab-on-a-chip applications and control of cell growth as well as an electrochemical ion pump for cell communication and drug delivery are introduced. Furthermore, the underlying electrochemical structures that are the basis for the above mentioned devices, electrochemical display pixels etc. are discussed in detail. In summary, the work contributes to the understanding of electrochemical polymer electronics and, by presenting new bioelectronic inventions, builds a foundation for future projects and discoveries.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Young, David Y. « Electrochemical H insertion in Pd thin films ». Thesis, Massachusetts Institute of Technology, 2018. https://hdl.handle.net/1721.1/122864.

Texte intégral
Résumé :
Thesis: S.M., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2018
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 51-55).
Metal hydrides are pertinent to several applications, including hydrogen storage, gas separation, and electrocatalysis. The Pd-H system is used as a model for metal-hydrogen systems and the effect H insertion has on their properties. A study was conducted to assess the performance of various electrochemical cell formats in electrochemically inserting H into Pd, which is important in building devices for the above applications. A set of in situ X-ray diffraction apparatuses were built to enable simultaneous electrochemical H insertion and measurement of PdH[subscript x] composition. A comparison between aqueous and solid electrolytes, temperature, and thin film vs. bulk Pd revealed that thinner films, lower temperatures, and aqueous electrolytes tended to promote higher achievable H content, with the highest H:Pd ratio observed being 0.96 ± 0.02. These results not only show high H loading into Pd but also both reproducibility and a clear association between varied parameters and cell performance. In addition, the stability and performance of high temperature solid oxide electrolytes was investigated. A novel in situ calorimeter was constructed to enable the study of high temperature solid oxide electrolyte degradation while under operating conditions, similar to recent work in calorimetric analysis of battery stability. This calorimeter has a power detection sensitivity of 16.1 ± 11.7 mW, which is sufficient for detecting and quantifying many of the degradation and other side reactions that occur during high temperature operation of a solid oxide electrolyte in an electrochemical cell. This apparatus provides a tool needed to assess stability and life of solid oxide electrolytes under operation, a critical component to developing higher performing solid oxide electrochemical devices.
by David Y. Young.
S.M.
S.M. Massachusetts Institute of Technology, Department of Materials Science and Engineering
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hsiung, Chwan Hai H. (Chwan Hai Harold) 1982. « Synthesis and electrochemical characterization of lithium vanadium phosphate ». Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/32730.

Texte intégral
Résumé :
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2004.
Includes bibliographical references (leaf 41).
In a world where the miniaturization and the portability of electronic devices is king, batteries play an ever-increasingly important role. They are vital components in many consumer electronics such as cell phones and PDAs, in medical devices, and in novel applications, such as unmanned vehicles and hybrids. As the power demands of these devices increases, battery performance must improve accordingly. This thesis is an introductory investigation into the electrochemical properties of a promising new battery cathode material: lithium vanadium phosphate (Li3V2(PO4)3) (LVP). Studies of other members of the phospho-olivine family, which LVP is a part of, indicate that the olivines have high lithium diffusivity but low electronic conductivity. LVP is part of the phosphor- olivine family, which traditionally has been shown to have high lithium diffusivity but low electronic conductivity. LVP was synthesized via a solid-state reaction and cast into composite cathodes. (90/5/5 ratio of LVP, Super P Carbon, and PVDF.) These composite cathodes were used in lithium anode, LiPF6 liquid electrolyte, Swage-type cells that were galvanostatically cycled from 3.OV to 4.2V and from 3.4V to 4.8V at C/20 rates. Electrochemical impedance spectroscopy was carried out on an LVP / liquid electrolyte / LVP cells from 0.01Hz to 1MHz. Finally, temperature conductivity measurements were taken from a die-pressed LVP bar. The results of the experimentation indicate that LVP has much promise as a new battery cathode material, but there are still a number of concerns to address.
(cont.) LVP has a higher operating voltage (4.78V) than the current Li-ion battery standard (3.6V), but there are issues with becoming amorphous, cycleability, and active material accessibility. From the EIS data, passivating films on the surface of the LVP cathode do not seem to be a factor in limiting performance. The conductivity data gives a higher than expected conductivity (4.62* 10-4 S/cm).
by Chwan Hai H. Hsiung.
S.B.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Electrochemical Materials Science"

