Littérature scientifique sur le sujet « EDITING GENETICO »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « EDITING GENETICO ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "EDITING GENETICO"
Sutton, Agneta. « Editing della linea germinale : quali sono i rischi sociali e morali ? / Germ-line gene editing : What are the social and moral risks ? » Medicina e Morale 65, no 2 (21 septembre 2016) : 123–30. http://dx.doi.org/10.4081/mem.2016.430.
Texte intégralRefolo, Pietro, Vincenzo L. Pascali et Antonio G. Spagnolo. « Editing genetico : nuova questione bioetica ? / Gene editing : a new issue for Bioethics ? » Medicina e Morale 66, no 3 (3 juillet 2017) : 291–304. http://dx.doi.org/10.4081/mem.2017.493.
Texte intégralGentile, A., et S. La Malfa. « Il miglioramento genetico per la resistenza agli insetti : una sfida difficile ed attuale ». Bullettin of the Gioenia Academy of Natural Sciences of Catania 52, no 382/SFE (22 décembre 2019) : DECA10—DECA16. http://dx.doi.org/10.35352/gioenia.v52i382/sfe.80.
Texte intégralGrion, Luca. « Post human e gene editing : riflessioni su perfezione e senso del limite ». Medicina e Morale 68, no 4 (20 décembre 2019) : 423–36. http://dx.doi.org/10.4081/mem.2019.597.
Texte intégralViglianisi Ferraro, Angelo, André Gonçalo Dias Pereira et Antonio Casciano. « I NUOVI ORIZZONTI DELLA SPERIMENTAZIONE SUGLI ESSERI UMANI E SUGLI EMBRIONI ED I MOLTI INTERROGATIVI ETICO-GIURIDICI ANCORA DA SCIOGLIERE ». Revista Direitos Fundamentais & ; Democracia 26, no 1 (29 avril 2021) : 135–60. http://dx.doi.org/10.25192/issn.1982-0496.rdfd.v26i12193.
Texte intégralHanrahan, Christopher J., Michael J. Palladino, Barry Ganetzky et Robert A. Reenan. « RNA Editing of the Drosophila para Na+ Channel Transcript : Evolutionary Conservation and Developmental Regulation ». Genetics 155, no 3 (1 juillet 2000) : 1149–60. http://dx.doi.org/10.1093/genetics/155.3.1149.
Texte intégralGuo, Shuyu, Ge Gao, Cuizhen Zhang et Gang Peng. « Multiplexed Genome Editing for Efficient Phenotypic Screening in Zebrafish ». Veterinary Sciences 9, no 2 (19 février 2022) : 92. http://dx.doi.org/10.3390/vetsci9020092.
Texte intégralPortela, Manuel. « 'Nenhum Problema Tem Solução' : Um Arquivo Digital do Livro do Desassossego ». Matlit Revista do Programa de Doutoramento em Materialidades da Literatura 1, no 1 (19 mai 2013) : 9–33. http://dx.doi.org/10.14195/2182-8830_1-1_1.
Texte intégralGrauso, M., R. A. Reenan, E. Culetto et D. B. Sattelle. « Novel Putative Nicotinic Acetylcholine Receptor Subunit Genes,Dα5,Dα6andDα7, inDrosophila melanogasterIdentify a New and Highly Conserved Target of Adenosine Deaminase Acting on RNA-Mediated A-to-I Pre-mRNA Editing ». Genetics 160, no 4 (1 avril 2002) : 1519–33. http://dx.doi.org/10.1093/genetics/160.4.1519.
Texte intégralGhanta, Krishna S., et Craig C. Mello. « Melting dsDNA Donor Molecules Greatly Improves Precision Genome Editing in Caenorhabditis elegans ». Genetics 216, no 3 (22 septembre 2020) : 643–50. http://dx.doi.org/10.1534/genetics.120.303564.
Texte intégralThèses sur le sujet "EDITING GENETICO"
BONOMELLI, SARA. « L'EDITING GENETICO GERMINALE UMANO, TRA PROBLEMI ETICI E QUESTIONI DI GOVERNANCE ». Doctoral thesis, Università degli Studi di Milano, 2022. http://hdl.handle.net/2434/922688.
Texte intégralJACOB, AURELIEN MARC FLORENT. « IMPROVING TARGETED GENE EDITING IN HEMATOPOIETIC STEM CELLS FOR CLINICAL TRANSLATION ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/304800.
