Sommaire
Littérature scientifique sur le sujet « Elaborazione segnale »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Elaborazione segnale ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Elaborazione segnale"
Origgi, D., L. T. Mainardi, A. Falini, G. Calabrese, G. Scotti, S. Cerutti et G. Tosi. « Quantificazione automatica di spettri 1H ed estrazione di mappe metaboliche da acquisizioni CSI mediante Wavelet Packets ». Rivista di Neuroradiologia 13, no 1 (février 2000) : 31–36. http://dx.doi.org/10.1177/197140090001300106.
Texte intégralGasparotti, R., A. Orlandini, G. F. Gualandi et A. Chiesa. « Studio preliminare del circolo cerebrale e dei vasi del collo con angiografia tridimensionale a risonanza magnetica ». Rivista di Neuroradiologia 2, no 3 (octobre 1989) : 241–54. http://dx.doi.org/10.1177/197140098900200306.
Texte intégralGreen, André. « La posizione fobica centrale ». PSICOANALISI, no 1 (septembre 2012) : 5–33. http://dx.doi.org/10.3280/psi2012-001002.
Texte intégralMartini, Alessandro. « In cerca della memoria : Ogni promessa di Andrea Bajani ». Quaderni d'italianistica 39, no 1 (9 mai 2019) : 81–94. http://dx.doi.org/10.33137/q.i..v39i1.32634.
Texte intégralFloridia, Antonio. « Le primarie in Toscana : la nuova legge, la prima sperimentazione ». Quaderni dell'Osservatorio elettorale QOE - IJES 55, no 1 (30 juin 2006) : 91–132. http://dx.doi.org/10.36253/qoe-12711.
Texte intégralBarisione, Mauro. « Le Scelte Politiche Dei Cittadini : Ambivalenza, Ragione O Affetto ? » Italian Political Science Review/Rivista Italiana di Scienza Politica 32, no 1 (avril 2002) : 141–51. http://dx.doi.org/10.1017/s0048840200029956.
Texte intégralThèses sur le sujet "Elaborazione segnale"
Onofri, Claudio. « Elaborazione del segnale elettroanatomico cardiaco in condizioni di fibrillazione atriale ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Trouver le texte intégralFederici, Alessandro. « Tecniche di elaborazione del segnale elettrocardiografico per il riconoscimento della frequenza cardiaca ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14981/.
Texte intégralLauriola, Angela Pia. « Il neurofeedback : acquisizione ed elaborazione di un segnale EEG a scopo terapeutico ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Trouver le texte intégralUrbani, Camilla. « Elaborazione di segnali audio per la localizzazione di sorgenti ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9258/.
Texte intégralPambi, Ngeya Cédric. « Elaborazione del segnale di corrente di ionizzazione orientata al controllo della combustione in motori ad accensione comandata ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Trouver le texte intégralSAIBENE, AURORA. « A Flexible Pipeline for Electroencephalographic Signal Processing and Management ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/360550.
Texte intégralThe electroencephalogram (EEG) provides the non-invasive recording of brain activities and functions as time-series, characterized by a temporal and spatial (sensor-dependent) resolution, and by brain condition-bounded frequency bands. Moreover, it presents some cost-effective device solutions. However, the resulting EEG signals are non-stationary, time-varying, and heterogeneous, being recorded from different subjects and being influenced by specific experimental paradigms, environmental conditions, and devices. Moreover, they are easily affected by noise and they can be recorded for a limited time, thus they provide a restricted number of brain conditions to work with. Therefore, in this thesis a flexible pipeline for signal processing and management is proposed to have a better understanding of the EEG signals and exploit them for a variety of applications. Moreover, the proposed flexible pipeline is divided in 4 modules concerning signal pre-processing, normalization, feature computation and management, and EEG data classification. The EEG signal pre-processing exploits the multivariate empirical mode decomposition (MEMD) to decompose the signal in oscillatory modes, called intrinsic mode functions (IMFs), and uses an entropy criterion to select the most relevant IMFs that should maintain the natural brain dynamics, while discarding uninformative components. The resulting relevant IMFs are then exploited for signal substitution and data augmentation. Even though MEMD is adapt to the EEG signal non-stationarity, further processing steps should be undertaken to mitigate these data heterogeneity. Therefore, a normalization step is introduced to obtain comparable data inter- and intra-subject and between different experimental conditions, allowing the extraction of general features in the time, frequency, and time-frequency domain for EEG signal characterization. Even though the use of a variety of feature types may provide new data patterns, they may also present some redundancies and increase the risk of incurring in classification problems like curse of dimensionality and overfitting. Therefore, a feature selection based on evolutionary algorithms is proposed to have a completely data-driven approach, exploiting both supervised and unsupervised learning models, and suggesting new stopping criteria for a modified genetic algorithm implementation. Moreover, the use of different learning models may affect the discrimination of different brain conditions. The introduction of deep learning models may provide a strategy to learn directly from the available data. By suggesting a proper input formulation it could be possible to maintain the EEG data time, frequency, and spatial information, while avoiding too complex architectures. Therefore, using different processing steps and approaches may provide general or experimental specific strategies to manage the EEG signal, while maintaining its natural characteristics.
Sarti, Mattia. « Elaborazione Spaziale di Segnali Audio ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14240/.
Texte intégralFarolfi, Andrea. « Elaborazione di segnali elettromagnetici mediante metasuperfici ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24026/.
Texte intégralBardhi, Endri. « Tecnologie di elaborazione dei segnali per l'Actigrafia ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Trouver le texte intégralFALCONE, DAMIANO. « Elaborazione di segnali video per applicazioni multimediali ». Doctoral thesis, Università Politecnica delle Marche, 2008. http://hdl.handle.net/11566/242347.
Texte intégralLivres sur le sujet "Elaborazione segnale"
Picardi, Giovanni. Elaborazione del segnale radar : Metodologie ed applicazioni. Milano, Italy : F. Angeli, 1988.
Trouver le texte intégralScarano, Gaetano. Elaborazione Statistica Dei Segnali (vol. II). Independently Published, 2017.
Trouver le texte intégralElaborazione Statistica Dei Segnali (Vol. I). Independently Published, 2017.
Trouver le texte intégralPedersini, Federico. Elementi Di Segnali e Sistemi : Lezioni Di Elaborazione Dei Segnali. Independently Published, 2020.
Trouver le texte intégral