1

Cottis, Robert. Electrochemical impedance and noise. Huston, TX : NACE International, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

European Workshop on Electrochemical Technology of Molten Salts (1st 1993 Sintra, Portugal). Electrochemical technology of molten salts : Proceedings of the First European Workshop on Electrochemical Technology of Molten Salts, held in Sintra, Portugal, March 14-17, 1993. Sous la direction de Picard G. S et Sequeira C. A. Aedermannsdorf, Switzerland : Trans Tech Publications, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Anna, Brajter-Toth, et Chambers James Q, dir. Electroanalytical methods for biological materials. New York : Marcel Dekker, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

International Society of Electrochemistry. Meeting. Electrochemical approach to selected corrosion and corrosion control studies : Papers from 50th ISE Meeting, Pavia, September 1999. London : Published for the European Federation of Corrosion by IOM Communications, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

R, Lindström, European Federation of Corrosion et Institute of Materials, Minerals, and Mining., dir. The use of electrochemical scanning tunnelling microscopy (EC-STM) in corrosion analysis : Reference material and procedural guidelines. Cambridge, England : Woodhead, 2007.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Calif.) Sohn International Symposium (2006 San Diego. Advanced processing of metals and materials : Proceedings of the International Symposium, August 27-31, 2006, San Diego, California, USA : Thermo and physicochemical principles : special materials, aqueous and electrochemical processing. Warrendale, Pa : Minerals, Metals and Materials Society, 2006.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Production, National Research Council (U S. ). Committee on Electrochemical Aspects of Energy Conservation and. New horizons in electrochemical science and technology : Report of the Committee on Electrochemical Aspects of Energy Conservation and Production, National Materials Advisory Board, Commission on Engineering and Technical Systems, National Research Council. Washington, D.C : National Academy Press, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Risø International Symposium on Materials Science (14th 1993). High temperature electrochemical behaviour of fast ion and mixed conductors : Proceedings of the 14th Risø International Symposium on Materials Science, 6-10 September, 1993. Sous la direction de Poulsen F. W et Forsøgsanlæg Risø. Roskilde, Denmark : Risø National Laboratory, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Calif.) Sohn International Symposium (2006 San Diego. Advanced processing of metals and materials : Proceedings of the International Symposium, August 27-31, 2006, San Diego, California, USA : New, improved and existing technologies : aqueous and electrochemical processing. Warrendale, Pa : Minerals, Metals and Materials Society, 2006.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Scanning electrochemical microscopy. 2e éd. Boca Raton, FL : CRC Press, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Electrochemical Materials Science"

1

Schmuki, Patrik. « Tailored Electrochemical Surface Modification of Semiconductors ». Dans Materials Science Forum, 129–36. Stafa : Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-996-2.129.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Adayi, Xieeryazidan, Jin Jin Zhou, Gui Bing Pang et Wen Ji Xu. « Research on Mechanism of Electrochemical Mechanical Finishing ». Dans Materials Science Forum, 185–88. Stafa : Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-421-9.185.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Nishikawa, Koichi, Yuusuke Maeyama, Yusuke Fukuda, Masaaki Shimizu, Masashi Sato et Hiroaki Iwakuro. « Reverse Biased Electrochemical Etching of SiC-SBD ». Dans Materials Science Forum, 419–22. Stafa : Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-442-1.419.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Chi, C. S., Y. Jeong, S. S. Kim, J. H. Lee et H. J. Oh. « Electrochemical Etching of Aluminum Foil for Electrolytic Capacitors ». Dans Materials Science Forum, 385–88. Stafa : Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.385.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Noris-Suárez, Karem, Joaquin Lira-Olivares, Ana M. Ferreira, Armando Graterol, Jose L. Feijoo et Soo Wohn Lee. « Electrochemical Influence of Collagen Piezoelectric Effect in Bone Healing ». Dans Materials Science Forum, 981–84. Stafa : Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-431-6.981.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Pa, Pai Shan, et Hong Ho Cheng. « Using Borer-Shape Electrode in Electrochemical Smoothing of Hole ». Dans Materials Science Forum, 793–98. Stafa : Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-990-3.793.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zhu, Bao Guo, et Zhen Long Wang. « Fabrication of Microelectrode by Current Density Control in Electrochemical Micromachining ». Dans Materials Science Forum, 221–24. Stafa : Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-421-9.221.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Choi, Jae Won, Jin Kyu Kim, Yeon Hwa Kim, Jong Uk Kim et Jou Hyeon Ahn. « Electrochemical Properties of Primary Li/FeS2 Batteries ». Dans Materials Science Forum, 658–61. Stafa : Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-966-0.658.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kang, Sung Soo, et Yutaka Toi. « Modeling of Electrochemical-Mechanical Deformations of Ionic Polymer Metal Composite ». Dans Materials Science Forum, 1009–12. Stafa : Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-431-6.1009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hiramatsu, Go, Yoshihiro Hirata, Soichiro Sameshima et Naoki Matsunaga. « Electrochemical Properties of Perovskite Cathode for Solid Oxide Fuel Cell ». Dans Materials Science Forum, 985–88. Stafa : Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-431-6.985.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Electrochemical Materials Science"

1

Kavan, Ladislav. « Electrochemical preparation of carbon chains and nanoparticles ». Dans ELECTRONIC PROPERTIES OF NOVEL MATERIALS--SCIENCE AND TECHNOLOGY OF MOLECULAR NANOSTRUCTURES. ASCE, 1999. http://dx.doi.org/10.1063/1.59784.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kravets, Liubov I., Alla B. Gilman, Veronica Satulu, Bogdana Mitu et Gheorghe Dinescu. « Preparation and electrochemical properties of composite polymer membranes ». Dans 3RD INTERNATIONAL ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE CONGRESS. AIP, 2013. http://dx.doi.org/10.1063/1.4849275.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Wu, Xiaoyang, Song Huang, Wenpin Zhang, Qiang Feng et Yong Huang. « Study on the electrochemical corrosion behavior of industrial boilers ». Dans MATERIALS SCIENCE, ENERGY TECHNOLOGY AND POWER ENGINEERING II (MEP2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5041119.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Dulgerbaki, Cigdem, et Aysegul Uygun Oksuz. « Design Of Electrochromic Hybrid Poly(3-Methylthiophene)/Wo3 Materials Via Electrochemical Route ». Dans 2017 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2017. http://dx.doi.org/10.1109/plasma.2017.8495982.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Cao, Yuqing, et Zhixuan Li. « Enzyme inhibition-based electrochemical biosensors for pesticide residues detection ». Dans Third International Conference on Optoelectronic Science and Materials (ICOSM 2021), sous la direction de Siting Chen et Pei Wang. SPIE, 2021. http://dx.doi.org/10.1117/12.2617693.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Mao, Liping, Ling Ai, Shiyou Li, Qian Hou, Yingchun Xie, Youwei Liang et Jing Xie. « Improved electrochemical properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by Al2O3 coating ». Dans ADVANCES IN ENERGY SCIENCE AND ENVIRONMENT ENGINEERING II : Proceedings of 2nd International Workshop on Advances in Energy Science and Environment Engineering (AESEE 2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5029766.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Nützenadel, Christoph, Andreas Züttel et Louis Schlapbach. « Electrochemical storage of hydrogen in carbon single wall nanotubes ». Dans ELECTRONIC PROPERTIES OF NOVEL MATERIALS--SCIENCE AND TECHNOLOGY OF MOLECULAR NANOSTRUCTURES. ASCE, 1999. http://dx.doi.org/10.1063/1.59866.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gulyaeva, E., M. Sayfetdinova, T. Mamelina, A. Yunkina et E. Komarova. « Problems of reducing the volume of wastewater in electrochemical production ». Dans International Scientific and Practical Symposium "Materials Science and Technology" (MST2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0098899.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Phoohinkong, Weerachon, Thitinart Sukonket et Kanokthip Boonyarattanakalin. « Adsorbed protein on P25 nanoparticles–synthesis, characterization and electrochemical property ». Dans INTERNATIONAL CONFERENCE ON SCIENCE AND TECHNOLOGY OF EMERGING MATERIALS : Proceedings of the Second International Conference on Science and Technology of Emerging Materials 2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5053186.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Krishnan, Rajasree G., Beena Saraswathyamma, T. Anjana Raj et M. G. Gopika. « Poly (riboflavin) modified pencil graphite for the simultaneous electrochemical determination of serotonin and dopamine ». Dans INTERNATIONAL CONFERENCE ON TRENDS IN MATERIAL SCIENCE AND INVENTIVE MATERIALS : ICTMIM 2020. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0015807.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie