Littérature scientifique sur le sujet « Edge-colored graph theory »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Edge-colored graph theory ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Edge-colored graph theory"
Ma, Huawen. « Maximum Colored Cuts in Edge-Colored Complete Graphs ». Journal of Mathematics 2022 (7 juillet 2022) : 1–4. http://dx.doi.org/10.1155/2022/9515498.
Texte intégralGuo, Zhiwei, Hajo Broersma, Ruonan Li et Shenggui Zhang. « Some algorithmic results for finding compatible spanning circuits in edge-colored graphs ». Journal of Combinatorial Optimization 40, no 4 (4 septembre 2020) : 1008–19. http://dx.doi.org/10.1007/s10878-020-00644-7.
Texte intégralRazumovsky, P. V., et M. B. Abrosimov. « THE MINIMAL VERTEX EXTENSIONS FOR COLORED COMPLETE GRAPHS ». Bulletin of the South Ural State University series "Mathematics. Mechanics. Physics" 13, no 4 (2021) : 77–89. http://dx.doi.org/10.14529/mmph210409.
Texte intégralWang, Yiqiao, Juan Liu, Yongtang Shi et Weifan Wang. « Star Chromatic Index of 1-Planar Graphs ». Symmetry 14, no 6 (8 juin 2022) : 1177. http://dx.doi.org/10.3390/sym14061177.
Texte intégralYin, Huixin, Miaomiao Han et Murong Xu. « Strong Edge Coloring of K4(t)-Minor Free Graphs ». Axioms 12, no 6 (5 juin 2023) : 556. http://dx.doi.org/10.3390/axioms12060556.
Texte intégralDINITZ, YEFIM, MATTHEW J. KATZ et ROI KRAKOVSKI. « GUARDING RECTANGULAR PARTITIONS ». International Journal of Computational Geometry & ; Applications 19, no 06 (décembre 2009) : 579–94. http://dx.doi.org/10.1142/s0218195909003131.
Texte intégralSoulé, Antoine, Vladimir Reinharz, Roman Sarrazin-Gendron, Alain Denise et Jérôme Waldispühl. « Finding recurrent RNA structural networks with fast maximal common subgraphs of edge-colored graphs ». PLOS Computational Biology 17, no 5 (28 mai 2021) : e1008990. http://dx.doi.org/10.1371/journal.pcbi.1008990.
Texte intégralWicaksono, Pramitha Shafika, et Kartono Kartono. « ANALISIS PENJADWALAN MATA PELAJARAN MENGGUNAKAN ALGORITMA WELCH-POWELL ». Prismatika : Jurnal Pendidikan dan Riset Matematika 3, no 1 (27 octobre 2020) : 1–21. http://dx.doi.org/10.33503/prismatika.v3i1.1008.
Texte intégralMuranov, Yuri V., et Anna Szczepkowska. « Path homology theory of edge-colored graphs ». Open Mathematics 19, no 1 (1 janvier 2021) : 706–23. http://dx.doi.org/10.1515/math-2021-0049.
Texte intégralLamken, Esther R., et Richard M. Wilson. « Decompositions of Edge-Colored Complete Graphs ». Journal of Combinatorial Theory, Series A 89, no 2 (février 2000) : 149–200. http://dx.doi.org/10.1006/jcta.1999.3005.
Texte intégralThèses sur le sujet "Edge-colored graph theory"
Di, Guardia Rémi. « Identity of Proofs and Formulas using Proof-Nets in Multiplicative-Additive Linear Logic ». Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0050.
Texte intégralThis study is concerned with the equality of proofs and formulas in linear logic, with in particular contributions for the multiplicative-additive fragment of this logic. In linear logic, and as in many other logics (such as intuitionistic logic), there are two transformations on proofs: cut-elimination and axiom-expansion. One often wishes to identify two proofs related by these transformations, as it is the case semantically (in a categorical model for instance). This situation is similar to the one in the λ-calculus where terms are identified up to β-reduction and η-expansion, operations that, through the prism of the Curry-Howard correspondence, are related respectively to cut-elimination and axiom-expansion. We show here that this identification corresponds exactly to identifying proofs up to rule commutation, a third well-known operation on proofs which is easier to manipulate. We prove so only in multiplicative-additive linear logic, even if we conjecture such a result holds in full linear logic.Not only proofs but also formulas can be identified up to cut-elimination and axiom-expansion. Two formulas are isomorphic if there are proofs between them whose compositions yield identities, still up to cut-elimination and axiom-expansion. These formulas are then really considered to be the same, and every use of one can be replaced with one use of the other. We give an equational theory characterizing exactly isomorphic formulas in multiplicative-additive linear logic. A generalization of an isomorphism is a retraction, which intuitively corresponds to a couple of formulas where the first can be replaced by the second -- but not necessarily the other way around, contrary to an isomorphism. Studying retractions is more complicated, and we characterize retractions to an atom in the multiplicative fragment of linear logic.When studying the two previous problems, the usual syntax of proofs from sequent calculus seems ill-suited because we consider proofs up to rule commutation. Part of linear logic can be expressed in a better adapted syntax in this case: proof-nets, which are graphs representing proofs quotiented by rule commutation. This syntax was an instrumental tool for the characterization of isomorphisms and retractions. Unfortunately, proof-nets are not (or badly) defined with units. Concerning our issues, this restriction leads to a study of the unit-free case by means of proof-nets with the crux of the demonstration, preceded by a work in sequent calculus to handle the units. Besides, this thesis also develops part of the theory of proof-nets by providing a simple proof of the sequentialization theorem, which relates the two syntaxes of proof-net and sequent calculus, substantiating that they describe the same underlying objects. This new demonstration is obtained as a corollary of a generalization of Yeo's theorem. This last result is fully expressed in the theory of edge-colored graphs, and allows to recover proofs of sequentialization for various definitions of proof-nets. Finally, we also formalized proof-nets for the multiplicative fragment of linear logic in the proof assistant Coq, with notably an implementation of our new sequentialization proof
Babu, Jasine. « Algorithmic and Combinatorial Questions on Some Geometric Problems on Graphs ». Thesis, 2014. http://etd.iisc.ac.in/handle/2005/3485.
Texte intégralBabu, Jasine. « Algorithmic and Combinatorial Questions on Some Geometric Problems on Graphs ». Thesis, 2014. http://etd.iisc.ernet.in/2005/3485.
Texte intégralChapitres de livres sur le sujet "Edge-colored graph theory"
Das, Anita, P. Suresh et S. V. Subrahmanya. « Rainbow path and minimum degree in properly edge colored graphs ». Dans The Seventh European Conference on Combinatorics, Graph Theory and Applications, 319–25. Pisa : Scuola Normale Superiore, 2013. http://dx.doi.org/10.1007/978-88-7642-475-5_51.
Texte intégralMorawietz, Nils, Niels Grüttemeier, Christian Komusiewicz et Frank Sommer. « Refined Parameterizations for Computing Colored Cuts in Edge-Colored Graphs ». Dans SOFSEM 2020 : Theory and Practice of Computer Science, 248–59. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38919-2_21.
Texte intégralBenjamin, Arthur, Gary Chartrand et Ping Zhang. « Synchronizing Graphs ». Dans The Fascinating World of Graph Theory. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691175638.003.0012.
Texte intégralActes de conférences sur le sujet "Edge-colored graph theory"
Vardi, Moshe Y., et Zhiwei Zhang. « Solving Quantum-Inspired Perfect Matching Problems via Tutte-Theorem-Based Hybrid Boolean Constraints ». Dans Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California : International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/227.
Texte intégral