Littérature scientifique sur le sujet « Earthquake dynamics »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Earthquake dynamics ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Earthquake dynamics"
Gabriel, Alice-Agnes, Thomas Ulrich, Mathilde Marchandon, James Biemiller et John Rekoske. « 3D Dynamic Rupture Modeling of the 6 February 2023, Kahramanmaraş, Turkey Mw 7.8 and 7.7 Earthquake Doublet Using Early Observations ». Seismic Record 3, no 4 (1 octobre 2023) : 342–56. http://dx.doi.org/10.1785/0320230028.
Texte intégralLin, Yu Sen, Li Hua Xin et Min Xiang. « Parameters Analysis of Train Running Performance on High-Speed Bridge during Earthquake ». Advanced Materials Research 163-167 (décembre 2010) : 4457–63. http://dx.doi.org/10.4028/www.scientific.net/amr.163-167.4457.
Texte intégralTiwari, Ram Krishna, et Harihar Paudyal. « Spatial mapping of b-value and fractal dimension prior to November 8, 2022 Doti Earthquake, Nepal ». PLOS ONE 18, no 8 (9 août 2023) : e0289673. http://dx.doi.org/10.1371/journal.pone.0289673.
Texte intégralSobolev, G. A. « Seismicity dynamics and earthquake predictability ». Natural Hazards and Earth System Sciences 11, no 2 (14 février 2011) : 445–58. http://dx.doi.org/10.5194/nhess-11-445-2011.
Texte intégralWu, Gongcheng, Kanghua Zhang, Chonglang Wang et Xing Li. « Nucleation Mechanism and Rupture Dynamics of Laboratory Earthquakes at Different Loading Rates ». Applied Sciences 13, no 22 (11 novembre 2023) : 12243. http://dx.doi.org/10.3390/app132212243.
Texte intégralJiménez, A., K. F. Tiampo et A. M. Posadas. « An Ising model for earthquake dynamics ». Nonlinear Processes in Geophysics 14, no 1 (19 janvier 2007) : 5–15. http://dx.doi.org/10.5194/npg-14-5-2007.
Texte intégralCharpentier, Arthur, et Marilou Durand. « Modeling earthquake dynamics ». Journal of Seismology 19, no 3 (16 avril 2015) : 721–39. http://dx.doi.org/10.1007/s10950-015-9489-9.
Texte intégralVentura, Carlos E., W. D. Liam Finn et Norman D. Schuster. « Seismic response of instrumented structures during the 1994 Northridge, California, earthquake ». Canadian Journal of Civil Engineering 22, no 2 (1 avril 1995) : 316–37. http://dx.doi.org/10.1139/l95-045.
Texte intégralDelorey, Andrew A., Kevin Chao, Kazushige Obara et Paul A. Johnson. « Cascading elastic perturbation in Japan due to the 2012 Mw 8.6 Indian Ocean earthquake ». Science Advances 1, no 9 (octobre 2015) : e1500468. http://dx.doi.org/10.1126/sciadv.1500468.
Texte intégralRamos, Marlon D., Prithvi Thakur, Yihe Huang, Ruth A. Harris et Kenny J. Ryan. « Working with Dynamic Earthquake Rupture Models : A Practical Guide ». Seismological Research Letters 93, no 4 (13 avril 2022) : 2096–110. http://dx.doi.org/10.1785/0220220022.
Texte intégralThèses sur le sujet "Earthquake dynamics"
Xia, Kaiwen Rosakis Ares J. « Laboratory investigations of earthquake dynamics / ». Diss., Pasadena, Calif. : California Institute of Technology, 2005. http://resolver.caltech.edu/CaltechETD:etd-02262005-161824.
Texte intégralGrzemba, Birthe [Verfasser]. « Predictability of Elementary Models for Earthquake Dynamics / Birthe Grzemba ». Berlin : epubli GmbH, 2014. http://d-nb.info/1063227674/34.
Texte intégralAbercrombie, Rachel E. « Earthquake rupture dynamics and neotectonics in the Aegean region ». Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.290297.
Texte intégralBruun, Karianne. « Structural Dynamics of Subsea Structures in Earthquake Prone Regions ». Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for konstruksjonsteknikk, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-24328.
Texte intégralStojanova, Menka. « Non-trivial aftershock properties in subcritical fracture and in earthquake dynamics ». Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10201.
Texte intégralThis thesis consists in two separate parts: one on subcritical fracture experiments, and another one on earthquake statistics. The dynamics of these processes was mainly studied through their scale invariant dynamics, reflected in power law distri- butions of event sizes and times between events. The analyses focuses particularly on the variation of their exponent values and the origins of these variations. Subcritical fracture was studied by two experimental set-ups: creep experiments on paper, and constant-strain fracture of fibre bundles. Paper fracture has been studied in our group for more than 10 years now by visually observing the propaga- tion of the crack. We added acoustic emission monitoring to the experimental set-up in order to compare it to visualisation. The comparison between low frequency image analysis and the high frequency acoustic monitoring allowed to identify the impor- tance of the frequency of analysis for temporally correlated systems, and acoustic emission monitoring revealed the existence of aftershocks in the dynamics of paper fracture. The fibre bundle experiments concentrate on the temporal distribution of the frac- ture events, which follows an Omori law. We studied the influence of the temperature and stress on its exponent, and compared it with results from fibre bundle model analytical predictions and simulations. Our work on earthquakes was initially motivated by the results obtained on pa- per fracture experiments. Hence it starts by a study of aftershock sequences, their Gutenberg-Richter exponent, and the influence of the frequency of analysis on this exponent. By lowering the frequency of the time-magnitude signal we showed that at low frequencies the exponent of the Gutenberg-Richter law depends on the expo- nent of the Omori law. The last chapter of this thesis is concentrated on the early aftershocks. We in- spected the evolution of the properties of an aftershock sequence with time, and observed differences between aftershock occurring shortly after a mainshock, and late aftershocks. These results can be related to the recent proposition of existence of magnitude correlations in earthquakes
Castle, John C. « Imaging mid-mantle discontinuities : implications for mantle chemistry, dynamics, rheology, and deep earthquakes / ». Thesis, Connect to this title online ; UW restricted, 1998. http://hdl.handle.net/1773/6809.
Texte intégralDoherty, Kevin Thomas. « An investigation of the weak links in the seismic load path of unreinforced masonary buildings / ». Title page, table of contents and abstract only, 2000. http://web4.library.adelaide.edu.au/theses/09PH/09phd655.pdf.
Texte intégralNieto, Ferro Alex. « Nonlinear Dynamic Soil-Structure Interaction in Earthquake Engineering ». Phd thesis, Ecole Centrale Paris, 2013. http://tel.archives-ouvertes.fr/tel-00944139.
Texte intégralNieto, ferro Alex. « Nonlinear Dynamic Soil-Structure Interaction in Earthquake Engineering ». Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2013. http://www.theses.fr/2013ECAP0006/document.
Texte intégralThe present work addresses a computational methodology to solve dynamic problems coupling time and Laplace domain discretizations within a domain decomposition approach. In particular, the proposed methodology aims at meeting the industrial need of performing more accurate seismic risk assessments by accounting for three-dimensional dynamic soil-structure interaction (DSSI) in nonlinear analysis. Two subdomains are considered in this problem. On the one hand, the linear and unbounded domain of soil which is modelled by an impedance operator computed in the Laplace domain using a Boundary Element (BE) method; and, on the other hand, the superstructure which refers not only to the structure and its foundations but also to a region of soil that possibly exhibits nonlinear behaviour. The latter subdomain is formulated in the time domain and discretized using a Finite Element (FE) method. In this framework, the DSSI forces are expressed as a time convolution integral whose kernel is the inverse Laplace transform of the soil impedance matrix. In order to evaluate this convolution in the time domain by means of the soil impedance matrix (available in the Laplace domain), a Convolution Quadrature-based approach called the Hybrid Laplace-Time domain Approach (HLTA), is thus introduced. Its numerical stability when coupled to Newmark time integration schemes is subsequently investigated through several numerical examples of DSSI applications in linear and nonlinear analyses. The HLTA is finally tested on a more complex numerical model, closer to that of an industrial seismic application, and good results are obtained when compared to the reference solutions
Purssell, Tanis Jane. « Modulus reduction dynamic analysis ». Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/25136.
Texte intégralApplied Science, Faculty of
Civil Engineering, Department of
Graduate
Livres sur le sujet "Earthquake dynamics"
S, Cakmak A., Brebbia C. A et International Conference on Soil Dynamics and Earthquake Engineering (6th : 1993 : Bath, England), dir. Soil dynamics and earthquake engineering VI. Southampton : Computational Mechanics Publications, 1992.
Trouver le texte intégralAdimoolam, Boominathan, et Subhadeep Banerjee, dir. Soil Dynamics and Earthquake Geotechnical Engineering. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-0562-7.
Texte intégralManolis, Papadrakakis, dir. Computational structural dynamics and earthquake engineering. Boca Raton : CRC Press, 2009.
Trouver le texte intégralUniversität Karlsruhe. Institut für Bodenmechanik und Felsmechanik. et Deutsche Forschungsgemeinschaft, dir. Soil dynamics and earthquake engineering V. Southampton, UK : Computational Mechanics Publications, 1991.
Trouver le texte intégralInternational Conference on Soil Dynamics and Earthquake Engineering (7th 1995 Crete, Greece). Soil dynamics and earthquake engineering VII. Sous la direction de Cakmak A. S et Brebbia C. A. Southampton : Computational Mechanics Publications, 1995.
Trouver le texte intégralManolis, G. D. Stochastic structural dynamics in earthquake engineering. Southampton : WITPress, 2001.
Trouver le texte intégralSoil behaviour in earthquake geotechnics. Oxford : Clarendon Press, 1996.
Trouver le texte intégralKumar, Kamlesh. Basic geotechnical earthquake engineering. New Delhi : New Age International (P) Ltd., Publishers, 2008.
Trouver le texte intégralMuthukkumaran, Kasinathan, R. Ayothiraman et Sreevalsa Kolathayar, dir. Soil Dynamics, Earthquake and Computational Geotechnical Engineering. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6998-0.
Texte intégralEiichi, Fukuyama, et ScienceDirect (Online service), dir. Fault-Zone properties and earthquake rupture dynamics. Burlington, MA : Academic Press, 2009.
Trouver le texte intégralChapitres de livres sur le sujet "Earthquake dynamics"
Pradlwarter, H. J., G. I. Schuëller et R. J. Scherer. « Earthquake Loading ». Dans Structural Dynamics, 28–51. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-88298-2_3.
Texte intégralBangash, M. Y. H. « Basic Structural Dynamics ». Dans Earthquake Resistant Buildings, 143–206. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-93818-7_3.
Texte intégralÇamlibel, N. « Historical earthquake damages in Istanbul ». Dans Structural Dynamics, 429–33. London : Routledge, 2022. http://dx.doi.org/10.1201/9780203738085-62.
Texte intégralCimellaro, Gian Paolo, et Sebastiano Marasco. « Earthquake Prediction ». Dans Introduction to Dynamics of Structures and Earthquake Engineering, 263–80. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72541-3_11.
Texte intégralFischer, F. D., F. G. Rammerstorferf et K. Scharf. « Earthquake Resistant Design of Anchored and Unanchored Liquid Storage Tanks Under Three-Dimensional Earthquake Excitation ». Dans Structural Dynamics, 317–71. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-88298-2_14.
Texte intégralM∅rk, K. J., et S. R. K. Nielsen. « Reliability of soil sublayers under earthquake excitation ». Dans Structural Dynamics, 225–36. London : Routledge, 2022. http://dx.doi.org/10.1201/9780203738085-34.
Texte intégralAnagnostopoulos, S. A., et K. V. Spiliopoulos. « Analysis of building pounding due to earthquake ». Dans Structural Dynamics, 479–84. London : Routledge, 2022. http://dx.doi.org/10.1201/9780203738085-69.
Texte intégralHjelmstad, Keith D. « Earthquake Response of NDOF Systems ». Dans Fundamentals of Structural Dynamics, 159–74. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89944-8_6.
Texte intégralChowdhury, Indrajit, et Shambhu P. Dasgupta. « Soil Dynamics and Earthquake Engineering ». Dans Earthquake Analysis and Design of Industrial Structures and Infra-structures, 209–99. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90832-8_3.
Texte intégralBhattacharya, Pathikrit, Bikas K. Chakrabarti, Kamal et Debashis Samanta. « Fractal Models of Earthquake Dynamics ». Dans Reviews of Nonlinear Dynamics and Complexity, 107–58. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527628001.ch4.
Texte intégralActes de conférences sur le sujet "Earthquake dynamics"
Tiwari, Ayushi, et Ellen M. Rathje. « Engineering Characteristics of Earthquake Motions from the Pawnee and Cushing Earthquakes in Oklahoma ». Dans Geotechnical Earthquake Engineering and Soil Dynamics V. Reston, VA : American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784481462.037.
Texte intégralPrakash, Shamsher, et Vijay K. Puri. « Piles under Earthquake Loads ». Dans Geotechnical Earthquake Engineering and Soil Dynamics Congress IV. Reston, VA : American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40975(318)143.
Texte intégralNikolaou, Sissy, Rallis Kourkoulis et Guillermo Diaz-Fanas. « Earthquake-Resilient Infrastructure : The Missing Link ». Dans Geotechnical Earthquake Engineering and Soil Dynamics V. Reston, VA : American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784481462.008.
Texte intégralGuan, Xiaoyu, Gopal Madabhushi et Mark Talesnick. « MEASUREMENT OF SOIL STRAINS UNDER EARTHQUAKE LOADING ». Dans XI International Conference on Structural Dynamics. Athens : EASD, 2020. http://dx.doi.org/10.47964/1120.9272.20080.
Texte intégralTerzi, Vasiliki, et Asimina Athanatopoulou. « ELASTIC AXIS OF BUILDINGS UNDER EARTHQUAKE EXCITATION ». Dans XI International Conference on Structural Dynamics. Athens : EASD, 2020. http://dx.doi.org/10.47964/1120.9367.19266.
Texte intégralYang, J., et X. R. Yan. « Site Response to Vertical Earthquake Motion ». Dans Geotechnical Earthquake Engineering and Soil Dynamics Congress IV. Reston, VA : American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40975(318)23.
Texte intégralKlikushin, Yu N., V. Yu Kobenko, K. T. Koshekov, O. M. Belosludtsev et A. K. Koshekov. « Search of the operational earthquake precursors on the basis of the identification measurements of the seismographic records ». Dans 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2016. http://dx.doi.org/10.1109/dynamics.2016.7819026.
Texte intégralGATTANI, SANJAY. « Optimal Design of Earthquake-Resistant Building Structures ». Dans 31st Structures, Structural Dynamics and Materials Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1094.
Texte intégralOrense, Rolando P., Masayuki Hyodo, Norimasa Yoshimoto et Junya Ohashi. « Earthquake-Induced Deformations of Partially Saturated Embankments ». Dans Geotechnical Earthquake Engineering and Soil Dynamics Congress IV. Reston, VA : American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40975(318)174.
Texte intégralAnsal, Atilla, Asli Kurtulus et Gökce Tönük. « Earthquake Loss Estimation Tool for Urban Areas ». Dans Geotechnical Earthquake Engineering and Soil Dynamics Congress IV. Reston, VA : American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40975(318)34.
Texte intégralRapports d'organisations sur le sujet "Earthquake dynamics"
Pitarka, Arben, Atsundo Mampo et H. Kawase. Collaborative study on "Earthquake Ground Motion Simulation Using Rupture Dynamics". Office of Scientific and Technical Information (OSTI), mars 2018. http://dx.doi.org/10.2172/1438604.
Texte intégralPitarka, Arben, Jikai Sun et Hiroshi Kawase. Collaborative study on Earthquake Ground Motion Simulation Using Rupture Dynamics. Office of Scientific and Technical Information (OSTI), mars 2019. http://dx.doi.org/10.2172/1512610.
Texte intégralBak, P., et K. Chen. Fractal dynamics of earthquakes. Office of Scientific and Technical Information (OSTI), mai 1995. http://dx.doi.org/10.2172/80934.
Texte intégralPitarka, Arben. Rupture Dynamics Simulations for Shallow Crustal Earthquakes. Office of Scientific and Technical Information (OSTI), février 2019. http://dx.doi.org/10.2172/1499970.
Texte intégralPitarka, A. Testing Dynamic Earthquake Rupture Models Generated With Stochastic Stress Drop. Office of Scientific and Technical Information (OSTI), novembre 2018. http://dx.doi.org/10.2172/1490953.
Texte intégralPeeta, Srinivas, et Georgios Kalafatas. Critical Route Network for Earthquake Response and Dynamic Route Analysis. West Lafayette, IN : Purdue University, 2007. http://dx.doi.org/10.5703/1288284314232.
Texte intégralPitarka, A. Dynamic Rupture Modeling of the M7.1, 2019 Ridgecrest, California, Earthquake. Office of Scientific and Technical Information (OSTI), février 2021. http://dx.doi.org/10.2172/1770521.
Texte intégralPitarka, A. Dynamic Rupture Simulations of the Mw7.2 1992 Landers,California, Earthquake. Office of Scientific and Technical Information (OSTI), février 2023. http://dx.doi.org/10.2172/2005094.
Texte intégralPitarka, A. Rupture Dynamics Simulations of Shallow Crustal Earthquakes on Reverse Slip Faults. Office of Scientific and Technical Information (OSTI), février 2020. http://dx.doi.org/10.2172/1599564.
Texte intégralOkubo, Kurama, Esteban Rougier et Harsha Bhat Suresh. Source time functions inferred from dynamic earthquake rupture modeling on Jordan – Kekerengu – Papatea fault system, the 2016 Mw 7.8 Kaikoura earthquake. Office of Scientific and Technical Information (OSTI), mars 2019. http://dx.doi.org/10.2172/1499301.
Texte intégral