Texte intégralThe scope of genome engineering in hematopoietic stem/progenitor cells (HSPCs) has broadened from random to precise genome insertions for treating genetic diseases of the blood lineages. Targeted editing of inherited mutant genes allows in situ correction and functional reconstitution with preserved expression control. We recently showed that both the induced double-strand DNA breaks and the AAV6 genome trigger a p53-dependent DNA damage response in HSPC delaying proliferation and decreasing hematopoietic reconstitution after xenotransplantation. Suppression of this response by transient expression of a dominant negative p53 released cell-cycle block and rescued hematopoietic reconstitution. Yet, the underlying biology remained unknown as well as the impact of gene editing on clonal dynamics of HDR-edited HSPC upon transplantation. Moreover, it has long been contended that the quiescence of primitive HSC constrains HDR-mediated gene editing, thus limiting its perspective clinical applications in several diseases. Here, we first overcame such constraints by transiently expressing the adenovirus 5 protein E4orf6/7, which operates the major cell cycle controller E2F, together with the nuclease. By global and targeted gene expression analysis we showed engagement of targeted cells in S/G2 phases with concomitant upregulation of all major components of the HDR machinery, thus increasing the efficiency of targeted transgene insertion. Combined E4orf6/7 expression and p53 inhibition enhanced >50% HDR efficiency within human graft surpassing the levels reported until now in the literature. Such outcome was reproducible across several HSPC donors and sources, genomic loci and conceivably portable to most types of editing platforms. In parallel, we devised a novel technology (BAR-seq) which enables clonal tracking of individual HDR-edited HSC by introducing a unique heritable barcode in the AAV6 template. Deep sequencing of integrated BARs in human hematochimeric mice showed that only few (5-10) dominant clones of edited HSC robustly contributed to the hematopoietic graft long-term after transplant. Transient p53 inhibition during editing enabled substantial increase in polyclonal graft composition without altering individual HSC output, thus explaining the improved engraftment and highlighting the p53-mediated response as culprit of an otherwise oligoclonal hematopoiesis. Importantly, BAR-seq provided the first direct evidence that human HDR-edited HSC maintain multilineage potential and undergo multiple rounds of symmetric and asymmetric divisions in primary and secondary xenogeneic hosts. Altogether, we expect that the substantial gains obtained in HDR efficiency and polyclonal repopulation by our improved editing protocol should broaden applicability of HSC gene editing and pave its way to clinical translation.
INSANGUINE, MINGARRO Ferdinando Achille. « MODIFICAZIONI GERMINALI DEL PATRIMONIO GENETICO E BIODIRITTO. I paradossi della de-differenziazione tra bioetica e biodiritto ». Doctoral thesis, Università degli Studi di Palermo, 2021. http://hdl.handle.net/10447/507066.
Texte intégralINSANGUINE, MINGARRO Ferdinando Achille. « Modificazioni germinali del patrimonio genetico e biodiritto. I paradossi della de-differenziazione tra bioetica e biodiritto ». Doctoral thesis, Università degli Studi di Palermo, 2021. http://hdl.handle.net/10447/499144.
Texte intégralPérez, Álvarez Lucía. « Metabolic engineering and genome editing in rice ». Doctoral thesis, Universitat de Lleida, 2018. http://hdl.handle.net/10803/665272.
Texte intégralMi programa de investigación se ha basado en la utilización del arroz como modelo experimental para estudiar mecanismos y cuellos de botella que limitan la transición de la ingeniería metabólica a la biología sintética en las plantas. Me concentré en la caracterización a nivel molecular y bioquímica de plantas que generé en dos conjuntos de líneas de investigación distintas pero interrelacionadas. En el primer conjunto de experimentos abordé la hipótesis de que al eliminar genes específicos en una ruta metabólica primaria, concretamente la biosíntesis de almidón, las plantas mutantes resultantes podrían mostrar fenotipos propicios para aplicaciones de biología sintética en términos de redireccionar el flujo y limitar los precursores biosintéticos a vías metabólicas secundarias específicas. En este contexto, utilicé CRISPR/Cas9 para crear dos mutantes heterocigotos, uno con una glucosa-1-fosfato adenil transferasa (AGPasa) citosólica severamente truncada y no funcional y el otro con una modificación estructural C-terminal causando una pérdida parcial de actividad. Inesperadamente, observamos una reducción del almidón en las hojas de ambos mutantes y un aumento concomitante en el nivel de azúcares solubles. Esto reflejó la expresión no prevista de OsAPL2 y OsAPS2b en las hojas, generando una AGPasa ectópica completa en el citosol de la hoja, y una disminución en la expresión de la subunidad pequeña plastidial OsAPS2a que se complementó solo parcialmente con un aumento en la expresión de OsAPS1 En un conjunto posterior de experimentos, con similar base, investigué los efectos más amplios de las mutaciones en un gen de la biosintésis de almidón, la almidon sintasa unida a gránulos (GBBS, waxy). Utilicé CRISPR/Cas9 para introducir un rango de mutaciones con diferentes efectos en este gen específico. Encontre que las mutaciones producidas redujeron, pero no abolieron la actividad de GBSS en las semillas, debido a una compensación parcial causada por la regulación ectópica de GBSSII. La actividad de GBSS en los mutantes fue de 61 a 71% de los niveles de los controles, pero el contenido de amilosa, sin embargo, disminuyó a 8 a 12% en semillas heterocigotas y fue tan bajo como 5% en semillas homocigotas, acompañado por una organización celular anormal en la capa de aleurona y con estructuras del grano de almidón amorfas. Casi todos los genes de la vía del almidón se vieron afectados a diferentes niveles en las hojas y semillas. Estos cambios en la expresión génica dieron como resultado cambios en la actividad de la AGPasa y de la sacarosa sintasa que coincidían con las alteraciones en los niveles de almidón y azúcares solubles. La segunda línea de mi programa de investigación se centró en la ingeniería de una vía ectópica de MVA en plastidios de arroz para investigar la hipótesis de que al reconstituir la vía ectópica, la regulación estricta de la vía de MVA nativa podría relajarse en cierto grado a medida que aumentase el conjunto de precursores terpenoides esenciales. Los resultados indicaron un aumento en los niveles de ácidos grasos, luteína y tocoferol, una reducción en los niveles de escualeno y niveles similares de esteroles. Mis resultados son el fundamento para futuros experimentos encaminados a determinar si el germoplasma que he creado y caracterizado puede servir de base para intervenciones de ingeniería metabólica y biología sintética más complejas.
My research program used rice as an experimental model to address fundamental bottlenecks and mechanisms limiting the transition from metabolic engineering to synthetic biology in plants. I concentrated on an in depth molecular and biochemical characterization of plants I generated in two distinct, yet interrelated sets of research lines. In the first set of experiments I addressed the hypothesis that by knocking out specific genes in a primary metabolic pathway, starch biosynthesis, resulting mutant plants might exhibit phenotypes conducive to synthetic biology applications in terms of redirecting flux and limiting biosynthetic precursors to specific secondary metabolic pathways. In this context I used CRISPR/Cas9 to create two heterozygous mutants, one with a severely truncated and non-functional cytosolic glucose-1-phosphate adenylyl transferase (AGPase) and the other with a C-terminal structural modification causing a partial loss of activity. Unexpectedly, both mutants exhibited depletion of starch in the leaves and a corresponding increase in the level of soluble sugars. This reflected the unanticipated expression of both OsAPL2 and OsAPS2b in the leaves, generating a complete ectopic AGPase in the leaf cytosol, and a corresponding decrease in the expression of the plastidial small subunit OsAPS2a that was only partially complemented by an increase in the expression of OsAPS1. In a subsequent set of experiments along similar lines I investigated the broader effects of mutations in an additional starch biosynthetic gene, granule bound starch synthase (GBBS, waxy). I used CRISPR/Cas9 to introduce a range of mutations with different effects in this specific gene. All mutations I recovered reduced but did not abolish GBSS activity in seeds due to partial compensation caused by the ectopic upregulation of GBSSII. The GBSS activity in the mutants was 61–71% of wild-type levels, but the amylose content nevertheless declined to 8–12% in heterozygous seeds and to as low as 5% in homozygous seeds, accompanied by abnormal cellular organization in the aleurone layer and amorphous starch grain structures. Almost every starch pathway gene was impacted at different degrees in leaves and seeds. These gene expression changes resulted in changes in AGPase and sucrose synthase activity that explained the corresponding levels of starch and soluble sugars. The second line of my program focused on the engineering of an ectopic MVA pathway in rice plastids in order to investigate the hypothesis that by reconstituting such an ectopic pathway the strict regulation of the native MVA pathway might be relieved to a certain degree in turns increasing the pool of essential terpenoid precursors. Results indicated a profound increase in the levels of fatty acids, lutein and tocopherol, a decrease in squalene levels and similar levels of sterols. My results set the stage for further experiments to ascertain whether germplasm I created and characterized, can serve as a basis for more complex metabolic engineering and synthetic biology interventions.
McGurk, Leeane. « Drosophila lacking RNA editing ». Thesis, University of Edinburgh, 2007. http://hdl.handle.net/1842/2695.
Texte intégralChew, Wei Leong. « Postnatal Genome Editing With CRISPR ». Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493352.
Texte intégralMedical Sciences
Neadeau, Joseph Francis. « Comparing Genetic Modification and Genetic Editing Technolgies : Minimal Required Acreage ». Thesis, North Dakota State University, 2018. https://hdl.handle.net/10365/29878.
Texte intégralRobinson, Jason M. « Functional Significance of mtDNA Cytosine Modification Tested by Genome Editing ». VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4561.
Texte intégralRodríguez, José A. « Genetic editing with CRISPR/Cas9 : A scientific, ethical, and pastoral approach ». Thesis, Boston College, 2019. http://hdl.handle.net/2345/bc-ir:108890.
Texte intégralThesis advisor: Colleen M. Griffith
Thesis (STL) — Boston College, 2019
Submitted to: Boston College. School of Theology and Ministry
Discipline: Sacred Theology
Livres sur le sujet "EDITING GENETICO"
Ulrich, Göringer H., dir. RNA editing. Heidelberg : Springer, 2008.
Trouver le texte intégralVenables, Julian P. Alternative splicing in cancer. Trivandrum, Kerala, India : Transworld Research Network, 2006.
Trouver le texte intégralJ, Blencowe Benjamin, et Graveley Brenton R, dir. Alternative splicing in the postgenomic era. New York : Springer Science+Business Media, 2007.
Trouver le texte intégralF, Gesteland Raymond, et SpringerLink (Online service), dir. Recoding : Expansion of Decoding Rules Enriches Gene Expression. New York, NY : Springer Science+Business Media, LLC, 2010.
Trouver le texte intégralJ, Hademenos George, dir. Genetics : Based on Schaum's outline of genetics, third edition. New York : McGraw-Hill, 2002.
Trouver le texte intégralRussell, Peter J. iGenetics : A Molecular Approach (2nd Edition with CD-ROM) (The Genetics Place Series). 2e éd. Benjamin Cummings, 2005.
Trouver le texte intégralGenetic Analysis : An Integrated Approach, Global Edition. Pearson Education, Limited, 2015.
Trouver le texte intégralEssentials of Genetics (4th Edition). Prentice Hall, 2002.
Trouver le texte intégralKlug, William S., Charlotte A. Spencer, Michael A. Palladino et Michael R. Cummings. Essentials of Genetics : International Edition. Pearson Education, Limited, 2012.
Trouver le texte intégralPoatsy, Mary Anne, John L. Bowman et Mark F. Sanders. Genetic Analysis : An Integrated Approach with MasteringGenetics, Global Edition. Pearson Education, Limited, 2015.
Trouver le texte intégralChapitres de livres sur le sujet "EDITING GENETICO"
Wünschiers, Röbbe. « Editing Genetic Material ». Dans Genes, Genomes and Society, 141–76. Berlin, Heidelberg : Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-64081-4_5.
Texte intégralEndo, Masaki, Ayako Nishizawa-Yokoi et Seiichi Toki. « Rice Genome Editing ». Dans Rice Genomics, Genetics and Breeding, 523–39. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7461-5_27.
Texte intégralWang, Wei, et Eduard Akhunov. « Application of CRISPR-Cas-Based Genome Editing for Precision Breeding in Wheat ». Dans Wheat Improvement, 539–56. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90673-3_29.
Texte intégralRubio, Mary Anne T., et Juan D. Alfonzo. « tRNA Modification, Editing, and Import in Mitochondria ». Dans Organelle Genetics, 359–80. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22380-8_14.
Texte intégralMyers, Richard, et Edwin R. Hancock. « Genetic algorithms for structural editing ». Dans Advances in Pattern Recognition, 159–68. Berlin, Heidelberg : Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0033234.
Texte intégralMiglani, Gurbachan S., et Rajveer Singh. « Epigenome editing in crop improvement. » Dans Quantitative genetics, genomics and plant breeding, 44–70. Wallingford : CABI, 2020. http://dx.doi.org/10.1079/9781789240214.0044.
Texte intégralZhang, Ying, et Hao Yin. « Genome Editing for Genetic Lung Diseases ». Dans Pharmaceutical Inhalation Aerosol Technology, 389–402. Third edition. | Boca Raton, Florida : CRC Press, [2019] | : CRC Press, 2019. http://dx.doi.org/10.1201/9780429055201-16.
Texte intégralJin, Andrew, et Igor Linkov. « Synthetic Biology Brings New Challenges to Managing Biosecurity and Biosafety ». Dans NATO Science for Peace and Security Series C : Environmental Security, 117–29. Dordrecht : Springer Netherlands, 2021. http://dx.doi.org/10.1007/978-94-024-2086-9_8.
Texte intégralPillay, Michael. « Genome editing technologies for crop improvement. » Dans Quantitative genetics, genomics and plant breeding, 33–43. Wallingford : CABI, 2020. http://dx.doi.org/10.1079/9781789240214.0033.
Texte intégralHundleby, Penny, et Wendy Harwood. « Regulatory Constraints and Differences of Genome-Edited Crops Around the Globe ». Dans Genome Editing, 319–41. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08072-2_17.
Texte intégralActes de conférences sur le sujet "EDITING GENETICO"
« Analysis and editing the maize gamete interactions and fusion genes ». Dans Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-137.
Texte intégral« Genome editing in wheat : exploration of new challenges for crop improvement ». Dans Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-096.
Texte intégral« CRISPR/Cas9 – mediated genome editing of bread wheat to modulate heading time ». Dans Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-135.
Texte intégral« 344. A simulator to evaluate gene editing assisted selection programs ». Dans World Congress on Genetics Applied to Livestock Production. The Netherlands : Wageningen Academic Publishers, 2022. http://dx.doi.org/10.3920/978-90-8686-940-4_344.
Texte intégral« Improvement of sorghum seed storage protein digestibility using RNA-interference and genome editing ». Dans Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-048.
Texte intégral« StCDF1 gene editing strategy in potato wild species within de novo domestication concept ». Dans Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-055.
Texte intégralDuclos, R., E. Delanoue, L. Journaux, D. Guéméné, M. Sourdioux et J. P. Bidanel. « 494. Perceptions of genome editing in farm animals by livestock stakeholders ». Dans World Congress on Genetics Applied to Livestock Production. The Netherlands : Wageningen Academic Publishers, 2022. http://dx.doi.org/10.3920/978-90-8686-940-4_494.
Texte intégralHuang, Yong Ping. « Genetic control of Lepidoptera using genome editing tools ». Dans 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.94052.
Texte intégralZhang, Xuecheng, Qiuxuan Wu, Lifeng Zhang et Botao-Zhang. « Genetic Algorithm Inspired by Mimetic Octopus RNA Editing ». Dans 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2019. http://dx.doi.org/10.1109/robio49542.2019.8961399.
Texte intégralChu, Chi Nung, et Yu Ting Huang. « Assistive Technology for the Struggling Learner : Chinese PCS Editing Processor ». Dans 2011 Fifth International Conference on Genetic and Evolutionary Computing (ICGEC). IEEE, 2011. http://dx.doi.org/10.1109/icgec.2011.44.
Texte intégralRapports d'organisations sur le sujet "EDITING GENETICO"
Wentworth, Jonathan, et David Rapley. Genome edited animals. Parliamentary Office of Science and Technology, novembre 2022. http://dx.doi.org/10.58248/pb50.
Texte intégralGothilf, Yoav, Roger Cone, Berta Levavi-Sivan et Sheenan Harpaz. Genetic manipulations of MC4R for increased growth and feed efficiency in fish. United States Department of Agriculture, janvier 2016. http://dx.doi.org/10.32747/2016.7600043.bard.
Texte intégralJean Courret, Ezéchiel. For a Genetic and Diplomatic approach to Old Cadastres : Proposals and Advice for Editing Cadastral Sources. Edicions de la Universitat de Lleida, 2020. http://dx.doi.org/10.21001/itma.2020.14.01.
Texte intégralLi, Li, Joseph Burger, Nurit Katzir, Yaakov Tadmor, Ari Schaffer et Zhangjun Fei. Characterization of the Or regulatory network in melon for carotenoid biofortification in food crops. United States Department of Agriculture, avril 2015. http://dx.doi.org/10.32747/2015.7594408.bard.
Texte intégralParan, Ilan, et Allen Van Deynze. Regulation of pepper fruit color, chloroplasts development and their importance in fruit quality. United States Department of Agriculture, janvier 2014. http://dx.doi.org/10.32747/2014.7598173.bard.
Texte intégral