Sommaire
Littérature scientifique sur le sujet « Eclogite melting »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Eclogite melting ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Eclogite melting"
Gorbachev, N. S., A. V. Kostyuk, Yu B. Shapovalov, P. N. Gorbachev, A. N. Nekrasov et D. M. Soultanov. « Critical phenomena and granatization of water-containing eclogite at P = 3,7-4,0 GPa, T = 1000-1300 °C ». Доклады Академии наук 489, no 4 (10 décembre 2019) : 393–98. http://dx.doi.org/10.31857/s0869-56524894393-398.
Texte intégralDokukina, K. A., M. V. Mints et A. N. Konilov. « Melting of eclogite facies sedimentary rocks in the Belomorian Eclogite Province, Russia ». Journal of Metamorphic Geology 35, no 4 (19 décembre 2016) : 435–51. http://dx.doi.org/10.1111/jmg.12239.
Texte intégralShuaiQi, LIU, et ZHANG GuiBin. « Isotope fractionation during partial melting of eclogite ». Acta Petrologica Sinica 37, no 1 (2021) : 95–112. http://dx.doi.org/10.18654/1000-0569/2021.01.07.
Texte intégralChu, Xu, Jay J. Ague, Yury Y. Podladchikov et Meng Tian. « Ultrafast eclogite formation via melting-induced overpressure ». Earth and Planetary Science Letters 479 (décembre 2017) : 1–17. http://dx.doi.org/10.1016/j.epsl.2017.09.007.
Texte intégralCao, Wentao, Jane A. Gilotti et Hans-Joachim Massonne. « Partial melting of zoisite eclogite from the Sanddal area, North-East Greenland Caledonides ». European Journal of Mineralogy 32, no 4 (15 juillet 2020) : 405–25. http://dx.doi.org/10.5194/ejm-32-405-2020.
Texte intégralSpetsius, Zdzislaw, Ludmila Liskovaya, Alexander Ivanov et Irina Bogush. « FEATURES OF GARNET AND CLINOPYROXENE IN DIAMONDIFEROUS ECLOGITES FROM THE UDACHNAYA KIMBERLITE PIPE, YAKUTIA : METASOMATOSIS EVIDENCE ». Ores and metals, no 4 (2 février 2021) : 45–53. http://dx.doi.org/10.47765/0869-5997-2020-10027.
Texte intégralLitvin, Yu A., A. V. Kuzyura et E. B. Limanov. « The role of garnetization of olivine in olivine-diopside-jadeite system in the ultramafic-mafic evolution of the upper-mantle magmatism (experiment at 6 GPa). » Геохимия 64, no 10 (19 novembre 2019) : 1026–46. http://dx.doi.org/10.31857/s0016-752564101026-1046.
Texte intégralSchorn, Simon, Michael I. H. Hartnady, Johann F. A. Diener, Chris Clark et Chris Harris. « H2O-fluxed melting of eclogite during exhumation : an example from the eclogite type-locality, Eastern Alps (Austria) ». Lithos 390-391 (juin 2021) : 106118. http://dx.doi.org/10.1016/j.lithos.2021.106118.
Texte intégralSpetsius, Zdislav V., et Lawrence A. Taylor. « Partial Melting in Mantle Eclogite Xenoliths : Connections with Diamond Paragenesis ». International Geology Review 44, no 11 (novembre 2002) : 973–87. http://dx.doi.org/10.2747/0020-6814.44.11.973.
Texte intégralRapp, Robert P., Nobumichi Shimizu et Marc D. Norman. « Growth of early continental crust by partial melting of eclogite ». Nature 425, no 6958 (octobre 2003) : 605–9. http://dx.doi.org/10.1038/nature02031.
Texte intégralThèses sur le sujet "Eclogite melting"
Laurie, Angelique. « The formation of Earth’s early felsic continental crust by water-present eclogite melting ». Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80214.
Texte intégralENGLISH ABSTRACT: The sodic and leucocratic Tonalite, Trondhjemite and Granodiorite (TTG) granitoid series of rocks characterise Paleo- to Meso- Archaean felsic continental crust, yet are uncommon in the post-Archaean rock record. Consequently, petrogenetic studies on these rocks provide valuable insight into the creation and evolution of Earth’s early continental crust. The highpressure (HP)-type of Archaean TTG magmas are particularly important in this regard as their geochemistry requires that they are formed by high-pressure melting of a garnet-rich eclogitic source. This has been interpreted as evidence for the formation of these magmas by anatexis of the upper portions of slabs within Archaean subduction zones. In general, TTG magmas have been assumed to arise through fluid-absent partial melting of metamafic source rocks. Therefore, very little experimental data on fluid-present eclogite melting to produce Archaean TTG exist, despite the fact that water drives magmatism in modern arcs. Consequently, this study experimentally investigates the role of fluid-present partial melting of eclogite-facies metabasaltic rock in the production of Paleo- to Meso-Archaean HP-type TTG melts. Experiments are conducted between 1.6 GPa and 3.0 GPa and 700 ºC and 900 ºC using natural and synthetic eclogite, and gel starting materials of low-K2O basaltic composition. Partial melting of the natural and synthetic eclogite occurred between 850 ºC and 870 ºC at pressures above 1.8 GPa, and the melting reaction is characterised by the breakdown of sodic clinopyroxene, quartz and water: Qtz + Cpx1 + H2O ± Grt1 = Melt + Cpx2 ± Grt2. The experimental melts have the compositions of sodic peraluminous trondhjemites and have compositions that are similar to the major, trace and rare earth element composition of HPtype Archaean TTG. This study suggests that fluid-present eclogite melting is a viable petrogenetic model for this component of Paleo- to Meso-Archaean TTG crust. The nature of the wet low-K2O eclogite-facies metamafic rock solidus has been experimentally defined and inflects towards higher temperatures at the position of the plagioclase-out reaction. Therefore, the results indicate that a crystalline starting material is necessary to define this solidus to avoid metastable melting beyond temperatures of the Pl + H2O + Qtz solidus at pressures above plagioclase stability. Furthermore, this study uses numerical and metamorphic models to demonstrate that for reasonable Archaean mantle wedge temperatures within a potential Archaean subduction zone, the bulk of the water produced by metamorphic reactions within the slabs is captured by an anatectic zone near the slab surface. Therefore, this geodynamic model may account for HP-type Archaean TTG production and additionally provides constraints for likely Archaean subduction. The shape of the relevant fluid-present solidus is similar to the shape of the pressure-temperature paths followed by upper levels of the proposed Archaean subducting slab, which makes water-fluxed slab anatexis is very dependant on the temperature in the mantle wedge. I propose that cooling of the upper mantle by only a small amount during the late Archaean ended fluid-present melting of the slab. This allowed slab water to migrate into the wedge and produce intermediate composition magmatism which has since been associated with subduction zones.
AFRIKAANSE OPSOMMING: Die reeks natruimhoudende en leukokraties Tonaliet, Trondhjemiet en Granodioriet (TTG) felsiese stollingsgesteentes is kenmerkend in die Paleo- tot Meso-Argeïkum felsiese kontinentale kors, maar is ongewoon in die post-Argeïese rots rekord. Gevolglik, petrogenetiese studies op hierdie rotse verskaf waardevolle insig in die skepping en evolusie van die aarde se vroeë kontinentale kors. Die hoë-druk (HD)-tipe van die Argeïkum TTG magmas is veral belangrik in hierdie verband as hulle geochemie vereis dat hulle gevorm word deur hoë druk smelting van 'n granaat-ryk eklogitiese bron. Dit word interpreteer as bewys vir die vorming van hierdie magmas deur smelting van die boonste gedeeltes van die blaaie in Argeïese subduksie sones. TTG magmas in die algemeen, is veronderstel om op te staan deur middel van water-afwesig gedeeltelike smelting van metamafiese bron rotse. Daarom bestaan baie min eksperimentele data op water-teenwoordig eklogiet smelting om Argeïkum TTG te produseer, ten spyte van die feit dat water magmatisme dryf in moderne boë. Gevolglik is hierdie studie ‘n eksperimentele ondersoek in die rol van water-teenwoordig gedeeltelike smelting van eklogiet-fasies metamafiese rots in die produksie van Paleo- tot Meso-Argeïkum HD-tipe TTG smelte. Eksperimente word uitgevoer tussen 1.6 GPa en 3.0 GPa en 700 ºC en 900 ºC met behulp van natuurlike en sintetiese eklogiet, en gel begin materiaal van lae-K2O basaltiese samestelling. Gedeeltelike smelting van die natuurlike en sintetiese eklogiet het plaasgevind tussen 850 ºC en 870 ºC te druk bo 1.8 GPa, en die smeltings reaksie is gekenmerk deur die afbreek van natruimhoudende klinopirokseen, kwarts en water: Qtz + Cpx1 + H2O ± Grt1 = Smelt + Cpx2 ± Grt2. Die eksperimentele smelte het die komposisies van natruimhoudende trondhjemites en is soortgelyk aan die hoof-, spoor- en seldsame aard element samestelling van HD-tipe Argeïkum TTG. Hierdie studie dui daarop dat water-teenwoordig eklogiet smelting 'n lewensvatbare petrogenetiese model is vir hierdie komponent van Paleo- tot Meso-Argeïkum TTG kors. Die aard van die nat lae-K2O eklogietfasies metamafiese rock solidus is eksperimenteel gedefinieër en beweeg na hoër temperature by die posisie van die plagioklaas-out reaksie. Daarom dui die resultate daarop dat 'n kristallyne materiaal nodig is om hierdie solidus te definieër en metastabiele smelting buite temperature van die Pl + H2O + Qtz solidus druk bo plagioklaas stabiliteit te vermy. Verder maak hierdie studie gebruik van numeriese en metamorfiese modelle om aan te dui dat die grootste deel van die water geproduseer deur metamorfiese reaksies binne die blaaie bestaan vir redelike Argeïkum mantel wig temperature binne 'n potensiële Argeïkum subduksie sone, en word opgevang deur 'n smelting sone naby die blad oppervlak. Daarom kan hierdie geodinamies model rekenskap gee vir HD-tipe Argeïkum TTG produksie en dit bied ook die beperkinge vir waarskynlik Argeïese subduksie. Die vorm van die betrokke waterteenwoordig solidus is soortgelyk aan die vorm van die druk-temperatuur paaie gevolg deur die boonste vlakke van die voorgestelde Argeïkum subderende blad, wat water-vloeiing blad smeltingbaie afhanklik maak van die temperatuur in die mantel wig. Ons stel voor dat afkoeling van die boonste mantel met slegs 'n klein hoeveelheid gedurende die laat Argeïese, die water-vloeiing smelting van die blad beëindig. Dit het toegelaat dat die blad water in die wig migreer en intermediêre samestelling magmatisme produseer wat sedert geassosieer word met subduksie sones.
Cao, Wentao. « Metamorphic pressure-temperature paths of eclogites from The North-East Greenland Caledonides ». Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2189.
Texte intégralPELLEGRINO, LUCA. « Modelling of mechanical mixing and chemical interaction between the subducting crust and the overlying mantle at (ultra)high pressures : implications for the slab-to-mantle mass transfer ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/271024.
Texte intégralIn the Monte Duria area (Adula-Cima Lunga unit, Central Alps, N Italy) garnet peridotites occur in direct contact with migmatised orthogneiss (Mt. Duria) and eclogites (Borgo). Both crustal and ultramafic rocks share a common high pressure (HP) peak at 2.8 GPa and 750 °C and post-peak static equilibration at 0.8-1.0 GPa and 850 °C. Garnet peridotites show abundant amphibole, dolomite, phlogopite and orthopyroxene after olivine, suggesting that they experienced metasomatism by crust-derived agents enriched in SiO2, K2O, CO2 and H2O. Peridotites also display LREE fractionation (La/Nd = 2.4) related to LREE-rich amphibole and clinopyroxene grown in equilibrium with garnet, indicating that metasomatism occurred at HP conditions. Kfs+Pl+Qz+Cpx interstitial pocket aggregates and Cpx+Kfs thin films around symplectites after omphacite parallel to the Zo+Omp+Grt foliation in the eclogites suggest that they underwent partial melting at HP.The contact between garnet peridotites and associated eclogites is marked by a tremolitite layer, which also occurs as layers within the peridotite lens, showing a boudinage parallel to the garnet layering of peridotites, flowing in the boudin necks. This clearly indicates that the tremolitite boudins formed when peridotites were in the garnet stability field. Tremolitites also show Phl+Tc+Chl+Tr pseudomorphs after garnet, both crystallised in a static regime postdating the boudins formation, suggesting that they derive from a garnet-bearing precursor. Tremolitites have Mg# > 0.90 and Al2O3 = 2.75 wt.% pointing to ultramafic compositions but also show enrichments in SiO2, CaO, and LREE suggesting that they formed after the reaction between the eclogite-derived melt and the garnet peridotite at HP. To test this hypothesis, we performed a thermodynamic modelling at fixed P = 3 GPa and T = 750 °C to model the chemical interaction between the garnet peridotite and the eclogite-derived melt. Our results show that this interaction produces a Opx+Cpx+Grt assemblage + Amp+Phl, depending on the water activity in the melt, suggesting that tremolitites likely derive from a previous garnet websterite with amphibole and phlogopite. In the Ulten Zone (Tonale nappe, Eastern Alps, N Italy), peridotite bodies occur within high-grade crustal rocks. Peridotites show a transition from coarse spinel-lherzolites to mylonitic garnet-amphibole peridotites. Pyroxenites veins and dikes, transposed along the peridotite foliation, show a similar evolution from coarse garnet-free websterites to fine-grained garnet + amphibole clinopyroxenites. This coupled evolution has been interpreted to reflect cooling and pressure increase of pyroxenites and host peridotites from spinel- (1200 °C, 1.3-1.6 Gpa) to garnet-facies conditions (850 °C and 2.8 Gpa) likely induced by mantle corner flow. As a consequence, garnet formed coronas around spinel and exsolved from porphyroclastic, high-T pyroxenes, and finally crystallised along the pyroxenite and peridotite foliations. Textural evidences and CPO data indicate that the transition from spinel- to garnet-facies conditions was assisted by intense shearing and deformation. Pyroxene porphyroclasts in garnet clinopyroxenites show well-developed CPOs, high frequencies of low-angle misorientations, and non-random distribution of the low-angle misorientation axes, indicating that pyroxene porphyroclasts primarily deform by dislocation creep. Dislocation creep is accompanied by reaction-induced dynamic recrystallisation during the spinel to garnet phase transition, which promotes a sudden reduction of the grain size and a shift from dislocation creep in the porphyroclast to grain-size sensitive creep (GSS) in the recrystallised grains. This results in a dramatic rheological weakening of pyroxenites at HP peak conditions when pyroxenites and host peridotites were coupled with crustal rocks.
Actes de conférences sur le sujet "Eclogite melting"
Holycross, Megan, et Elizabeth Cottrell. « Vanadium partitioning during eclogite melting and arc cumulate fractionation in subduction zones ». Dans Goldschmidt2022. France : European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.11441.
Texte intégralCao, Wentao, Hans-Joachim Massonne et Hans-Joachim Massonne. « PARTIAL MELTING OF ECLOGITE DUE TO PROGRADE BREAKDOWN OF AMPHIBOLE : AN EXAMPLE FROM THE ALGONQUIN TERRANE, WESTERN GRENVILLE PROVINCE, CANADA ». Dans GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-339454.
Texte intégralWang, Lu, Michael Brown et Tim E. Johnson. « PARTIAL MELTING OF UHP ECLOGITES DURING EXHUMATION, SULU BELT, CHINA—FLUID–MELT EVOLUTION, DEFORMATION AND IMPLICATIONS FOR EXHUMATION DYNAMICS ». Dans GSA Connects 2022 meeting in Denver, Colorado. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022am-381676.
Texte intégral