Articles de revues sur le sujet « ECCENTRICALLY LOADED FOOTING »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : ECCENTRICALLY LOADED FOOTING.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « ECCENTRICALLY LOADED FOOTING ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Saran, Swami, et R. K. Agarwal. « Eccentrically‐obliquely Loaded Footing ». Journal of Geotechnical Engineering 115, no 11 (novembre 1989) : 1673–80. http://dx.doi.org/10.1061/(asce)0733-9410(1989)115:11(1673).

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Turker, Emel, Erol Sadoglu, Evrim Cure et Bayram Ali Uzuner. « Bearing capacity of eccentrically loaded strip footings close to geotextile-reinforced sand slope ». Canadian Geotechnical Journal 51, no 8 (août 2014) : 884–95. http://dx.doi.org/10.1139/cgj-2014-0055.

Texte intégral
Résumé :
A series of bearing capacity tests were conducted with an eccentrically (e/B = 0, 1/12, 1/6, 1/3) loaded model surface (Df/B = 0) and shallow (Df/B = 0.25) strip footings (B = 80 mm) resting close to reinforced finite sand slopes to investigate ultimate loads, failure surfaces, load–displacement curves, rotation of footing, etc. The experimental set-up used to run the tests consists of a tank, model footing, sand, and a loading mechanism. A single woven geotextile strip sheet was placed horizontally below the footing’s base at a depth of half of the footing’s width. Ultimate loads decreased with increasing eccentricity. This decrease is due to a combination of eccentricity and slope. The use of geotextile reinforcement increased ultimate loads in comparison with unreinforced cases. Failure surfaces were not symmetrical, primary failure surfaces developed on the eccentricity (slope) side, and secondary failure surfaces developed on the other side. Lengths of failure surfaces decreased with increasing eccentricity. Prior to failure, footings always rotated towards the eccentricity (slope) side a few degrees.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Major, Maciej, Izabela Major, Daniela Kuchárová et Krzysztof Kuliński. « On the Eccentrically Loaded Socket Footings With Cut - Off Pyramid Shaped Socket ». Civil and Environmental Engineering 15, no 1 (1 juin 2019) : 58–69. http://dx.doi.org/10.2478/cee-2019-0009.

Texte intégral
Résumé :
AbstractIn this work considerations concerning eccentrically loaded socket footing with cut-off pyramid shaped socket were presented. As an object of study sloped footing with 1.40 m height, corresponding to the maximum frost depth has been adopted. Knowing that in practice there are no perfect pure axial loads, load applied on the eccentricity has been taken into considerations. Eccentric loads result in footing rotation in the direction of eccentricity and acting load, hence one footing end is imbedding into the ground, whereas second end tries to rise up. To observe that phenomenon, elastic type of support under the foundation was introduced corresponding to the naturally humid sand with medium compaction. Presented in this paper considerations of innovative connection technology between footing and column were based on performed numerical studies. Advantages and disadvantages of presented footing in comparison to normal socket footings solutions were widely discussed. Numerical analyses were performed with the utilization Finite Element Method based SolidWorks software.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Al-Jubair, Haider S., et Jawdat K. Abbas. « Bearing Capacity of Eccentrically Loaded Strip Footing Near The Edge of Cohesive Slope ». Tikrit Journal of Engineering Sciences 14, no 2 (30 juin 2007) : 32–48. http://dx.doi.org/10.25130/tjes.14.2.02.

Texte intégral
Résumé :
The finite element method is used to investigate the behavior of a strip footing constructed near the edge of a sloping cohesive ground. The effects of variation in footing closeness, loading eccentricity and slope angle are studied also. It is proved that Bowles method overestimates the load carrying capacity of the concentrically loaded strip footings on cohesive soils. Decreasing the distance between the footing and the slope edge, increasing the eccentricity and slope angle reduce the ultimate bearing capacity. Slope effect diminishes as the footing distance from the edge approaches (1.5) times its width.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Li, Xinggao. « Bearing Capacity Factors for Eccentrically Loaded Strip Footings Using Variational Analysis ». Mathematical Problems in Engineering 2013 (2013) : 1–17. http://dx.doi.org/10.1155/2013/640273.

