Livres sur le sujet « Electrical evoked potentials »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Electrical evoked potentials.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 37 meilleurs livres pour votre recherche sur le sujet « Electrical evoked potentials ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les livres sur diverses disciplines et organisez correctement votre bibliographie.

1

H, Duffy Frank, dir. Topographic mapping of brain electrical activity. Boston : Butterworths, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

H, Duffy Frank, dir. Topographic mapping of brain electrical activity. Boston : Butterworth, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

International Symposium on Clinical Neurophysiological Aspects of Psychiatric Conditions (7th 1985 Philadelphia, Pa.). Brain electrical potentials and psychopathology : Proceedings of the VII International Symposium on Clinical Neurophysiological Aspects of Psychiatric Conditions, held September 7-8, 1985, in Philadelphia, Pennsylvania. Sous la direction de Shagass Charles 1920-, Josiassen Richard C et Roemer Richard A. New York : Elsevier, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

S, Gevins A., et Rémond Antoine, dir. Methods of analysis of brain electrical and magnetic signals. Amsterdam : Elsevier, 1987.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Houlden, David Allen. A comparison of descending evoked potentials and muscle responses after transcranial magnetic stimulation and skull base electrical stimulation in awake human subjects. Ottawa : National Library of Canada = Bibliothèque nationale du Canada, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

F, Grandori, Hoke M et Romani G. L, dir. Auditory evoked magnetic fields and electric potentials. Basel : Karger, 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

1947-, Levy Walter J., Chicago Neurosurgical Center et Symposium on Transcranial Magnetic Stimulation and the Motor Evoked Potential (1989 : Chicago, Ill.), dir. Magnetic motor stimulation : Basic principles and clinical experience. Amsterdam : Elsevier, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Magnetic stimulation of the human nervous system. Oxford : Oxford University Press, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Hans, Lüders, dir. Deep brain stimulation and epilepsy. London : Martin Dunitz, 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

E, Cullington Helen, dir. Cochlear implants : Objective measures. London : Whurr Publishers, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Sudhansu, Chokroverty, dir. Magnetic stimulation in clinical neurophysiology. Boston : Butterworths, 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Buchner, Helmut. Evoked potentials. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199688395.003.0015.

Texte intégral
Résumé :
Evoked potentials (EPs) occur in the peripheral and the central nervous system. The low amplitude signals are extracted from noise by averaging multiple time epochs time-locked to a sensory stimulus. The mechanisms of generation, the techniques for stimulation and recording are established. Clinical applications provide robust information to various questions. The importance of EPs is to measure precisely the conduction times within the stimulated sensory system. Visual evoked potentials to a pattern reversal checker board stimulus are commonly used to evaluate the optic nerve. Auditory evoked potentials following ‘click’ stimuli delivered by a headset are most often used to test the auditory nerve and for prognostication in comatose patients. Somatosensory evoked potentials to electrical stimulation of distal nerves evaluate the peripheral nerve and the lemniscal system, and have various indications from demyelinating diseases to the monitoring of operations and prognosis of comatose patients.
Styles APA, Harvard, Vancouver, ISO, etc.
13

1959-, Michel Christoph M., dir. Electrical neuroimaging. Cambridge : Cambridge University Press, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Wackermann, Jirí, Thomas Koenig, Christoph M. Michel, Daniel Brandeis et Lorena R. R. Gianotti. Electrical Neuroimaging. Cambridge University Press, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Jiří Wackermann, Thomas Koenig, Christoph M. Michel, Daniel Brandeis et Lorena R. R. Gianotti. Electrical Neuroimaging. Cambridge University Press, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Koenig, Thomas, Christoph M. Michel, Daniel Brandeis, Lorena R. R. Gianotti et Jiří Wackermann. Electrical Neuroimaging. Cambridge University Press, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Wackermann, Jirí, Thomas Koenig, Christoph M. Michel, Daniel Brandeis et Lorena R. R. Gianotti. Electrical Neuroimaging. Cambridge University Press, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Eisenhower, Timothy. Evoked Potentials and Electrical Stimulation : Clinical Roles, Challenges and Emerging Research. Nova Science Publishers, Incorporated, 2017.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Duffy, Frank H. Topographic Mapping of Brain Electrical Activity. Elsevier Science & Technology Books, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Deletis, Vedran, Francesco Sala et Sedat Ulkatan. Transcranial electrical stimulation and intraoperative neurophysiology of the corticospinal tract. Sous la direction de Charles M. Epstein, Eric M. Wassermann et Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0008.

Texte intégral
Résumé :
Transcranial electrical stimulation is a well-recognized method for corticospinal tract (CT) activation. This article explains the use of TES during surgery and highlights the physiology of the motor-evoked potentials (MEPs). It describes the techniques and methods for brain stimulation and recording of responses. There are two factors that determine the depth of the current penetrating the brain, they are: choice of electrode montage for stimulation over the scalp and the intensity of stimulation. D-wave collision technique is a newly developed technique that allows mapping intraoperatively and finding the anatomical position of the CT within the surgically exposed spinal cord. Different mechanisms may be involved in the pathophysiology of postoperative paresis in brain and spinal cord surgeries so that different MEP monitoring criteria can be used to avoid irreversible damage and accurately predict the prognosis.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Jef ferys, John G. R. Cortical activity : single cell, cell assemblages, and networks. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199688395.003.0004.

Texte intégral
Résumé :
This chapter describes how the activity of neurons produces electrical potentials that can be recorded at the levels of single cells, small groups of neurons, and larger neuronal networks. It outlines how the movement of ions across neuronal membranes produces action potentials and synaptic potentials. It considers how the spatial arrangement of specific ion channels on the neuronal surface can produce potentials that can be recorded from the extracellular space. Finally, it outlines how the layered cellular structure of the neocortex can result in summation of signals from many neurons to be large enough to record through the scalp as evoked potentials or the electroencephalogram.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Nuwer, Marc R. Intraoperative monitoring. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199688395.003.0036.

Texte intégral
Résumé :
Intraoperative monitoring and testing is conducted to improve neurological outcomes from surgery that incurs risk of neurological injury. Many techniques are familiar from the outpatient neurodiagnostic laboratory, and can be applied with minor modifications to the operating room setting. Other techniques are specific to the operating room. Transcranial electrical motor evoked potentials cannot be applied to awake patients, but are commonly used under general anaesthesia. Monitoring teams understand the tactics for obtaining quality recordings and calling alarms when potentials change past preset limits. Surgeons and anaesthesiologists have a variety of tactics for responding to adverse neurodiagnostic changes beginning with easy actions. In experienced hands, intraoperative neurophysiological monitoring substantially reduces post-operative deficits. For example, in spinal cord monitoring the risk of paraplegia and paraparesis is reduced by 60%. Monitoring is carried out by a technologist in the operating room under the supervision of an experienced neurophysiologist. In straightforward cases, the neurophysiologist may remotely monitor from outside the operating room.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Chadwick, David, Alastair Compston, Michael Donaghy, Nicholas Fletcher, Robert Grant, David Hilton-Jones, Martin Rossor, Peter Rothwell et Neil Scolding. Investigations. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780198569381.003.0100.

Texte intégral
Résumé :
This chapter describes the many methods that can be used to investigate neurological disorders. The application and suitability for specific disorder types are outlined, as are contraindications for use. Methods of imaging the central nervous system include computed tomography (CT) imaging, several magnetic resonance (MR) scanning methods, Single photon emission computed tomography (SPECT) and Positron Emission Tomography (PET). Invasive (angiography) and non-invasive methods of imaging the cerebral circulation are also outlined.The standard method of recording electrical activity of the brain is the electroencephalogram (EEG), which is heavily used in epilepsy to investigate regions of epileptogenesis.Other investigations described include evoked potentials, nerve conduction and electromyography studies, the examination of cerebrospinal fluid and the diagnostic use of neurological autoantibodies. Finally, neurogenetics, neuropsychological assessment and the assessment of treatments by randomized trials are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
24

M, Rossini Paolo, Marsden C. David et International Congress of Electromyography and Related Clinical Neurophysiology (8th : 1987 : Sorrento, Italy), dir. Non-invasive stimulation of brain and spinal cord : Fundamentals and clinical applications : proceedings of a workshop held in Sorrento, Italy, May 24-29, 1987. New York : A.R. Liss, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Levy, Walter J., Roger Q., M.D. Cracco, Anthony T. Barker et J. C. Rothwell. Magnetic Motor Stimulation : Basic Principles and Clinical Experience (Electroencephalography and Clinical Neurophysiology. Supplement, No 43). Elsevier Publishing Company, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Lüders, Hans O. Deep Brain Stimulation and Epilepsy. Taylor & Francis Group, 2020.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Lüders, Hans O. Deep Brain Stimulation and Epilepsy. Taylor & Francis Group, 2020.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Lüders, Hans O. Deep Brain Stimulation and Epilepsy. Taylor & Francis Group, 2020.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Lüders, Hans O. Deep Brain Stimulation and Epilepsy. Taylor & Francis Group, 2020.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Moore, Michael R., et Ehab Farag. Unstable Cervical Spine and Airway Management. Sous la direction de David E. Traul et Irene P. Osborn. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190850036.003.0012.

Texte intégral
Résumé :
In patients with cervical myelopathy, the spinal cord is already compromised to a point at which there is little reserve for surgical maneuvers and the slightest adverse action can result in dramatic consequences. Awake fiberoptic intubation and neurological assessment before induction of anesthesia could be the safest way to avoid waking up the patient before proceeding with surgery in the case of absent motor evoke potentials (MEPs) in spite of increasing the stimulating voltage together with increasing the rate of stimulating pulses. Hypotension is an additional factor, which may lead to irreversible neurologic deficit in a partially compressed but functionally intact spinal cord. Intraoperative neurophysiologic monitoring for cervical myelopathy should include somatosensory evoked potentials, transcranial electric MEPs, and electromyography to provide complementary information and monitor different spinal cord tracts and individual nerve roots.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Magee, Patrick, et Mark Tooley. Intraoperative monitoring. Sous la direction de Jonathan G. Hardman. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199642045.003.0043.

Texte intégral
Résumé :
Chapter 25 introduced some basic generic principles applicable to many measurement and monitoring techniques. Chapter 43 introduces those principles not covered in Chapter 25 and discusses in detail the clinical applications and limitations of the many monitoring techniques available to the modern clinical anaesthetist. It starts with non-invasive blood pressure measurement, including clinical and automated techniques. This is followed by techniques of direct blood pressure measurement, noting that transducers and calibration have been discussed in Chapter 25. This is followed by electrocardiography. There then follows a section on the different methods of measuring cardiac output, including the pulmonary artery catheter, the application of ultrasound in echocardiography, pulse contour analysis (LiDCO™ and PiCCO™), and transthoracic electrical impedance. Pulse oximetry is then discussed in some detail. Depth of anaesthesia monitoring is then described, starting with the electroencephalogram and its application in BIS™ monitors, the use of evoked potentials, and entropy. There then follow sections on gas pressure measurement in cylinders and in breathing systems, followed by gas volume and flow measurement, including the rotameter, spirometry, and the pneumotachograph, and the measurement of lung dead space and functional residual capacity using body plethysmography and dilution techniques. The final section is on respiratory gas analysis, starting with light refractometry as the standard against which other techniques are compared, infrared spectroscopy, mass spectrometry, and Raman spectroscopy (the principles of these techniques having been introduced in Chapter 25), piezoelectric and paramagnetic analysers, polarography and fuel cells, and blood gas analysis.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Jumean, Marwan F., et Mark S. Link. Post-cardiac arrest arrhythmias. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0065.

Texte intégral
Résumé :
Our understanding of arrhythmias following resuscitated cardiac arrest has evolved over the past two decades to entail complex pathophysiological processes including, in part, ischaemia and ischaemia-reperfusion injury. Electrical instability after the return of spontaneous circulation (ROSC) is common, ranging from atrial fibrillation to recurrent ventricular tachycardia and fibrillation. Electrical instability following out-of-hospital cardiac arrest is most commonly due to myocardial ischaemia and post-arrest myocardial dysfunction. However, electrolyte disturbances, elevated catecholamine levels, the frequent use of vasopressors and inotropes, and underlying structural heart disease or channelopathies also contribute in the acute setting. Limited data exists that specifically address the management of arrhythmias in the immediate post-arrest period. In addition to treating any potential reversible cause, the management in the haemodynamically-stable patient includes beta-blockers, class I (lignocaine and procainamide) and III anti-arrhythmic agents (amiodarone). Defibrillation is often needed for recurrent ventricular arrhythmias.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Sandbrink, Friedhelm. The MEP in clinical neurodiagnosis. Sous la direction de Charles M. Epstein, Eric M. Wassermann et Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0019.

Texte intégral
Résumé :
This article gives information on the clinical application of motor-evoked potential (MEP). Transcranial stimulation of the cerebral cortex to elicit MEPs is a noninvasive method for assessing the integrity of the central motor pathway function. Transcranial magnetic stimulation (TMS) is used in diagnosing and monitoring neurological disorders. This article highlights the neurophysiological differences between TMS and transcranial electric stimulation. All the different MEP parameters that can be measured by TMS, the latency of the MEP is generally regarded as the most reliable and useful. TMS studies have been described in many neurological disorders. The sensitivity of TMS in detecting subclinical upper motor neuron lesion varies in different disorders, depending on number of muscles and different parameters used. This article talks about the application of MEP in pathophysiology, multiple sclerosis, motor neuron diseases, meyloptahy, cerebral infarction, movement disorders, epilepsy, Lumbar spinal stenosis and radiculopathies, peripheral nerve disorders etc.
Styles APA, Harvard, Vancouver, ISO, etc.
34

John, E. Roy. Neurometrics. Taylor & Francis Group, 2021.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Neurometrics : Clinical Applications of Quantitative Electrophysiology. Taylor & Francis Group, 2021.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

John, E. Roy. Neurometrics : Clinical Applications of Quantitative Electrophysiology. Taylor & Francis Group, 2021.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

John, E. Roy. Neurometrics : Clinical Applications of Quantitative Electrophysiology. Taylor & Francis Group, 2021.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie