Littérature scientifique sur le sujet « Earthquake complexity »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Earthquake complexity ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Earthquake complexity"
KIKUCHI, Masayuki. « Complexity of Earthquake Source Processes ». Zisin (Journal of the Seismological Society of Japan. 2nd ser.) 44, Supplement (1991) : 301–14. http://dx.doi.org/10.4294/zisin1948.44.supplement_301.
Texte intégralYin, Jiuxun, Zefeng Li et Marine A. Denolle. « Source Time Function Clustering Reveals Patterns in Earthquake Dynamics ». Seismological Research Letters 92, no 4 (31 mars 2021) : 2343–53. http://dx.doi.org/10.1785/0220200403.
Texte intégralVallianatos, F., G. Michas, G. Papadakis et A. Tzanis. « Evidence of non-extensivity in the seismicity observed during the 2011–2012 unrest at the Santorini volcanic complex, Greece ». Natural Hazards and Earth System Sciences 13, no 1 (28 janvier 2013) : 177–85. http://dx.doi.org/10.5194/nhess-13-177-2013.
Texte intégralErickson, Brittany A., Junle Jiang, Michael Barall, Nadia Lapusta, Eric M. Dunham, Ruth Harris, Lauren S. Abrahams et al. « The Community Code Verification Exercise for Simulating Sequences of Earthquakes and Aseismic Slip (SEAS) ». Seismological Research Letters 91, no 2A (29 janvier 2020) : 874–90. http://dx.doi.org/10.1785/0220190248.
Texte intégralAndo, R., et T. Yamashita. « Fault Zone Complexity and Earthquake Ruptures ». Scientific Drilling SpecialIssue (1 novembre 2007) : 27–28. http://dx.doi.org/10.5194/sd-specialissue-27-2007.
Texte intégralRice, J. R., et Y. Ben-Zion. « Slip complexity in earthquake fault models. » Proceedings of the National Academy of Sciences 93, no 9 (30 avril 1996) : 3811–18. http://dx.doi.org/10.1073/pnas.93.9.3811.
Texte intégralBarnhart, William D., Gavin P. Hayes et David J. Wald. « Global Earthquake Response with Imaging Geodesy : Recent Examples from the USGS NEIC ». Remote Sensing 11, no 11 (6 juin 2019) : 1357. http://dx.doi.org/10.3390/rs11111357.
Texte intégralZhang, J., F. Gao, H. Yu et X. Zhao. « Use of an orthogonal parallel robot with redundant actuation as an earthquake simulator and its experiments ». Proceedings of the Institution of Mechanical Engineers, Part C : Journal of Mechanical Engineering Science 226, no 1 (3 octobre 2011) : 257–72. http://dx.doi.org/10.1177/0954406211413050.
Texte intégralBHATTACHARYA, S. N., K. C. SINHA RAY et H. N. SRIVASTAVA. « Large fractal dimension of chaotic at tractor for earthquake sequence near Nurek reservoir ». MAUSAM 46, no 2 (1 janvier 2022) : 187–92. http://dx.doi.org/10.54302/mausam.v46i2.3227.
Texte intégralQuintanar, Luis, J. Yamamoto et Z. Jiménez. « Source mechanism of two 1994 intermediate-depth-focus earthquakes in Guerrero, Mexico ». Bulletin of the Seismological Society of America 89, no 4 (1 août 1999) : 1004–18. http://dx.doi.org/10.1785/bssa0890041004.
Texte intégralThèses sur le sujet "Earthquake complexity"
Touati, Sarah. « Complexity, aftershock sequences, and uncertainty in earthquake statistics ». Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/6224.
Texte intégralSato, Kazuhiko. « Scale-dependence of earthquake initiation and rupture complexity ». 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/145092.
Texte intégral0048
新制・課程博士
博士(理学)
甲第11325号
理博第2883号
新制||理||1430(附属図書館)
22968
UT51-2005-D76
京都大学大学院理学研究科地球惑星科学専攻
(主査)教授 Mori James Jiro, 教授 川崎 一朗, 教授 竹本 修三
学位規則第4条第1項該当
Corradini, Marina. « Reconstruction of the earthquake rupture process through coherent teleseismic imaging and statistical modeling ». Thesis, Université de Paris (2019-....), 2019. https://theses.md.univ-paris-diderot.fr/CORRADINI_Marina_va1.pdf.
Texte intégralMany studies have attempted to illuminate rupture complexities of large earthquakes through the use of coherent imaging techniques such as back-projection (BP). Recently, Fukahata et al. (2013) suggested that, from a theoretical point of view, the BP image of the rupture is related to the slip motion on the fault. However, the quantitative relationship between the BP images and the physical properties of the earthquake rupture process still remains unclear.Our work aims at clarifying how BP images of the radiated wavefield can be used to infer spatial heterogeneities in slip and rupture velocity along the fault. We simulate different rupture processes using a line source model. For each rupture model, we calculate synthetic seismograms at three teleseismic arrays and we apply the BP technique to identify the sources of high-frequency (HF) radiation. This procedure allows for the comparison of the BP images with the originating rupture model, and thus the interpretation of HF emissions in terms of along-fault variation of the three kinematic parameters: rise time, final slip, rupture velocity. Our results show that the HF peaks retrieved from BP analysis are most closely associated with space-time heterogeneities of slip acceleration. We verify our findings on two major earthquakes that occurred 9 years apart on the strike-slip Swan Islands fault: the Mw 7.3 2009 and the Mw 7.5 2018 North of Hondurasearthquakes. Both events followed a simple linear geometry, making them suitable for comparison with our synthetic approach. Despite the simple geometry, both slip-rate functions are complex, with several subevents. Our preliminary results show that the BP image of HF emissions allows to estimate a rupture length and velocity which are compatible with other studies and that strong HF radiation corresponds to the areas of large variability of the moment-rate function. An outstanding question is whether one can use the BP image of the earthquake to retrieve the kinematic parameters along the fault. We build on the findings obtained in the synthetic examples by training a neural network model to directly predict the kinematic parameters along the fault, given an input BP image. We train the network on a large number of different synthetic rupture processes and their BP images, with the goal of identifying the statistical link between HF radiation and rupture kinematic parameters. Our results show that the neural network applied to the BP image of the earthquake is able to predict the values of rise time and rupture velocity along the fault, as well as thecentral position of the heterogeneity, but not the absolute slip values, to which the HF BP approach is relatively insensitive. Our work sheds some light on the gap currently existing between the theoretical description of the generation of HF radiation and the observations of HF emissions obtained by coherent imaging techniques, tackling possible courses of action and suggesting new perspectives
Lin, Ting-Chen, et 林庭甄. « An Ultra-Low Complexity Algorithm (ULCA) for Earthquake Early Warning System ». Thesis, 2017. http://ndltd.ncl.edu.tw/handle/eqegfr.
Texte intégral國立中央大學
通訊工程學系
105
Earthquake is one of the major natural disasters, which could kill or injure thousands of people and cause huge property loss. According to the statistics, the number of earthquake events is about five million times per year and two thousands of them exceed magnitude 5. If we can win few seconds before the earthquake comes, it may save lots of lives and reduce economic losses. The earthquake early warning becomes an issue that cannot be ignored. Earthquake early warning system (EEWS) needs rapid transmission of seismic information. Moreover, it requires accurate and fast algorithm to support the detection of earthquakes. In the past decades, progress has been made to invest the EEWS in countries where earthquake occurs frequently. For example, the United States of America, Canada, Japan and Taiwan have participated in doing the researches of EEWS. The earthquake warning detection methods such as: Artificial Neural Networks, Kruskal-wallis test, Fourier transform, Wavelet transform, Support Vector Machine are potential algorithms with high complexity. Nowadays, the EEWS is expected to use a large number of devices to form an earthquake detection network to increase the reliability. However, the algorithms with high computation complexity are not conducive to be implemented on general devices, such as smart phones, tablets or IoT-devices. In this thesis, we aim to reduce the complexity of the seismic algorithm. To accomplish it, we use a large number of real earthquake events as the analysis samples to verify the algorithm and improve accuracy.
« Effects of Fault Segmentation, Mechanical Interaction, and Structural Complexity on Earthquake-Generated Deformation ». Doctoral diss., 2014. http://hdl.handle.net/2286/R.I.24899.
Texte intégralDissertation/Thesis
Ph.D. Geological Sciences 2014
Hillers, G. « On the origin of earthquake complexity in continuum fault models with rate and state friction ». Thesis, 2005. http://hdl.handle.net/2122/1024.
Texte intégralInstitute of Geophysics, ETH Zurich. This work was sponsored by EC-Project RELIEF (EVG1-CT-2002-00069).
Unpublished
open
Livres sur le sujet "Earthquake complexity"
Myers, Christopher R. Slip complexity in a crustal-plane model of an earthquake fault. Ithaca, N.Y : Cornell Theory Center, Cornell University, 1994.
Trouver le texte intégralRobinson, Andrew. Earth shock : Climate, complexity and the forces of nature. London : Thames and Hudson, 1993.
Trouver le texte intégralRobinson, Andrew. Earth shock : Climate, complexity and the forces of nature. New York : Thames and Hudson, 1993.
Trouver le texte intégralChapitres de livres sur le sujet "Earthquake complexity"
Newman, William I. « Earthquake Complexity ». Dans Encyclopedia of Mathematical Geosciences, 1–9. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-26050-7_97-1.
Texte intégralBormann, Peter, et Joachim Saul. « Earthquake Magnitude ». Dans Encyclopedia of Complexity and Systems Science, 1–32. New York, NY : Springer New York, 2014. http://dx.doi.org/10.1007/978-3-642-27737-5_151-2.
Texte intégralBormann, Peter, et Joachim Saul. « Earthquake Magnitude ». Dans Encyclopedia of Complexity and Systems Science, 2473–96. New York, NY : Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-30440-3_151.
Texte intégralIde, Satoshi, Gregory C. Beroza et Jeffrey J. McGuire. « Imaging earthquake source complexity ». Dans Seismic Earth : Array Analysis of Broadband Seismograms, 117–35. Washington, D. C. : American Geophysical Union, 2005. http://dx.doi.org/10.1029/157gm08.
Texte intégralMadariaga, Raul. « Earthquake Scaling Laws ». Dans Encyclopedia of Complexity and Systems Science, 2581–600. New York, NY : Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-30440-3_156.
Texte intégralKeilis-Borok, Vladimir, Andrei Gabrielov et Alexandre Soloviev. « Geo-complexity and Earthquake Prediction ». Dans Extreme Environmental Events, 573–88. New York, NY : Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7695-6_32.
Texte intégralKeilis-Borok, Vladimir, Andrei Gabrielov et Alexandre Soloviev. « Geo-complexity and Earthquake Prediction ». Dans Encyclopedia of Complexity and Systems Science, 4178–94. New York, NY : Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-30440-3_246.
Texte intégralHolliday, James R., John B. Rundle et Donald L. Turcotte. « Earthquake Forecasting and Verification ». Dans Encyclopedia of Complexity and Systems Science, 2438–49. New York, NY : Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-30440-3_149.
Texte intégralAbe, Sumiyoshi, et Norikazu Suzuki. « Earthquake NetworksEarthquake networks , Complex ». Dans Encyclopedia of Complexity and Systems Science, 2530–38. New York, NY : Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-30440-3_153.
Texte intégralBormann, Peter, et Domenico Di Giacomo. « Earthquake : Magnitudes, Energy, and Moment ». Dans Encyclopedia of Complexity and Systems Science, 1–55. Berlin, Heidelberg : Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27737-5_627-1.
Texte intégralActes de conférences sur le sujet "Earthquake complexity"
Hsu, Meng-Yun, et Shiann-Tsong Sheu. « A low complexity algorithm for earthquake detection system ». Dans 2016 International Conference On Communication Problem-Solving (ICCP). IEEE, 2016. http://dx.doi.org/10.1109/iccps.2016.7751128.
Texte intégralMin, Lei, Meng Guang et Nilanjan Sarkar. « Complexity Analysis of 2010 Baja California Earthquake Based on Entropy Measurements ». Dans Second International Conference on Vulnerability and Risk Analysis and Management (ICVRAM) and the Sixth International Symposium on Uncertainty, Modeling, and Analysis (ISUMA). Reston, VA : American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413609.182.
Texte intégralRokneddin, K., M. Sánchez-Silva et L. Dueñas-Osorio. « Reduced Computational Complexity for the Reliability Assessment of Typical Infrastructure Topologies ». Dans Technical Council on Lifeline Earthquake Engineering Conference (TCLEE) 2009. Reston, VA : American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41050(357)65.
Texte intégralChelidze, T., et T. Matcharashvili. « Measuring Complexity of Geophysical Processes : Implications for Earthquake Prediction and Geophysical Prospecting ». Dans Geophysics of the 21st Century - The Leap into the Future. European Association of Geoscientists & Engineers, 2003. http://dx.doi.org/10.3997/2214-4609-pdb.38.f319.
Texte intégralStahl, Timothy, Jesse Kearse, Andrew Howell, Kate Clark, Andrew Nicol, Jarg R. Pettinga, Pilar Villamor et Colin B. Amos. « EXTREME SURFACE RUPTURE COMPLEXITY AND FAULT KINEMATICS REVEALED BY DIFFERENTIAL PHOTOGRAMMETRY OF THE 2016 KAIKŌURA, NEW ZEALAND EARTHQUAKE ». Dans GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-340938.
Texte intégralCaruso, Filippo, Alessandro Pluchino, Vito Latora, Andrea Rapisarda, Sergio Vinciguerra, Sumiyoshi Abe, Hans Herrmann, Piero Quarati, Andrea Rapisarda et Constantino Tsallis. « Self-Organized Criticality and earthquakes ». Dans COMPLEXITY, METASTABILITY, AND NONEXTENSIVITY : An International Conference. AIP, 2007. http://dx.doi.org/10.1063/1.2828746.
Texte intégralShang, Ziduan, Xiao Huang, Meng Chu, Lutong Zhang et Chunhua Wu. « The Application of PSHA Method in the Determination of Beyond Design Basis Earthquake for New NPP Design ». Dans 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60043.
Texte intégralGaudry, Laurent, Martial Chabloz, Darius Golchan, Julien Nembrini et Matthias Schmid. « Ecological mass timber as an answer to affordable housing in Switzerland ? » Dans IABSE Congress, New York, New York 2019 : The Evolving Metropolis. Zurich, Switzerland : International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.0621.
Texte intégralMarino, Bianca Gioia, Raffaele Catuogno et Rossella Marena. « RESTORATION, REPRESENTATION, PROJECT : A DIALOGUE-LIKE APPROACH FOR THE COMPSA PALIMPSEST ». Dans ARQUEOLÓGICA 2.0 - 9th International Congress & 3rd GEORES - GEOmatics and pREServation. Editorial Universitat Politécnica de Valéncia : Editorial Universitat Politécnica de Valéncia, 2021. http://dx.doi.org/10.4995/arqueologica9.2021.12161.
Texte intégralPascu, Radu, Ovidiu Anicai, Livia Stefan, Iolanda gabriela Craifaleanu, Viorel Popa, Vasilevirgil Oprisoreanu, Ionut Damian, Andrei Papurcu et Cristian Rusanu. « SEISMOCODE : ONLINE INSTRUCTIONAL PLATFORM FOR THE PROFESSIONAL UPGRADING OF STRUCTURAL DESIGN ENGINEERS ». Dans eLSE 2016. Carol I National Defence University Publishing House, 2016. http://dx.doi.org/10.12753/2066-026x-16-192.
Texte intégralRapports d'organisations sur le sujet "Earthquake complexity"
Blanford, Robert R. Discrimination of Earthquakes and Explosions at Regional Distances Using Complexity. Fort Belvoir, VA : Defense Technical Information Center, juin 1993. http://dx.doi.org/10.21236/ada267638.
Texte intégralJourneay, M., P. LeSueur, W. Chow et C L Wagner. Physical exposure to natural hazards in Canada. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330012.
Texte intégral