Texte intégral
Résumé :
Bearing capacity factors for eccentrically loaded strip smooth footings on homogenous cohesive frictional material are deduced by the variational limit equilibrium method and by assuming general shear failure along continuous curved slip surface. From the calculated results, the effective width rule suggested by Meyerhof for bearing capacity factors due to cohesion of soil is justified, and the superposition principle of bearing capacity for eccentrically loaded strip smooth footings is derived together with the bearing capacity factors for cohesion and unit weight of soil. The two factors are represented by soil strength parameters and eccentricity of load. The bearing capacity factor related to unit weight for cohesionless soil is less than that for cohesive frictional soil. The reason for this discrepancy lies in the existence of the soil cohesion, for the shape of the critical rupture surface of footing soil depends on both soil strength parameters rather than on friction angle alone in the previous limit equilibrium solutions. The contact between footing and soil is decided by both the load and the mechanical properties of soil. Under conditions of higher eccentricity and less strength properties of soil, part of the footing will separate from the underlying soil.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Saran, Swami, et R. K. Agarwal. « Bearing Capacity of Eccentrically Obliquely Loaded Footing ». Journal of Geotechnical Engineering 117, no 11 (novembre 1991) : 1669–90. http://dx.doi.org/10.1061/(asce)0733-9410(1991)117:11(1669).

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Mansouri, Tarek, et Khelifa Abbeche. « Experimental bearing capacity of eccentrically loaded foundation near a slope ». Studia Geotechnica et Mechanica 41, no 1 (11 février 2019) : 33–41. http://dx.doi.org/10.2478/sgem-2019-0004.

Texte intégral
Résumé :
AbstractBased on the response of small-scale model square footing, the present paper shows the results of an experimental bearing capacity of eccentrically loaded square footing, near a slope sand bed. To reach this aim, a steel model square footing of (150 mm × 150 mm) and a varied sand relative density of 30%, 50% and 70% are used. The bearing capacity-settlement relationship of footing located at the edge of a slope and the effect of various parameters such as eccentricity (e) and dimensions report (b/B) were studied. Test results indicate that ultimate bearing capacity decreases with increasing load eccentricity to the core boundary of footing and that as far as the footing is distant from the crest, the bearing capacity increases. Furthermore, the results also prove that there is a clear proportional relation between relative densities –bearing capacity. The model test provides qualitative information on parameters influencing the bearing capacity of square footing. These tests can be used to check the bearing capacity estimated by the conventional methods.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Tang, Chong, Kok-Kwang Phoon et Kim-Chuan Toh. « Effect of footing width on Nγ and failure envelope of eccentrically and obliquely loaded strip footings on sand ». Canadian Geotechnical Journal 52, no 6 (juin 2015) : 694–707. http://dx.doi.org/10.1139/cgj-2013-0378.

Texte intégral
Résumé :
This paper thoroughly investigates the bearing capacity of strip footings on sand under combined loading by using a lower-bound limit analysis in conjunction with finite elements and second-order cone programming (SOCP). Two analyses were performed: one using a constant friction angle and the other using a variable friction angle. The analyses with a constant friction angle were used to calibrate the existing results, including the classical solutions commonly used in foundation design practice and other numerical or experimental solutions. The analyses with a variable friction angle allow us to investigate the effect of footing width B on the bearing capacity of strip footings. An iteration computational procedure is employed to account for the dependency of the friction angle on the stress level. According to the numerical results, it is found that the bearing capacity factor Nγ for eccentrically or obliquely loaded strip footings linearly decreases with the increase of B on a log–log scale, where the range 0.3–5 m of footing width was considered in this paper. In addition, it is found that the footing width has a negligible effect on the shape and size of the normalized failure envelopes.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Al-Tirkity, Jawdat K., et Akram H. Al-Taay. « Bearing Capacity of Eccentrically Loaded Strip Footing on Geogrid Reinforced Sand ». Tikrit Journal of Engineering Sciences 19, no 1 (9 juin 2022) : 14–22. http://dx.doi.org/10.25130/tjes.19.1.02.

Texte intégral
Résumé :
This study aims to demonstrate the effects of geogrid reinforcement on the bearing capacity of strip footing under eccentric loading. Numerical analysis using finite element program called (PLAXIS 2D Professional v.8.2) are presented. The effect of each of the depth ratio of the topmost layer of geogrid (u/B), the vertical distance ratio between consecutive layers (h/B), number of geogrid layers (N), and the effective depth ratio of reinforcement (d/B) on the bearing capacity were studied, where (B) is the footing width. Also, the combined effect of load eccentricity ratio (e/B), depth of embedment ratio of footing ( f D /B) and the angle of internal friction ( ) on the ultimate bearing capacity were investigated.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Plevko, V. S., et A. I. Polishchuk. « Assigning dimensions of the footing of eccentrically loaded foundations ». Soil Mechanics and Foundation Engineering 30, no 5 (septembre 1993) : 196–200. http://dx.doi.org/10.1007/bf01712258.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Abdi, Abdelmadjid, Khelifa Abbeche, Djamel Athmania et Mounir Bouassida. « Effective Width Rule in the Analysis of Footing on Reinforced Sand Slope ». Studia Geotechnica et Mechanica 41, no 1 (8 avril 2019) : 42–55. http://dx.doi.org/10.2478/sgem-2019-0005.

Texte intégral
Résumé :
AbstractThis paper presents the results obtained from an experimental programme and numerical investigations conducted on model tests of strip footing resting on reinforced and unreinforced sand slopes. The study focused on the determination of ultimate bearing capacity of strip footing subjected to eccentric load located either towards or opposite to the slope facing. Strip footing models were tested under different eccentricities of vertical load. The obtained results from tests conducted on unreinforced sand slope showed that the increase in eccentricity of applied load towards the slope facing decreases the ultimate bearing capacity of footing. Predictions of the ultimate bearing capacity obtained by the effective width rule are in good agreement with those proposed from the consideration of total width of footing subjected to eccentric load. The ultimate bearing capacity of an eccentrically loaded footing on a reinforced sand slope can be derived from that of axially loaded footing resting on horizontal sand ground when adopting the effective width rule and the coefficient of reduction due to the slope. When increasing the distance between the footing border to the slope crest, for unreinforced and reinforced ground slope by geogrids, the ultimate bearing capacity of footing is no more affected by the slope ground.
Styles APA, Harvard, Vancouver, ISO, etc.
12

A. Abdi, K. Abbeche, R. Boufarh et B. Mazouz. « Experimental and Numerical Investigation of an Eccentrically Loaded Strip Footing on Reinforced Sand Slope ». Electronic Journal of Structural Engineering 18, no 2 (1 juin 2018) : 7–15. http://dx.doi.org/10.56748/ejse.182592.

Texte intégral
Résumé :
An experimental program and numerical computations were performed to investigate the slope effect on the bearing capacity of an eccentrically loaded strip footing. Two cases were considered: unreinforced sand slope and reinforced slope by geogrid. Tests were conducted on scaled footing models under various eccentric loads. A parametric study was carried out to examine the effect of the slope on the bearing capacity and the depth of geogrid layers under different eccentric loads. It was shown that the location of the eccentricity of applied load with respect to the slope face has a significant effect on the bearing capacity. This latter increase when the distance from applied eccentric load to the slope face also increases. Obtained results also showed that the bearing capacity of strip footing also depends on the inclination of ground surface in comparison to that predicted from horizontal ground.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Kaur, Arshdeep, et Arvind Kumar. « Behavior of eccentrically inclined loaded footing resting on fiber reinforced soil ». Geomechanics and Engineering 10, no 2 (25 février 2016) : 155–74. http://dx.doi.org/10.12989/gae.2016.10.2.155.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Dobrzański, Jędrzej, et Marek Kawa. « Bearing capacity of eccentrically loaded strip footing on spatially variable cohesive soil ». Studia Geotechnica et Mechanica 43, no 4 (1 décembre 2021) : 425–37. http://dx.doi.org/10.2478/sgem-2021-0035.

Texte intégral
Résumé :
Abstract The study considers the bearing capacity of eccentrically loaded strip footing on spatially variable, purely cohesive soil. The problem is solved using the random finite element method. The anisotropic random field of cohesion is generated using the Fourier series method, and individual problems within performed Monte Carlo simulations (MCSs) are solved using the Abaqus finite element code. The analysis includes eight different variants of the fluctuation scales and six values of load eccentricity. For each of these 48 cases, 1000 MCSs are performed and the probabilistic characteristics of the obtained values are calculated. The results of the analysis indicate that the mean value of the bearing capacity decreases linearly with eccentricity, which is consistent with Meyerhof's theory. However, the decrease in standard deviation and increase in the coefficient of variation of the bearing capacity observed are non-linear, which is particularly evident for small eccentricities. For one chosen variant of fluctuation scales, a reliability analysis investigating the influence of eccentricity on reliability index is performed. The results of the analysis conducted show that the value of the reliability index can be significantly influenced even by small eccentricities. This indicates the need to consider at least random eccentricities in future studies regarding probabilistic modelling of foundation bearing capacity.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Abdi, A., K. Abbeche, B. Mazouz et R. Boufarh. « Bearing Capacity of an Eccentrically Loaded Strip Footing on Reinforced Sand Slope ». Soil Mechanics and Foundation Engineering 56, no 4 (septembre 2019) : 232–38. http://dx.doi.org/10.1007/s11204-019-09596-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Şadoğlu, E. « Numerical analysis of centrally and eccentrically loaded strip footing on geotextile-reinforced sand ». Geosynthetics International 22, no 3 (juin 2015) : 225–34. http://dx.doi.org/10.1680/gein.15.00007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Hassan, Hussam Aldeen J., et Ressol R. Shakir. « Ultimate bearing capacity of eccentrically loaded square footing over geogrid-reinforced cohesive soil ». Journal of the Mechanical Behavior of Materials 31, no 1 (1 janvier 2022) : 337–44. http://dx.doi.org/10.1515/jmbm-2022-0035.

Texte intégral
Résumé :
Abstract Construction of shallow foundations on weak cohesive soils have limited load-bearing capacity and excessive vertical displacement. This may cause structural damage and reduce the structure’s durability. Traditionally, weak cohesive soils are excavated and replaced with another stronger material layer, or the foundation is enlarged. These procedures are costly and time-consuming. However, these soils are also difficult to stabilize due to their low permeability and slow consolidation. Therefore, it has become necessary to use geosynthetic material. In this study, a square footing model with an eccentric load was tested in geogrid-reinforced clay. The adopted load eccentricity ratios were 0.05 to 0.1, 0.16, and 0.25. Twenty-one tests were executed to estimate the reinforcement influence and eccentricity on the ultimate bearing capacity (UBC). The geogrid improved the BC by 2.27 and 2.12 times compared to unreinforced soil for centrical and eccentrical loads, respectively. The best first layer ratio and the best number of reinforcements were found to be 0.35 and 4. A new equation for BCR with knowing the number of reinforcing layers was proposed and compared with other studies’ outcomes. It was concluded that the foundation tilts in a linear relationship with eccentricity, with a smaller rate inside the core than outside.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Örnek, M., M. Çalişici, Y. Türedi et N. Kaya. « Investigation of Skirt Effect on Eccentrically Loaded Model Strip Footing Using Laboratory Tests ». Soil Mechanics and Foundation Engineering 58, no 3 (juillet 2021) : 215–22. http://dx.doi.org/10.1007/s11204-021-09731-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Zhang, Rui, Heng Zhao et Gaoqiao Wu. « FELA investigation of eccentrically-loaded footing on parallel tunnels constructed in rock masses ». Computers and Geotechnics 153 (janvier 2023) : 105102. http://dx.doi.org/10.1016/j.compgeo.2022.105102.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Saran, Swami, et R. K. Agarwal. « Erratum : "Bearing Capacity of Eccentrically Obliquely Loaded Footing" (November, 1991, Vol. 117, No. 11) ». Journal of Geotechnical Engineering 119, no 2 (février 1993) : 400. http://dx.doi.org/10.1061/(asce)0733-9410(1993)119:2(400).

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Behera, R. N., C. R. Patra, N. Sivakugan et B. M. Das. « Prediction of ultimate bearing capacity of eccentrically inclined loaded strip footing by ANN, part I ». International Journal of Geotechnical Engineering 7, no 1 (janvier 2013) : 36–44. http://dx.doi.org/10.1179/1938636212z.00000000012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Behera, R. N., C. R. Patra, N. Sivakugan et B. M. Das. « Prediction of ultimate bearing capacity of eccentrically inclined loaded strip footing by ANN : Part II ». International Journal of Geotechnical Engineering 7, no 2 (avril 2013) : 165–72. http://dx.doi.org/10.1179/1938636213z.00000000019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Dastpak, Pooya, Saeed Abrishami, Sohrab Sharifi et Abdolah Tabaroei. « Experimental study on the behavior of eccentrically loaded circular footing model resting on reinforced sand ». Geotextiles and Geomembranes 48, no 5 (octobre 2020) : 647–54. http://dx.doi.org/10.1016/j.geotexmem.2020.03.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Wu, Gaoqiao, Rui Zhang, Minghua Zhao et Shuai Zhou. « Undrained stability analysis of eccentrically loaded strip footing lying on layered slope by finite element limit analysis ». Computers and Geotechnics 123 (juillet 2020) : 103600. http://dx.doi.org/10.1016/j.compgeo.2020.103600.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Abdel‐Baki, Sherif, et G. P. Raymond. « Discussion of “ Bearing Capacity of Eccentrically Obliquely Loaded Footing ” by Swami Saran and R. K. Agarwal (November, 1991, Vol. 117, No. 11) ». Journal of Geotechnical Engineering 119, no 2 (février 1993) : 394–96. http://dx.doi.org/10.1061/(asce)0733-9410(1993)119:2(394).

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Ghaly, Ashraf, Adel Hanna et Mohamed Abd El‐Rahman. « Discussion of “ Bearing Capacity of Eccentrically Obliquely Loaded Footing ” by Swami Saran and R. K. Agarwal (November, 1991, Vol. 117, No. 11) ». Journal of Geotechnical Engineering 119, no 2 (février 1993) : 396–98. http://dx.doi.org/10.1061/(asce)0733-9410(1993)119:2(396).

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Saran, Swami, et R. K. Agarwal. « Closure to “ Bearing Capacity of Eccentrically Obliquely Loaded Footing ” by Swami Saran and R. K. Agarwal (November, 1991, Vol. 117, No. 11) ». Journal of Geotechnical Engineering 119, no 2 (février 1993) : 398–400. http://dx.doi.org/10.1061/(asce)0733-9410(1993)119:2(398).

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Jao, M., F. Ahmed, G. Muninarayana et M. C. Wang. « Stability of eccentrically loaded footings on slopes ». Geomechanics and Geoengineering 3, no 2 (22 mai 2008) : 107–11. http://dx.doi.org/10.1080/17486020802010772.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Rawat, Sanket, et Ravi Kant Mittal. « Optimization of Eccentrically Loaded Reinforced-Concrete Isolated Footings ». Practice Periodical on Structural Design and Construction 23, no 2 (mai 2018) : 06018002. http://dx.doi.org/10.1061/(asce)sc.1943-5576.0000366.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Nasr, Ahmed M. A., et Waseim R. Azzam. « Behaviour of eccentrically loaded strip footings resting on sand ». International Journal of Physical Modelling in Geotechnics 17, no 3 (septembre 2017) : 177–94. http://dx.doi.org/10.1680/jphmg.16.00008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Behera, Rabi Narayan, et Chittaranjan Patra. « Ultimate Bearing Capacity Prediction of Eccentrically Inclined Loaded Strip Footings ». Geotechnical and Geological Engineering 36, no 5 (21 mars 2018) : 3029–80. http://dx.doi.org/10.1007/s10706-018-0521-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Wieneke, Katrin, Dominik Kueres, Carsten Siburg et Josef Hegger. « Investigations on the punching shear behaviour of eccentrically loaded footings ». Structural Concrete 17, no 6 (décembre 2016) : 1047–58. http://dx.doi.org/10.1002/suco.201500127.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

de Koker, Nico, et Peter W. Day. « Reliability analysis of EN 1997 design approaches for eccentrically loaded footings ». Proceedings of the Institution of Civil Engineers - Geotechnical Engineering 172, no 2 (avril 2019) : 113–20. http://dx.doi.org/10.1680/jgeen.18.00030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Algin, Halil Murat. « Elastic Settlement under Eccentrically Loaded Rectangular Surface Footings on Sand Deposits ». Journal of Geotechnical and Geoenvironmental Engineering 135, no 10 (octobre 2009) : 1499–508. http://dx.doi.org/10.1061/(asce)gt.1943-5606.0000113.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Campione, Giuseppe. « Practical Model for Load-Carrying Capacity of Eccentrically Loaded Square Column Footings ». Practice Periodical on Structural Design and Construction 23, no 4 (novembre 2018) : 04018023. http://dx.doi.org/10.1061/(asce)sc.1943-5576.0000385.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Kaur, Arshdeep, et Arvind Kumar. « Bearing Capacity of Eccentrically–Obliquely Loaded Footings Resting on Fiber-Reinforced Sand ». Geotechnical and Geological Engineering 32, no 1 (19 septembre 2013) : 151–66. http://dx.doi.org/10.1007/s10706-013-9699-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Saran, Swami, Surendra Kumar, K. Garg et Arvind Kumar. « Model tests on eccentrically and obliquely loaded footings resting on reinforced sand ». International Journal of Geotechnical Engineering 2, no 3 (juillet 2008) : 179–97. http://dx.doi.org/10.3328/ijge.2008.02.03.179-197.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

El-Naqeeb, Mohamed H., et Basem S. Abdelwahed. « Numerical investigations on punching shear behavior of eccentrically loaded reinforced concrete footings ». Engineering Structures 279 (mars 2023) : 115598. http://dx.doi.org/10.1016/j.engstruct.2023.115598.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Viladkar, M. N., Adnan Jayed Zedan et Swami Saran. « Non-dimensional correlations for design of eccentrically obliquely loaded footings on cohesionless soils ». International Journal of Geotechnical Engineering 7, no 4 (octobre 2013) : 333–45. http://dx.doi.org/10.1179/1938636213z.00000000049.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Wu, Gaoqiao, Minghua Zhao, Rui Zhang et Guanting Liang. « Ultimate bearing capacity of eccentrically loaded strip footings above voids in rock masses ». Computers and Geotechnics 128 (décembre 2020) : 103819. http://dx.doi.org/10.1016/j.compgeo.2020.103819.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Sadoglu, Erol, Evrim Cure, Berkan Moroglu et Bayram Ali Uzuner. « Ultimate loads for eccentrically loaded model shallow strip footings on geotextile-reinforced sand ». Geotextiles and Geomembranes 27, no 3 (juin 2009) : 176–82. http://dx.doi.org/10.1016/j.geotexmem.2008.11.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

El Sawwaf, Mostafa. « Experimental and Numerical Study of Eccentrically Loaded Strip Footings Resting on Reinforced Sand ». Journal of Geotechnical and Geoenvironmental Engineering 135, no 10 (octobre 2009) : 1509–18. http://dx.doi.org/10.1061/(asce)gt.1943-5606.0000093.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

El Sawwaf, M., et A. Nazir. « Behavior of Eccentrically Loaded Small-Scale Ring Footings Resting on Reinforced Layered Soil ». Journal of Geotechnical and Geoenvironmental Engineering 138, no 3 (mars 2012) : 376–84. http://dx.doi.org/10.1061/(asce)gt.1943-5606.0000593.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Fraser Bransby, M. « Failure envelopes and plastic potentials for eccentrically loaded surface footings on undrained soil ». International Journal for Numerical and Analytical Methods in Geomechanics 25, no 4 (2001) : 329–46. http://dx.doi.org/10.1002/nag.132.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Krabbenhoft, Sven, Lars Damkilde et Kristian Krabbenhoft. « Lower-bound calculations of the bearing capacity of eccentrically loaded footings in cohesionless soil ». Canadian Geotechnical Journal 49, no 3 (mars 2012) : 298–310. http://dx.doi.org/10.1139/t11-103.

Texte intégral
Résumé :
Lower-bound calculations based on the finite element method are used to determine the bearing capacity of a strip foundation subjected to a vertical, eccentric load on cohesionless soil with varying surcharges. The soil is assumed perfectly plastic following the Mohr–Coulomb failure criterion. The results are reported as tables and graphs showing the bearing capacity as a function of the eccentricity and surcharge. Normalised interaction diagrams in the vertical force versus moment plane have been produced. The results from the analysis are in reasonable agreement with existing methods for smaller eccentricities, whereas for greater eccentricities (e > 0.25B–0.3B, where B is the width of the foundation), the lower-bound values in general — and especially for greater surcharges — are considerably smaller than the bearing capacities predicted by existing methods. For the special case of no surcharge, the results are in very good agreement with results obtained by the effective-width approach originally proposed by Meyerhof.
Styles APA, Harvard, Vancouver, ISO, etc.
46

El-Naqeeb, Mohamed H., et Basem S. Abdelwahed. « Numerical assessment of punching shear strength of eccentrically loaded footings with nonconventional shear reinforcement ». Structures 49 (mars 2023) : 716–29. http://dx.doi.org/10.1016/j.istruc.2023.01.147.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Cure, Evrim, Erol Sadoglu, Emel Turker et Bayram Ali Uzuner. « Decrease trends of ultimate loads of eccentrically loaded model strip footings close to a slope ». Geomechanics and Engineering 6, no 5 (25 mai 2014) : 469–85. http://dx.doi.org/10.12989/gae.2014.6.5.469.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Sangjinda, Kongtawan, Rungkhun Banyong, Saif Alzabeebee et Suraparb Keawsawasvong. « Developing soft-computing regression model for predicting bearing capacity of eccentrically loaded footings on anisotropic clay ». Artificial Intelligence in Geosciences 4 (décembre 2023) : 68–75. http://dx.doi.org/10.1016/j.aiig.2023.05.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Fathipour, Hessam, Meghdad Payan, Reza Jamshidi Chenari et Behzad Fatahi. « General failure envelope of eccentrically and obliquely loaded strip footings resting on an inherently anisotropic granular medium ». Computers and Geotechnics 146 (juin 2022) : 104734. http://dx.doi.org/10.1016/j.compgeo.2022.104734.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Cure, Evrim, Emel Turker et Bayram Ali Uzuner. « Analytical and experimental study for ultimate loads of eccentrically loaded model strip footings near a sand slope ». Ocean Engineering 89 (octobre 2014) : 113–18. http://dx.doi.org/10.1016/j.oceaneng.2014.07.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie