Littérature scientifique sur le sujet « Electrified transport systems »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Electrified transport systems ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Electrified transport systems"

1

Drabek, Jiri. « Electrified Transport Systems - Perspective of Transport for the Third Millennium ». Communications - Scientific letters of the University of Zilina 3, no 2-3 (30 septembre 2001) : 106–13. http://dx.doi.org/10.26552/com.c.2001.2-3.106-113.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Apollonskiy, Stanislav Mikhaylovich. « Problems of electromagnetic compatibility in electricity of rail system ». Transportation systems and technology 1, no 2 (15 décembre 2015) : 110–26. http://dx.doi.org/10.17816/transsyst201512110-126.

Texte intégral
Résumé :
Problems of electromagnetic compatibility on electrified railways are sharper than in the stationary energy sector. This is due to the following circumstances: 1. Electrified railways has considerable length in space and is usually located in different climatic and in geological zones. 2. In rail transport, as well as any other transport systems, a compact high-performance equipment used (high and low voltage), to a greater degree of exposure to external electromagnetic influences than in the stationary energy sector. 3. All processes (stationary and non-stationary) on an electrified rail, in one way or another, affect the operation of each of the elements of the system. 4. In the development of an extensive electrified railway is necessary to ensure the electromagnetic compatibility of each of the elements that are not always required in the stationary energy sector. 5. Problems of electromagnetic compatibility electrified railways significantly of more complicated, when are using magnetolevitatsionnyh technologies for elektrozhdvizhenie. Considered the problems of electromagnetic compatibility in electricity of rail system, are discussed ways of solving them.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Negreanu, D., M. Rusan et A. Mitrea. « Remote Supervision and Control Systems for Electrified Transport Power Supply ». IFAC Proceedings Volumes 30, no 8 (juin 1997) : 1157–61. http://dx.doi.org/10.1016/s1474-6670(17)43977-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Town, Graham, Seyedfoad Taghizadeh et Sara Deilami. « Review of Fast Charging for Electrified Transport : Demand, Technology, Systems, and Planning ». Energies 15, no 4 (10 février 2022) : 1276. http://dx.doi.org/10.3390/en15041276.

Texte intégral
Résumé :
As the number and range of electric vehicles in use increases, and the size of batteries in those vehicles increases, the demand for fast and ultra-fast charging infrastructure is also expected to increase. The growth in the fast charging infrastructure raises a number of challenges to be addressed; primarily, high peak loads and their impacts on the electricity network. This paper reviews fast and ultra-fast charging technology and systems from a number of perspectives, including the following: current and expected trends in fast charging demand; the particular temporal and spatial characteristics of electricity demand associated with fast charging; the devices and circuit technologies commonly used in fast chargers; the potential system impacts of fast charging on the electricity distribution network and methods for managing those impacts; methods for long-term planning of fast charging facilities; finally, expected future developments in fast charging technology and systems.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Szeląg, Adam, et Tadeusz Maciołek. « Power supply of trams in Poland – current state and perspectives of development ». MATEC Web of Conferences 180 (2018) : 03005. http://dx.doi.org/10.1051/matecconf/201818003005.

Texte intégral
Résumé :
Sustainable development of agglomerations requires efficient and ecological transport systems, i.e. electrified transport. In order to achieve the required results of operation of electrified urban transport, especially energy efficiency, it is required to closely examine the existing power supply systems. The biggest share of urban traction systems in Poland belongs to tram systems (in 15 agglomerations and cities). Recent years have witnessed an increased interest in modernisation of the existing lines and construction of new ones. Enhancement of RAMS (Reliability, Availability, Maintainability, and Safety) and energy efficiency of supply systems is a necessary requirement, due to fact that new, modern tram rolling stock with higher power poses significant challenge for the existing, in many systems, old power supply infrastructure. Furthermore, due to low driving-range of autonomous vehicles equipped with batteries and a need of frequent charging of storage devices, catenary supplied urban transport will dominate in the areas of its use. In addition, it might be helpful in developing hybrid vehicles supplied both from a catenary and from energy storage devices (charged during run under catenary) on sections without catenary. The paper presents parameters characterizing tram power supply systems in Poland. The analyses carried out for many tram lines have shown that even at relatively low investments for modernisation of the tram power supply system, it is possible to obtain fast return (energy saving due to improvement of efficiency of recuperation and the resulting reduction of CO2 emission). Other advantages of modernisations include: enhancement of standards in supply of modern trams with higher power and improvement of reliability due to the reduced risk of disturbances and damages.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sharma, Rohit. « Financing Indian Urban Rail through Land Development : Case Studies and Implications for the Accelerated Reduction in Oil Associated with 1.5 °C ». Urban Planning 3, no 2 (24 avril 2018) : 21–34. http://dx.doi.org/10.17645/up.v3i2.1158.

Texte intégral
Résumé :
Urban travel demand and oil dependence need dramatic change to achieve the 1.5 °C degree target especially with the electrification of all land-based passenger transport and the decarbonizing of electric power. In this article we investigate the transition of ‘oil-based automobile dependence’ to ‘urban rail plus renewable energy’ to cater for transport demand in Indian cities. India is perceived to be a key driver of global oil demand in coming decades due to the potential increase in car use driven by a fast growing national average income. However, it is possible that India could surprise the world by aggressively pursuing an electrified transit agenda within and between cities and associated supporting local transport with electric vehicles, together with renewable power to fuel this transport. The changes will require two innovations that this article focuses on. First, innovative financing of urban and intercity rail through land-based finances as funding and financing of such projects has been a global challenge. Second, enabling Indian cities to rapidly adopt solar energy for all its electrified transport systems over oil plus car dependence. The article suggests that Indian cities may contribute substantially to the 1.5 °C agenda as both policies appear to be working.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Sander Clerick, Serge Leivens, Guy Buytaert et Amol Chore. « Water-based Cooling Fluids to Mitigate the Thermal Management Challenges in New Energy Vehicles ». ARAI Journal of Mobility Technology 2, no 3 (23 septembre 2022) : p256–264. http://dx.doi.org/10.37285/ajmt.2.3.2.

Texte intégral
Résumé :
Thermal management is considered one of the key enablers for the adoption of New Energy Vehicles. An efficient design of an electrified vehicle’s cooling system, be it a HEV, BEV or FCEV, is of major importance to guarantee vehicle lifetime, optimize energy efficiency, enable adequate driving range and allowing high charging speed. Moreover, it is of critical importance for safety. Compared to internal combustion engine (ICE) vehicles, cooling systems for electrified vehicles have become more complex with increasing integration of a variety of parts. The cooling medium’s main function is no longer limited to cooling of the ICE; it also used to conserve and transport heat to essential powertrain parts such as the battery pack, all while electrical safety cannot be jeopardized. Many recently launched electrified vehicles successfully employ the same water-glycol based cooling liquids that are found in ICE vehicles. In light of future developments such as ultra-fast charging, advances in cooling systems and the cooling liquid are required. Recently, a clear shift from air cooling towards waterbased cooling fluids is witnessed mainly due to the strong beneficial heat transfer properties of water. For direct cooling of fuel cell stacks different changes are demanded since the upper electrical conductivity limit of the aqueous liquid compels the use of new additive technology.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Mihet-Popa, Lucian, et Sergio Saponara. « Toward Green Vehicles Digitalization for the Next Generation of Connected and Electrified Transport Systems ». Energies 11, no 11 (12 novembre 2018) : 3124. http://dx.doi.org/10.3390/en11113124.

Texte intégral
Résumé :
This survey paper reviews recent trends in green vehicle electrification and digitalization, as part of a special section on “Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid”, led by the authors. First, the energy demand and emissions of electric vehicles (EVs) are reviewed, including the analysis of the trends of battery technology and of the recharging issues considering the characteristics of the power grid. Solutions to integrate EV electricity demand in power grids are also proposed. Integrated electric/electronic (E/E) architectures for hybrid EVs (HEVs) and full EVs are discussed, detailing innovations emerging for all components (power converters, electric machines, batteries, and battery-management-systems). 48 V HEVs are emerging as the most promising solution for the short-term electrification of current vehicles based on internal combustion engines. The increased digitalization and connectivity of electrified cars is posing cyber-security issues that are discussed in detail, together with some countermeasures to mitigate them, thus tracing the path for future on-board computing and control platforms.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ghandriz, Toheed, Bengt Jacobson, Leo Laine et Jonas Hellgren. « Impact of automated driving systems on road freight transport and electrified propulsion of heavy vehicles ». Transportation Research Part C : Emerging Technologies 115 (juin 2020) : 102610. http://dx.doi.org/10.1016/j.trc.2020.102610.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Göransson, Lisa, Mariliis Lehtveer, Emil Nyholm, Maria Taljegard et Viktor Walter. « The Benefit of Collaboration in the North European Electricity System Transition—System and Sector Perspectives ». Energies 12, no 24 (7 décembre 2019) : 4648. http://dx.doi.org/10.3390/en12244648.

Texte intégral
Résumé :
This work investigates the connection between electrification of the industry, transport, and heat sector and the integration of wind and solar power in the electricity system. The impact of combining electrification of the steel industry, passenger vehicles, and residential heat supply with flexibility provision is evaluated from a systems and sector perspective. Deploying a parallel computing approach to the capacity expansion problem, the impact of flexibility provision throughout the north European electricity system transition is investigated. It is found that a strategic collaboration between the electricity system, an electrified steel industry, an electrified transport sector in the form of passenger electric vehicles (EVs) and residential heat supply can reduce total system cost by 8% in the north European electricity system compared to if no collaboration is achieved. The flexibility provision by new electricity consumers enables a faster transition from fossil fuels in the European electricity system and reduces thermal generation. From a sector perspective, strategic consumption of electricity for hydrogen production and EV charging and discharging to the grid reduces the number of hours with very high electricity prices resulting in a reduction in annual electricity prices by up to 20%.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Electrified transport systems"

1

Fischer, Robert. « Investigation into sustainable energy systems in Nordic municipalities ». Licentiate thesis, Luleå tekniska universitet, Energivetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-78091.

Texte intégral
Résumé :
Municipal energy systems in Nordic environments face multiple challenges: the cold climate, large-scale industries, a high share of electric heating and long distances drive energy consumption. While actions on the demand side minimize energy use, decarbonization efforts in mining, industries, the heating and the transport sector can increase the consumption of electricity and biofuels. Continued growth of intermittent wind and solar power increases supply, but the planned phase out of Swedish nuclear power will pose challenges to the reliability of the electricity system in the Nordic countries. Bottlenecks in the transmission and distribution grids may restrict a potential growth of electricity use in urban areas, limit new intermittent supply, peak electricity import and export. Environmental concerns may limit growth of biomass use. Local authorities are committed in contributing to national goals on mitigating climate change, while considering their own objectives for economic development, increased energy self-sufficiency and affordable energy costs. Given these circumstances, this thesis investigates existing technical and economic potentials of renewable energy (RE) resources in the Nordic countries with a focus on the northern counties of Finland, Norway and Sweden. The research further aims to provide sets of optimal solutions for sustainable Nordic municipal energy systems, where the interaction between major energy sectors are studied, considering multiple objectives of minimizing annual energy system costs and reducing carbon emissions as well as analyzing impacts on peak electricity import and export. This research formulates an integrated municipal energy system as a multi-objective optimization problem (MOOP), which is solved by interfacing the energy system simulation tool EnergyPLAN with a multi-objective evolutionary algorithm (MOEA) implemented in Matlab. In a first step, the integration or coupling of electricity and heating sectors is studied, and in a second step, the study inquires the impacts of an increasingly decarbonized transport sector on the energy system. Sensitivity analysis on key economic parameters and on different grid emission factors is performed. Piteå (Norrbotten County, Sweden) is a typical Nordic municipality, which serves as a case study for this research. The research concludes that significant techno-economic potentials exist for the investigated resources. Optimization results show that CO2 emissions of a Nordic municipal energy system can be reduced by about 60% without a considerable increase in total energy system costs and that peak electricity import can be reduced by up to 38%. The outlook onto 2030 shows that the transport sector could be composed of high electrification shares and biofuels. Technology choices for optimal solutions are highly sensitive to electricity prices, discount rates and grid emission factors. The inquiries of this research provide important insights about carbon mitigation strategies for integrated energy sectors within a perspective on Nordic municipalities. Future work will refine the transport model, develop and apply a framework for multi-criteria decision analysis (MCDA) enabling local decision makers to determine a technically and economically sound pathway based on the optimal alternatives provided, and analyze the existing policy framework affecting energy planning of local authorities.
Kommunala energisystem i nordiska miljöer möter flera utmaningar: det kalla klimatet, storskaliga industrier, en stor andel elvärme och långa distanser driver energiförbrukningen. Medan åtgärder vidtas på efterfrågesidan för att minimera energianvändningen, kan utsläppsminskande åtgärder inom gruvdrift, industrier, uppvärmningen och transportsektorn öka förbrukningen av el och biobränslen. Fortsatt tillväxt av intermittent vind- och solkraft ökar elproduktion, men den planerade avvecklingen av svensk kärnkraft kommer att utmana tillförlitligheten i elsystemet i de nordiska länderna. Flaskhalsar i överförings- och distributionsnäten kan begränsa en potentiell tillväxt av elanvändningen i stadsområden, begränsa ny intermittent utbud, och påverka elutbyte mellan länderna. Miljöhänsyn kan begränsa ökad användning av biomassa. Lokala myndigheter är engagerade i att bidra till nationella klimatmål, samtidigt som de följer sina egna mål för ekonomisk utveckling, ökad självförsörjning av energi och överkomliga energikostnader. Mot bakgrund av dessa omständigheter undersöker denna avhandling befintliga tekniska och ekonomiska potentialer för förnybar energi i Norden med fokus på de nordliga länen i Finland, Norge och Sverige. Forskningen syftar vidare till att utveckla optimala lösningar för hållbara nordiska kommunala energisystem, där samspelet mellan stora energisektorer studeras, med tanke på att minimera årliga energisystemkostnader och samtidigt minska koldioxidutsläppen samt analysera påverkan på elimport till och export från kommunen. Denna forskning formulerar ett integrerad kommunalt energisystem som multimåloptimeringsproblem (multi-objective optimisation problem - MOOP), som löses genom att kombinera simuleringsverktyget EnergyPLAN med en evolutionär algoritm implementerad i Matlab. I ett första steg studeras kopplingen av el- och värmesektorerna, och i ett andra steg effekterna av en integrerad och alltmer förnybar transportsektor på energisystemet. Känslighetsanalys på viktiga ekonomiska parametrar och på olika utsläppsfaktorer utförs. Piteå (Norrbottens län, Sverige) är en typisk nordisk kommun som fungerar som en fallstudie för detta arbete. Forskningens slutsatser innebär att det finns betydande teknisk-ekonomiska potentialer för de undersökta förnybara resurserna. Optimeringsresultaten visar att koldioxidutsläppen från ett nordiskt kommunalt energisystem kan minskas med cirka 60% utan en avsevärd ökning av de totala energisystemkostnaderna och att den högsta elimporten kan minskas med upp till 38%. Resultat för år 2030 visar att transportsektorn kan ha en mycket hög elektrifieringsgrad och samtidigt används biobränslen i tunga fordon. Optimala lösningar är mycket känsliga för elpriser, räntor och utsläppsfaktorer. Detta arbete ger viktiga insikter om strategier för koldioxidminskning för integrerade energisektorer i ett perspektiv på nordiska kommuner. Min framtida forskning kommer att förfina transportmodellen, utveckla och tillämpa ett ramverk för beslutsanalys med flera kriterier (multi-criteria decision analysis - MCDA) som ska stödja lokala myndigheter att fastställa tekniskt och ekonomiskt hållbara lösningar i deras energiplanering.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Graber, Giuseppe. « Electric Mobility : Smart Transportation in Smart Cities ». Doctoral thesis, Universita degli studi di Salerno, 2016. http://hdl.handle.net/10556/2470.

Texte intégral
Résumé :
2014 - 2015
One of the mega trends over the past century has been humanity’s move towards cities. Public Administration and Municipalities are facing a challenging task, to harmonize a sustainable urban development offering to people in city the best living conditions. Smart cities are now considered a winning urban strategy able to increase the quality of life by using technology in urban space, both improving the environmental quality and delivering better services to the citizens. Mobility is a key element to support this new approach in the growth of the cities. In fact, transport produces several negative impacts and problems for the quality of life in cities, such as, pollution, traffic and congestion. Therefore, Sustainable Mobility is one of the most promising topics in smart city, as it could produce high benefits for the quality of life of almost all the city stakeholders. The boldest and imminent challenge awaiting mobility in smart cities is the introduction of the electricity as energy vector instead of fossil fuels, concerning both the collective and the private transports. Electric public transport include electric city buses, trolleybuses, trams (or light rail), passenger trains and rapid transit (metro/subways/undergrounds, etc.). Even though railway systems are the most energy efficient than other transport modes, the enhancement of energy efficiency is an important issue to reduce their contributions to climate change further as well as to save and enlarge competition advantages involved. One key means for improving energy efficiency is to deploy advanced systems and innovative technologies. Additionally, electrification of the private road transport has emerged as a trend to support energy efficiency and CO2 emissions reduction targets. According to the International Energy Agency, in order to limit average global temperature increases to 2°C - the critical threshold that scientists say will prevent dangerous climate change -, by 2050, 21% of carbon reductions must come from the transport sector. Full electric vehicles (EVs) use electric motor and battery energy for propulsion, which has higher efficiency and lower operating cost compared to the conventional internal combustion engine vehicle. Today, there are more than 20 models offered by different brands covering different range of sizes, styles, prices and powertrains to suit the wider range of consumers as possible. The continuous development of lithium ion battery and of fast charging technology will be the major facilitators for EVs roll out in the very near future. However, the present EVs industry meets many technical limitations, such as high initial price, long battery recharge time, limited charging facilities and driving range. Although it is desirable a fast development from the start of electric mobility, its impact on the existing power grid must be assessed beforehand to see if it is necessary prior an adjustment of power infrastructure or/and the introduction of new services in the power grid. In fact, the interconnection of EVs on the power grid for charging their batteries potentially introduces negative impacts on grid operation: uncontrolled charging can significantly increase average load in the existing power systems, with problems in terms of reliability and overloads. If uncontrolled EV charging is added to the system, this can have effects both at the distribution and at the generation level. Controlled or smart charging will allow a much greater number of cars in the cities, avoiding local overload and allowing a faster EVs penetration without requiring an imminent improvement of the electricity generating and grid capacity. Smart charging might also allow load balancing both at sub-station and at the grid level, particularly with charging at peak wind supply times. This kind of use of EV battery capacity for storing electric energy may ease the integration of large scale intermittent electricity sources such as renewable energy sources. The proposed PhD Dissertation is developed in the context just described, mainly focusing the attention on the impact that electric mobility will have on the power systems and the effectiveness of solutions aimed to increase the reliability and resilience in the smart grid. In particular, it is addressed a scenario analysis regarding the electric vehicles charging management and some innovative solutions to increase energy efficiency in electrified transport systems. The first chapter emphasizes on the key aspects related to the sustainable mobility in the smart cities of the future. It provides a brief overview on the transport sector energy consumption expected in the next years. In particular, the chapter shows the significant contribution that the electrification of urban transport may provide to the sustainable mobility, and the serious concerns related to its impact on existing power systems. Chapter 2 proposes a solution method for an optimal generation rescheduling and load-shedding (GRLS) problem in microgrids in order to determine a stable equilibrium state following unexpected outages of generation or sudden increase in demand. The chapter mainly focuses on the mathematical formulation of the GRLS problem and the proposed solution algorithm. Finally, simulations results carried out by using a real case study data are presented and discussed. In Chapter 3, a simple and effective methodology is proposed to analyze data acquired during the fulfillment of the COSMO research project, and to identify typical load pattern for the EVs charging. The chapter also presents a novel scheduling problem formulation, flattening the demand load profile and minimizing the EVs charging costs, according to the electricity prices during the day. Finally, some simulations results are discussed, showing the effectiveness of the proposed methodology. Chapter 4 introduces some innovative solutions for energy efficiency in urban railway systems focusing, in particular, on energy storage systems and eco-drive operations in metro networks. The mathematical formulation of these optimization problems and the proposed solution algorithms are illustrated and discussed. The obtained results are part of the activity carried out in the SFERE research project. Finally, Chapter 5 ends the Dissertation with some concluding remarks and further developments of the proposed research activity. [edited by author]
Una delle grandi tendenze nel corso del secolo scorso è stata la concentrazione della popolazione nelle città. Attualmente, le Pubbliche Amministrazioni e i Comuni si trovano ad affrontare un compito impegnativo per armonizzare uno sviluppo urbano sostenibile e offrire agli abitanti delle città le migliori condizioni di vita. Le smart cities sono ormai considerate una strategia urbana vincente in grado di aumentare la qualità della vita utilizzando la tecnologia, sia per il miglioramento della qualità ambientale che per fornire servizi migliori ai cittadini. A tale scopo, la mobilità risulta essere un elemento chiave per sostenere questo nuovo approccio nella crescita delle città. Infatti, i sistemi di trasporto urbano producono diversi effetti negativi sulla qualità della vita urbana, come ad esempio, inquinamento, traffico e congestione. Pertanto, la mobilità sostenibile è uno degli argomenti più interessanti per le smart cities, in quanto in grado produrre elevati benefici per la qualità della vita di quasi tutte le parti interessate degli agglomerati urbani. La sfida più audace e imminente per la mobilità nelle smart cities del futuro è l'introduzione dell'elettricità come vettore energetico al posto dei combustibili fossili, per quanto riguarda sia il trasporto collettivo che quello privato. I mezzi per il trasporto pubblico comprendono autobus elettrici, filobus, tram, treni passeggeri e trasporto rapido (metropolitane, etc.). Anche se i sistemi di trasporto su ferro sono più efficienti rispetto ad altri modi di trasporto, l’incremento dell'efficienza energetica è un tema importante per ridurre ulteriormente il loro contributo alle emissioni inquinanti e al consumo di energia. Le più promettenti soluzioni per migliorarne l'efficienza energetica consistono nell’implementazione di sistemi avanzati per il recupero dell’energia di frenata e tecnologie di controllo innovative. D’altro canto, l'elettrificazione del trasporto individuale su strada è emersa come una tendenza finalizzata a sostenere gli obiettivi di efficienza energetica e di riduzione delle emissioni di CO2. Secondo l'Agenzia Internazionale per l'Energia, al fine di limitare, entro il 2050, l'aumento della temperatura media globale a 2 °C - la soglia critica che gli scienziati suggeriscono di non superare per evitare pericolosi cambiamenti climatici -, il 21% delle riduzioni di biossido di carbonio deve provenire dal settore trasporti. I veicoli elettrici (EV) utilizzano un motore elettrico e l'energia accumulata nelle batterie per la propulsione, in modo da avere una maggiore efficienza e minori costi operativi rispetto ai veicoli convenzionali con motore a combustione interna. Oggi, esistono in commercio più di 20 modelli offerti da diverse case produttrici che coprono una ampia gamma di modelli che differiscono per dimensione, stile, prezzo e motorizzazione in modo da soddisfare il maggior numero di consumatori possibile. Il continuo sviluppo delle batterie al litio e delle tecnologie di ricarica rapida saranno i principali fattori abilitanti per la diffusione degli EV in un futuro molto prossimo. Tuttavia, l'attuale industria dei veicoli elettrici incontra molte limitazioni tecnico-economiche, come elevati costi, autonomia e tempi di ricarica della batteria, capillarità delle infrastrutture di ricarica. Sebbene sia auspicabile un rapido sviluppo della mobilità elettrica, il suo impatto sulla rete elettrica esistente deve essere investigato a fondo per verificare la necessità di potenziamenti delle infrastrutture e/o l'introduzione di nuovi servizi nella rete elettrica. Infatti, l'interconnessione dei veicoli elettrici con la rete di distribuzione dell’energia necessaria per la ricarica delle batterie può causare effetti negativi sul normale funzionamento del sistema elettrico: una ricarica degli EV non controllata può aumentare significativamente il carico medio negli impianti esistenti, introducendo problemi di affidabilità e sovraccarico. La ricarica intelligente o controllata degli EV consente, invece, di gestire un numero molto maggiore di autovetture elettriche nelle città, riducendo le possibilità di sovraccarico locale e di velocizzare la penetrazione della mobilità elettrica senza che rendere necessari imminenti potenziamenti dei sistemi di produzione di energia elettrica e incrementi della capacità di rete. La ricarica intelligente, inoltre, può anche influire sul bilanciamento del carico sia a livello della sottostazione elettrica che a livello di rete di distribuzione, in particolare quando si verificano molte sessioni di ricarica nelle ore di punta. Infatti, l’utilizzo della capacità della batteria degli EV per l’accumulo di energia elettrica può facilitare l'integrazione su larga scala delle fonti di energia non programmabili, come quelle rinnovabili. Il lavoro di tesi si sviluppa nel contesto di riferimento appena descritto, focalizzando l'attenzione soprattutto sull'impatto che la mobilità elettrica ha sui sistemi elettrici e sull'efficacia di nuove soluzioni finalizzate all’incremento dell'affidabilità nelle smart grids. In particolare, viene proposta un'analisi di scenario per quanto riguarda la gestione intelligente delle ricariche dei veicoli elettrici e alcune soluzioni innovative per aumentare l'efficienza energetica nei sistemi di trasporto elettrificati. Il primo capitolo sottolinea gli aspetti chiave relativi alla mobilità sostenibile nelle smart cities del futuro e fornisce una breve panoramica sul consumo energetico del settore trasporti previsto nel prossimo futuro. In particolare, vengono evidenziate da un lato il significativo contributo che l'elettrificazione dei trasporti urbani può fornire alla causa della mobilità sostenibile, e dall’altro, le gravi preoccupazioni legate all’impatto sui sistemi elettrici esistenti di un notevole incremento della domanda. Il Capitolo 2 propone un metodo per la soluzione del problema congiunto di scheduling dei generatori e load shedding (GRLS) all’interno di microgrids portando in conto l’incertezza sia sulla domanda che lato generazione. Il fine è determinare un nuovo stato di equilibrio stabile in seguito a guasti, riduzione della generazione da fonte rinnovabile o improvviso aumento della domanda. Il capitolo si concentra principalmente sulla formulazione matematica del problema GRLS e sull'algoritmo di soluzione proposto. Infine, sono presentati e commentati i risultati di simulazione basati su un caso studio reale. Nel Capitolo 3, è proposta una metodologia semplice ed efficace per identificare profili di carico tipico relativi alla ricarica di veicoli elettrici: in particolare, l’analisi condotta si basa sull’analisi dei dati acquisiti durante lo svolgimento del progetto di ricerca COSMO. Il capitolo, inoltre, introduce una formulazione matematica del problema dello scheduling delle ricariche dei veicoli elettrici, che garantisce un appiattimento del profilo di carico e riduce allo stesso tempo il costo della ricarica per gli utenti. Infine, sono commentati i risultati delle simulazioni eseguite dimostrando l'efficacia della metodologia proposta. Il Capitolo 4 introduce alcune soluzioni innovative per l'efficienza energetica nei sistemi di trasporto urbani: l’attenzione viene posta, in particolare, sui sistemi di accumulo dell’energia e sulla condotta di guida Eco-Drive in reti metropolitane. In dettaglio, nel capitolo, vengono introdotti e commentati la formulazione matematica dei problemi di ottimizzazione proposti e i rispettivi algoritmi di soluzione. I risultati ottenuti fanno parte delle attività svolte nell’ambito del progetto di ricerca SFERE. Infine, il Capitolo 5 conclude la tesi con alcune osservazioni finali e con i possibili sviluppi dell'attività di ricerca proposta. [a cura dell'autore]
XIV n.s.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Electrified transport systems"

1

Antoniou, C., A. Cairns, C. Gerada, S. Worall, R. Townend, P. Dahele, G. Day et S. Simplay. « Life cycle analysis of power electronics and electric machines for future electrified passenger cars ». Dans Powertrain Systems for Net-Zero Transport, 315–32. London : CRC Press, 2021. http://dx.doi.org/10.1201/9781003219217-18.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Bawono, Ali Aryo. « Electro-Mobility Solution Towards the Ultimate Public Transport System with a Case Study of Singapore ». Dans Engineered Cementitious Composites for Electrified Roadway in Megacities, 7–19. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-88542-7_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Rieger, Daniel, Andreas Kemle, Alfred Elsäßer, Marco Warth et Otmar Scharrer. « MAHLE Efficient Electric Transport – an efficient system solution for the electrified urban mobility ». Dans Proceedings, 17–31. Wiesbaden : Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-21419-7_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

« Energy saving in electrified transport by capacity storages ». Dans Energy Efficiency Improvement of Geotechnical Systems, 131–34. CRC Press, 2013. http://dx.doi.org/10.1201/b16355-17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Viti, Francesco, Marco Rinaldi et Georgios Laskaris. « Optimal Management of Electrified and Cooperative Bus Systems ». Dans Transportation Systems for Smart, Sustainable, Inclusive and Secure Cities [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93892.

Texte intégral
Résumé :
This chapter presents an integrated management approach exploiting the potentials of the new Cooperative Intelligent Transportation Systems (C-ITS) to meet the requirements of the next generation Public Transport (PT). This approach considers the additional complexity of electrification—for instance electric busses need to periodically recharge during operation using dedicated infrastructure. This not only can impact service level, but also extend operating costs with complex electric charges. We develop new strategies explicitly optimizing the interactions within the PT ecosystem consisting of vehicles, traffic signals, and e-bus charging infrastructure. To achieve these goals, we rely on vehicle control rather than on the use of transit signal priority, which in congested urban scenarios can have negative effects on overall traffic performance. The main research challenges are in formulating and solving complex multi-objective optimization problems and real-time control. The proposed system is tested and evaluated in simulation showing the benefits of electrified and cooperative bus systems.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Aymen, Flah, Habib Kraiem et Lassaad Sbita. « Modeling and Control of Hybrid Electric Vehicle ». Dans Advances in Systems Analysis, Software Engineering, and High Performance Computing, 521–41. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-5788-4.ch021.

Texte intégral
Résumé :
The transportation systems have become more electrified, and the major countries of the world program using electric scooters, electric bicycles, electric trains, electric buses, and electric vehicles for their transport. The traditional energy resource stocks are still decreasing rapidly, which makes the world afraid about the future of the transport sector. Therefore, several international restrictions and laws have limited using this kind of energy in relation to the transport sector by encouraging public transport and making a high taxes for the highly energy-consuming cars. The robustness and the efficiency of transportation systems designs are related especially to the internal electric motor and to the battery capacity used. From the other side, the energy management problem presents a serious factor that must be optimized in order to guarantee the overall efficiency and rentability. This chapter explores the modeling and control of hybrid electric vehicles.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Strebkov, Dmitry, Alexey Nekrasov et Anton Nekrasov. « Wireless Technology of Electric Power Transmission Using Non-Metal Conductive Media ». Dans Handbook of Research on Smart Technology Models for Business and Industry, 376–98. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-3645-2.ch016.

Texte intégral
Résumé :
Over two million kilometers of power grids in Russia exist. They have to be replaced in the coming 15 years. However, nowadays we witness and participate in the development of advanced technologies. New wireless resonant electric-power systems for different power consumers are considered including stationary single-conductor transmission lines and single-trolley and noncontact high-frequency electric transport, using non-metal conductive media. The trends of the future development and application of wireless resonant systems for electric power transmission are described. In the future, electrified mobile robots with external wireless electric power supplies will allow the organization of agricultural production with full automation of technological processes. The chapter describes the method and means for electric power transmission without metal wires. In this case, several components of conventional transmission lines, such as metal wires, insulators, and cables, are excluded, which results in considerable reduction in the equipment cost.
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Electrified transport systems"

1

Barsali, Stefano, Alessio Bechini, Romano Giglioli et Davide Poli. « Storage in electrified transport systems ». Dans 2012 IEEE International Energy Conference (ENERGYCON 2012). IEEE, 2012. http://dx.doi.org/10.1109/energycon.2012.6347716.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Svenson, Pontus, Kerstin Eriksson et Sara Janhall. « Resilience in systems of systems : electrified transport systems ». Dans 2021 16th International Conference of System of Systems Engineering (SoSE). IEEE, 2021. http://dx.doi.org/10.1109/sose52739.2021.9497485.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Keen, P. « Using condition monitoring systems to improve the reliability of overhead electrified railway operations ». Dans IEE Seminar Condition Monitoring for Rail Transport Systems. IEE, 1998. http://dx.doi.org/10.1049/ic:19980981.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Fioriti, Marco, Pierluigi Della Vecchia, Giuseppa Donelli et Philipp Hansmann. « Assessing the Integration of Electrified On-Board Systems in an MDAO framework for a small transport aircraft ». Dans AIAA AVIATION 2021 FORUM. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2021. http://dx.doi.org/10.2514/6.2021-3094.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zeiner, Martina, Matthias Landgraf, Martin Smoliner et Peter Veit. « Higher automation - methods to increase energy efficiency in railway operation ». Dans 6th International Conference on Road and Rail Infrastructure. University of Zagreb Faculty of Civil Engineering, 2021. http://dx.doi.org/10.5592/co/cetra.2020.1159.

Texte intégral
Résumé :
Automation is already present in many areas of the railway sector (e.g. computer-aided dispatching or electronic interlockings). In order to achieve climate goals and offer an attractive transport service, it is essential to advance automation and higher grades of automation (GoA). The four levels of automation range from supporting systems (GoA1) to automotive trains (GoA4). This paper summarises a study which outlines the impacts, requirements and potentials of higher GoA within different segments: passenger transport, freight and mixed traffic on mainlines and branch lines. The findings show that energy-efficiency and capacity can already be increased with the first two GoA for both, passenger and mixed traffic. Enhancements have an influence on costs, not to mention the customer satisfaction. The potential in freight transport, e.g. in shunting, can be exploited with intelligent freight trains (GoA4). This leads to improved safety and reduced costs. Within this study a tool to calculate energy consumption is established. It enables the depiction of various scenarios for different trains and driving behaviours. The simulation tool is validated by real measured data. The outcome of the calculation tool underpins the benefits of driver advisory systems (DAS) and automatic train operation (ATO). It can be stated that higher automation, especially on a dispositive level is essential if energy and capacity improvement are to be achieved, regardless of the type of network (electrified or non-electrified). However, operational optimisation has its limits. For non-electrified lines, alternative drives offer the opportunity to further mitigate environmental impacts.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sinhuber, Philipp, Werner Rohlfs et Dirk Uwe Sauer. « Study on power and energy demand for sizing the energy storage systems for electrified local public transport buses ». Dans 2012 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2012. http://dx.doi.org/10.1109/vppc.2012.6422680.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kandaev, Vasilii A., Ksenia V. Avdeeva et Anastasia V. Utkina. « Determination of Electrical Quantities in the Traction Rail Network and Buried Pipelines Located Under the Influence of Stray Currents from Electrified Railway Transport ». Dans 2018 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2018. http://dx.doi.org/10.1109/dynamics.2018.8601479.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Barbosa, Fábio C. « Hybrid Rail Technology Review : an Intermediate Pathway For Electrifying the Freight and Commuter Rail Sector - a Technical and Operational Assessment ». Dans 2021 Joint Rail Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/jrc2021-58271.

Texte intégral
Résumé :
Abstract The transport industry, as any other sector, has been permanently challenged by both the continuously stringent environmental standards and the energy efficiency requirements, which has driven a set of initiatives focused on both the fuel burn reduction and the environmental performance improvement. The rail sector currently relies on the efficient and local zero emission electrical traction for the medium to heavy density corridors. However, for the light to medium density corridors (both passenger and freight), given the high upfront costs associated with the electrical infrastructure, they are currently required to rely on fossil fuel based traction (often, the diesel-electric) architecture, with an inherent efficiency and environmental burden. The advent of hybridization, i.e. the use of more than one power source in a powertrain (mainly — but not restricted to — an internal combustion engine (ICE) and electric motors (EM), associated with an electrical energy storage device - ESD) — currently a feasible approach for the automotive sector — has opened the way for the rail industry, as an opportunity to improve the energetic efficiency and reduce the environmental footprint for the aforementioned low to medium density rail corridors, without the cost burden of an electrical infrastructure. The hybrid powertrain efficiency drivers are basically: i) kinetic energy recovery, through the use of the regenerative braking (i.e. using electric motors as generators, to recover part of the train’s kinetic energy); ii) improved engine performance, avoiding the low efficiency (low load) engine range and iii) engine downsizing (engine power requirement reduction, as it is assisted by the electric traction on power bursts). From an environmental perspective, the reduced fuel consumption also means lower emissions. Moreover, hybrid configurations might also reduce noise and gaseous engine emissions within/nearby stations or urban rail yards, by switching off internal combustion engines, running the train and powering auxiliary systems with the previously stored electrical energy on the ESD. Finally, for electrified rail lines, the hybrid rail configuration might also provide the so called last mile capability, used to circumvent non electrified rail stretches, like bridges or tunnels, as well as small extension non electrified rail segments. This work presents a review of hybrid rail technology, covering hybrid configuration and energy storage devices, from both a technical, operational and environmental perspective, supported on current available technical literature, as well as on simulation and field test reports, followed by a near to mid term outlook of hybrid rail technology for both freight and passenger segments.
Styles APA, Harvard, Vancouver, ISO, etc.
9

San Marchi, Chris, Brian P. Somerday, Kevin A. Nibur, Douglas G. Stalheim, Todd Boggess et Steve Jansto. « Fracture Resistance and Fatigue Crack Growth of X80 Pipeline Steel in Gaseous Hydrogen ». Dans ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57684.

Texte intégral
Résumé :
Gaseous hydrogen is a convenient medium to store and transport energy. As existing petroleum-based platforms are electrified, such as with the growth of fuel cell systems, hydrogen is becoming an attractive fuel which must be distributed, stored and dispensed. Hydrogen is used extensively in refining of petroleum products, and often distributed by pipeline. However, there remains a need to quantify the mechanical properties of low-cost steels in gaseous hydrogen and to relate the measured performance to the variety of microstructures that characterize steels. This study is part of a larger effort to characterize a broad range of steels manufactured for pipelines and to measure their fracture and fatigue resistance in gaseous hydrogen. The fracture resistance and fatigue crack growth rates of two microstructural variations of X80 pipeline steel were measured in gaseous hydrogen at pressure of 21 MPa. The performance of these steels was found to be similar to the performance of other ferritic steels that are currently used to distribute gaseous hydrogen.
Styles APA, Harvard, Vancouver, ISO, etc.
10

van der Put, Dieter. « Efficient commercial powertrains – How to achieve a 30% GHG reduction in 2030 ». Dans FISITA World Congress 2021. FISITA, 2021. http://dx.doi.org/10.46720/f2020-adm-054.

Texte intégral
Résumé :
In order to reduce greenhouse gas emissions from the transport sector, the EU has agreed on new regulations to limit CO2 emissions of new heavy-duty vehicles over 16 tons by 15% from 2025 onwards and by 30% from 2030 onwards compared to the 2019 reference. These CO2 targets pose a major challenge, especially for the heavy-duty sector. The increase in freight traffic and vehicle size as well as weight restrictions limit the reduction potential of energy consumption. Moreover, the total costs of ownership (TCO) play a decisive role in which technologies find their way into this competitive market. Recent studies show that new energy sources from renewable energies will not have a noticeable effect on reducing CO2 emissions in the transport sector until 2030. In this transition, a significant portion will be achieved by vehicle measures, like e.g. aerodynamic and rolling resistance improvements, as well as intelligent mobility vehicle functionalities. To reduce CO2 emissions of long-haul trucks, the focus during the next decade will continue to be on optimizing the efficiency of the powertrain driven by a combustion engine. The improvement of the combustion efficiency is one part of the possible and necessary measures. An additional potential is to recycle a part of the waste energy, generated during operation, wherever and whenever it can be used efficiently. Because of region specific legislations, applications and market demands, prior to 2025 a short term flexible integration is key, therefore requiring a modular architecture. It consists of four major systems: - Energy converters for recovering loss energy from braking operation and exhaust enthalpy like Integrated Starter Generator (ISG) or Waste Heat Recovery systems (WHR) - Electrically supported aftertreatment solutions to also meet the next level of emission limits - 48V board network<br>- Electrified engine components like electrically driven auxiliaries, electrically assisted charging or an electrically driven low-pressure EGR pump to allow the combustion engine to be optimized throughout the entire operating range. The presentation describes the concept of such a modular electrified HD Longhaul Truck. Based on driving cycle simulations, the potential of the various modules, different configurations and applications are estimated. Furthermore, measures like alternative fuels (e.g. CNG, LNG, H2) will become available to further reduce CO2 emissions. As further initiative in this paper, intelligent mobility vehicle functionalities will be presented, making use of truck and cloud connectivity information and adapted to the customer specific truck operation requirements.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie