Articles de revues sur le sujet « EARTH ION DOPED »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : EARTH ION DOPED.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « EARTH ION DOPED ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

HU, Qiang, Xue BAI et Hong-wei SONG. « Rare Earth Ion Doped Perovskite Nanocrystals ». Chinese Journal of Luminescence 43, no 01 (2022) : 8–25. http://dx.doi.org/10.37188/cjl.20210330.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hu, Qingsong, Zha Li, Zhifang Tan, Huaibing Song, Cong Ge, Guangda Niu, Jiantao Han et Jiang Tang. « Rare Earth Ion-Doped CsPbBr3 Nanocrystals ». Advanced Optical Materials 6, no 2 (18 décembre 2017) : 1700864. http://dx.doi.org/10.1002/adom.201700864.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

He, Qingyun, Xingqiang Liu, Feng Li, Fang Li, Leiming Tao et Changlin Yu. « Effect of Light and Heavy Rare Earth Doping on the Physical Structure of Bi2O2CO3 and Their Performance in Photocatalytic Degradation of Dimethyl Phthalate ». Catalysts 12, no 11 (22 octobre 2022) : 1295. http://dx.doi.org/10.3390/catal12111295.

Texte intégral
Résumé :
In order to solve the problem of environmental health hazards caused by phthalate esters, a series of pure Bi2O2CO3 and light (La, Ce, Pr, Nd, Sm and Eu) and heavy (Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) rare earth-doped Bi2O2CO3 samples were prepared by hydrothermal method. The crystalline phase composition and physical structure of the samples calcined at 300 °C were studied, and we found that the rare earth ion doping promoted the transformation of Bi2O2CO3 to β-Bi2O3 crystalline phase, thus obtaining a mixed crystal phase photocatalyst constituted by rare earth-ion-doped Bi2O2CO3/β-Bi2O3. The Bi2O3/Bi2O2CO3 heterostructure had a lower band gap and more efficient charge transfer. The fabricated samples were applied to the photocatalytic degradation of dimethyl phthalate (DMP) under a 300 W tungsten lamp, and it was found that the rare earth ion doping enhanced the photocatalytic degradation activity of DMP, in which the heavy rare earth of Er-doped sample reached 78% degradation for DMP at 150 min of light illumination. In addition, the doping of rare earths resulted in a larger specific surface area and a stronger absorption of visible light. At the same time, the formation of Bi2O2CO3/β-Bi2O3 heterogeneous junction enhanced the separation efficiency of photogenerated electrons and holes.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Geburt, S., D. Stichtenoth, S. Müller, W. Dewald, C. Ronning, J. Wang, Y. Jiao, Y. Y. Rao, S. K. Hark et Quan Li. « Rare Earth Doped Zinc Oxide Nanowires ». Journal of Nanoscience and Nanotechnology 8, no 1 (1 janvier 2008) : 244–51. http://dx.doi.org/10.1166/jnn.2008.n05.

Texte intégral
Résumé :
Zinc oxide (ZnO) nanowires were grown via thermal transport and subsequently doped with different concentrations of Tm, Yb, and Eu using ion implantation and post annealing. High ion fluences lead to morphology changes due to sputtering; however, freestanding nanowires become less damaged compared to those attached to substrates. No other phases like rare earth (RE) oxides were detected, no amorphization occurs in any sample, and homogeneous doping with the desired concentrations was achieved. Photoluminescence measurements demonstrate the optical activation of trivalent RE-elements and the emission of the characteristic intra-4f-luminescence of the respective RE atoms, which could be assigned according to the Dieke-diagram. An increasing RE concentration results into decreasing luminescence intensity caused by energy transfer mechanisms to non-radiative remaining implantation defect sites. Furthermore, low thermal quenching was observed due to the considerable wide band gap of ZnO.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Narayan, Himanshu, Hailemichael Alemu, Lijeloang Setofolo et Lebohang Macheli. « Visible Light Photocatalysis with Rare Earth Ion-Doped Nanocomposites ». ISRN Physical Chemistry 2012 (1 mars 2012) : 1–9. http://dx.doi.org/10.5402/2012/841521.

Texte intégral
Résumé :
Rare earth (R) ion-doped TiO2 nanocomposites (NCs) with general composition (R: Y, Yb, Gd; , 0.2) were synthesized through co-precipitation/hydrolysis (CPH). NC particles with average size of approximately a few tens of nm were obtained. Similar compositions of polycrystalline (PC) samples with larger particle size were also prepared employing solid state reaction (SSR) method. Visible light photocatalytic activity of all samples was investigated for degradation of Congo red (CR) dye. Both in terms of apparent rate constant () and percent degradation after 180 min (), all NCs produced significantly enhanced degradation as compared to pure TiO2 and PC samples. Best degradation of 95% ( value) resulted with composition of Y3+ doped NC with min−1. This was followed by of 85 and 80%, produced with Yb3+ and Gd3+ doped, NCs, at around and min−1, respectively. The observations clearly suggest that enhanced photocatalytic degradation of CR is directly related to smaller particle size of the catalysts. Moreover, the presence of rare earth ions in the composites facilitates further improvement of degradation efficiency through effective suppression of recombination.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Jaque, D., J. J. Romero, M. O. Ramirez, J. A. Sanz García, C. De Las Heras, L. E. Bausá et J. García Solé. « Rare Earth Ion Doped Non Linear Laser Crystals ». Radiation Effects and Defects in Solids 158, no 1-6 (janvier 2003) : 231–39. http://dx.doi.org/10.1080/1042015021000052197.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zhang, Xin, Yuan-Yuan Huang, Jian-Kai Cheng, Yuan-Gen Yao, Jian Zhang et Fei Wang. « Alkaline earth metal ion doped Zn(ii)-terephthalates ». CrystEngComm 14, no 14 (2012) : 4843. http://dx.doi.org/10.1039/c2ce25440a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zumofen, G., F. R. Graf, A. Renn et U. P. Wild. « Pulse propagation in rare-earth ion doped crystals ». Journal of Luminescence 83-84 (novembre 1999) : 379–83. http://dx.doi.org/10.1016/s0022-2313(99)00129-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Guo, Hai, Ning Dong, Min Yin, Weiping Zhang, Liren Lou et Shangda Xia. « Visible Upconversion in Rare Earth Ion-Doped Gd2O3Nanocrystals ». Journal of Physical Chemistry B 108, no 50 (décembre 2004) : 19205–9. http://dx.doi.org/10.1021/jp048072q.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Wang, Xiangfu, Qing Liu, Yanyan Bu, Chun-Sheng Liu, Tao Liu et Xiaohong Yan. « Optical temperature sensing of rare-earth ion doped phosphors ». RSC Advances 5, no 105 (2015) : 86219–36. http://dx.doi.org/10.1039/c5ra16986k.

Texte intégral
Résumé :
Optical temperature sensing is a promising method to achieve the contactless temperature measurement and large-scale imaging. The current status of optical thermometry of rare-earth ions doped phosphors is reviewed in detail.
Styles APA, Harvard, Vancouver, ISO, etc.
11

OKAMOTO, SHINJI, SHOSAKU TANAKA et HAJIME YAMAMOTO. « ENERGY-TRANSFER PROCESS IN RARE-EARTH-ION DOPED SrTiO3 ». International Journal of Modern Physics B 15, no 28n30 (10 décembre 2001) : 3924–27. http://dx.doi.org/10.1142/s0217979201009013.

Texte intégral
Résumé :
Enhancement of emission intensity of rare-earth-ion doped SrTiO 3 by Al addition has been investigated. In the case of Pr 3+ and Tb 3+, addition of 23-mol% Al intensifies emission by more than 200 times. In contrast, the addition of 20 mol% Al intensifies emission at most by three times in the case of other rare-earth ions. The temperature dependence of PL spectra shows that the energy transfer from carriers to Pr 3+ or Tb 3+ ions is much more efficient than that to other rare-earth ions in SrTiO 3. It can be speculated that the energy transfer in SrTiO 3: Pr 3 or Tb 3+ occurs from carriers to Pr 3+ or Tb 3+ ion via 4f-5d transitions, which are much higher in oscillator strength than 4f-4f transitions.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Liu, Wen Bin, Adu, Yu Guang Lv, Li Li Yu, Yong Xiang Du, Wei E. Wang, Chao Xing Wang et al. « Preparation and Luminescent Properties of the La3+ Doped Tb3+-Hydroxyapatite ». Applied Mechanics and Materials 716-717 (décembre 2014) : 32–35. http://dx.doi.org/10.4028/www.scientific.net/amm.716-717.32.

Texte intégral
Résumé :
In this paper, a rare earth metal terbium ion as the central metal ion, a nanohydroxyapatite powder of the lanthanum doped terbium was synthesis by precipitation with hydroxyapatite as ligand. The sample was characterized by infrared spectrum, fluorescence spectrum and X ray diffraction instrument, and the thermal properties and fluorescence properties, structure of powderes were discussed. A nanohydroxyapatite powder of the lanthanum doped terbium achieves the maximum luminous intensity, when the La3+ doping concentration of Tb3+ was HAP 5% (La3+ and Tb3+ mole fraction ratio) devices. Rare earth powder of the lanthanum doped terbium hydroxyapatite has the stability chemical properties, the luminescence properties and good biological activity, the rare earth powder has good luminescent properties can be used in preparation of a good light emitting device. At the same time a nanohydroxyapatite powder of the lanthanum doped terbium has good antibacterial property, can be used as antibacterial materials.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Nilsson, Johan O., Mikael Leetmaa, Olga Yu Vekilova, Sergei I. Simak et Natalia V. Skorodumova. « Oxygen diffusion in ceria doped with rare-earth elements ». Physical Chemistry Chemical Physics 19, no 21 (2017) : 13723–30. http://dx.doi.org/10.1039/c6cp06460d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Chen, Ziyu, Hang Zhu, Jiajie Qian, Zhenxiong Li, Xiameng Hu, Yuao Guo, Yuting Fu et al. « Rare Earth Ion Doped Luminescent Materials : A Review of Up/Down Conversion Luminescent Mechanism, Synthesis, and Anti-Counterfeiting Application ». Photonics 10, no 9 (5 septembre 2023) : 1014. http://dx.doi.org/10.3390/photonics10091014.

Texte intégral
Résumé :
With the rapid development of modern technology and information systems, optical anti-counterfeiting and encryption have recently attracted considerable attention. The demand for optical materials is also constantly increasing, with new requirements proposed for performance and application fields. Currently, rare earth ion doped materials possess a unique electronic layer structure, underfilled 4f5d electronic configuration, rich electronic energy level, and long-life excited state, which can produce a variety of radiation absorption and emission. The distinctive properties of rare earth are beneficial for using in diverse optical output anti-counterfeiting. Design is essential for rare earth ion doped materials with multiple responsiveness and multi-channel optical information anti-counterfeiting in the field of information security. Therefore, this mini review summarizes the luminescent mechanisms, preparation methods, performance characteristics and anti-counterfeiting application of rare earth doped materials. In addition, we discuss some critical challenges in this field, and potential solutions that have been or are being developed to overcome these challenges.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Chen, Xueyuan, et Wenqin Luo. « Optical Spectroscopy of Rare Earth Ion-Doped TiO2 Nanophosphors ». Journal of Nanoscience and Nanotechnology 10, no 3 (1 mars 2010) : 1482–94. http://dx.doi.org/10.1166/jnn.2010.2034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Hendriks, Ward A. P. M., Lantian Chang, Carlijn I. van Emmerik, Jinfeng Mu, Michiel de Goede, Meindert Dijkstra et Sonia M. Garcia-Blanco. « Rare-earth ion doped Al2O3 for active integrated photonics ». Advances in Physics : X 6, no 1 (14 décembre 2020) : 1833753. http://dx.doi.org/10.1080/23746149.2020.1833753.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Hua, Yi-Lin, Zong-Quan Zhou, Chuan-Feng Li et Guang-Can Guo. « Quantum light storage in rare-earth-ion-doped solids ». Chinese Physics B 27, no 2 (février 2018) : 020303. http://dx.doi.org/10.1088/1674-1056/27/2/020303.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Abou-Helal, M. O., et W. T. Seeber. « Rare earth ion doped semiconducting films by spray pyrolysis ». Journal of Non-Crystalline Solids 218 (septembre 1997) : 139–45. http://dx.doi.org/10.1016/s0022-3093(97)00200-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Pollnau, Markus. « Rare-Earth-Ion-Doped Channel Waveguide Lasers on Silicon ». IEEE Journal of Selected Topics in Quantum Electronics 21, no 1 (janvier 2015) : 414–25. http://dx.doi.org/10.1109/jstqe.2014.2351811.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Mita, Yoh, Masahiro Togashi et Hajime Yamamoto. « Energy transfer processes in rare-earth-ion-doped materials ». Journal of Luminescence 87-89 (mai 2000) : 1026–28. http://dx.doi.org/10.1016/s0022-2313(99)00518-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Altner, S. B., G. Zumofen, U. P. Wild et M. Mitsunaga. « Photon-echo attenuation in rare-earth-ion-doped crystals ». Physical Review B 54, no 24 (15 décembre 1996) : 17493–507. http://dx.doi.org/10.1103/physrevb.54.17493.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

LIU, Hong-gang, Jian-hao CHEN, Zi-fan XIAO, Wen-liang PING et Guo-ping DONG. « Research Progress in Rare Earth Ion-doped Microcavity Lasers ». Chinese Journal of Luminescence 43, no 11 (2022) : 1663–77. http://dx.doi.org/10.37188/cjl.20220161.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Zako, Tamotsu, Miya Yoshimoto, Hiroshi Hyodo, Hidehiro Kishimoto, Masaaki Ito, Kazuhiro Kaneko, Kohei Soga et Mizuo Maeda. « Cancer-targeted near infrared imaging using rare earth ion-doped ceramic nanoparticles ». Biomaterials Science 3, no 1 (2015) : 59–64. http://dx.doi.org/10.1039/c4bm00232f.

Texte intégral
Résumé :
Cancer-specific NIR–NIR imaging was demonstrated using streptavidin-functionalized rare earth ion-doped yttrium oxide nanoparticles and biotinylated antibodies on cancer cells and human colon cancer tissues.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Zhang, Jia, Jiajun Chen et Yining Zhang. « Temperature-sensing luminescent materials La9.67Si6O26.5:Yb3+–Er3+/Ho3+ based on pump-power-dependent upconversion luminescence ». Inorganic Chemistry Frontiers 7, no 24 (2020) : 4892–901. http://dx.doi.org/10.1039/d0qi01058h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

OHTA, Masatoshi, Shigeaki KUROI et Masakazu SAKAGUCHI. « ESR Study of X-Ray Irradiated Rare Earth(Ln) Ion-doped Glaserite and Ln Ion-doped Langbeinite. » RADIOISOTOPES 41, no 6 (1992) : 302–7. http://dx.doi.org/10.3769/radioisotopes.41.6_302.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Xiao, Ping, Yongquan Guo, Mijie Tian, Qiaoji Zheng, Na Jiang, Xiaochun Wu, Zhiguo Xia et Dunmin Lin. « Improved ferroelectric/piezoelectric properties and bright green/UC red emission in (Li,Ho)-doped CaBi4Ti4O15 multifunctional ceramics with excellent temperature stability and superior water-resistance performance ». Dalton Transactions 44, no 39 (2015) : 17366–80. http://dx.doi.org/10.1039/c5dt02728d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Boden, Stuart A., Thomas M. W. Franklin, Larry Scipioni, Darren M. Bagnall et Harvey N. Rutt. « Ionoluminescence in the Helium Ion Microscope ». Microscopy and Microanalysis 18, no 6 (décembre 2012) : 1253–62. http://dx.doi.org/10.1017/s1431927612013463.

Texte intégral
Résumé :
AbstractIonoluminescence (IL) is the emission of light from a material due to excitation by an ion beam. In this work, a helium ion microscope (HIM) has been used in conjunction with a luminescence detection system to characterize IL from materials in an analogous way to how cathodoluminescence (CL) is characterized in a scanning electron microscope (SEM). A survey of the helium ion beam induced IL characteristics, including images and spectra, of a variety of materials known to exhibit CL in an SEM is presented. Direct band-gap semiconductors that luminesce strongly in the SEM are found not do so in the HIM, possibly due to defect-related nonradiative pathways created by the ion beam. Other materials do, however, exhibit IL, including a cerium-doped garnet sample, quantum dots, and rare-earth doped LaPO4 nanocrystals. These emissions are a result of transitions between f electron states or transitions across size dependent band gaps. In all these samples, IL is found to decay with exposure to the beam, fitting well to double exponential functions. In an exploration of the potential of this technique for biological tagging applications, imaging with the IL emitted by rare-earth doped LaPO4 nanocrystals, simultaneously with secondary electron imaging, is demonstrated at a range of magnifications.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Caldiño, Ulises, Marco Bettinelli, Maurizio Ferrari, Elisa Pasquini, Stefano Pelli, Adolfo Speghini et Giancarlo C. Righini. « Rare Earth Doped Glasses for Displays and Light Generation ». Advances in Science and Technology 90 (octobre 2014) : 174–78. http://dx.doi.org/10.4028/www.scientific.net/ast.90.174.

Texte intégral
Résumé :
Glasses are very versatile materials, also because of the ease of doping them with various elements and compounds. In particular, rare-earth-doped glasses have greatly contributed to the development of optical amplifiers, lasers, active optical waveguides and white-light-emitting devices. White light emitting diodes (W-LEDs) and color LEDS obtained by the combination of an UV emitting LED, such as AlGaN-based LED, with a glass phosphor exhibit very interesting properties. In the present contribution we report the luminescence characteristics of zinc-sodium-aluminosilicates glasses variously doped, namely either singly doped with Eu3+, Tb3+or Sm3+, or co-doped with Tb3+-Eu3+, Tb3+-Sm3+and Tb3+-Ce3+. These glasses have also proved to be suitable for ion exchange and therefore for the production of active optical waveguides.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Li, Linhao, Joe Kler, Anthony R. West, Roger A. De Souza et Derek C. Sinclair. « High oxide-ion conductivity in acceptor-doped Bi-based perovskites at modest doping levels ». Physical Chemistry Chemical Physics 23, no 19 (2021) : 11327–33. http://dx.doi.org/10.1039/d1cp01120k.

Texte intégral
Résumé :
High oxide ion conductivity is achieved in A-site alkaline earth doped BiFeO3 at modest levels. The similar levels of conductivity suggest oxide–ion conduction in Bi-based tilted perovskites is beyond a simple radius-based crystallochemical approach.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Gao, Wei, Hairong Zheng, Qingyan Han, Enjie He et Ruibo Wang. « Unusual upconversion emission from single NaYF4:Yb3+/Ho3+ microrods under NIR excitation ». CrystEngComm 16, no 29 (2014) : 6697–706. http://dx.doi.org/10.1039/c4ce00627e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Tsukiyama, Keishi, Mihiro Takasaki, Naoto Kitamura, Yasushi Idemoto, Yuya Oaki, Minoru Osada et Hiroaki Imai. « Enhanced oxide-ion conductivity of solid-state electrolyte mesocrystals ». Nanoscale 11, no 10 (2019) : 4523–30. http://dx.doi.org/10.1039/c8nr09709g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Wang, Zhi, Xu Li, Mingyang Li, Jinxing Zhao, Zhenyang Liu, Dawei Wang, Li Guan et Fenghe Wang. « Two-site occupancy induced the broad-band emission in the Ba4−xySryLa6O(SiO4)6 :xEu2+ phosphor for white LEDs and anti-counterfeiting ». Dalton Transactions 51, no 11 (2022) : 4414–22. http://dx.doi.org/10.1039/d1dt04059f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Ghosh, Pushpal, Rahul Kumar Sharma, Yogendra Nath Chouryal et Anja-Verena Mudring. « Size of the rare-earth ions : a key factor in phase tuning and morphology control of binary and ternary rare-earth fluoride materials ». RSC Advances 7, no 53 (2017) : 33467–76. http://dx.doi.org/10.1039/c7ra06741k.

Texte intégral
Résumé :
An IL based solvothermal route to prepare RE ion doped luminescent binary/ternary fluoride nanomaterials. Size of the RE ions tunes the nature of the product, crystal phase, lattice strain and morphology, effecting the luminescence properties.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Ram, Pura, Attila Gören, Stanislav Ferdov, Maria M. Silva, Rahul Singhal, Carlos M. Costa, Rakesh K. Sharma et Senentxu Lanceros-Méndez. « Improved performance of rare earth doped LiMn2O4cathodes for lithium-ion battery applications ». New Journal of Chemistry 40, no 7 (2016) : 6244–52. http://dx.doi.org/10.1039/c6nj00198j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Fan Gongqi, 范供齐, 林海凤 Lin Haifeng, 施丰华 Shi Fenghua, 徐文飞 Xu Wenfei et 王海波 Wang Haibo. « Luminescence Properties of Tungstate Phosphors Doped with Rare-Earth Ion ». Laser & ; Optoelectronics Progress 49, no 3 (2012) : 031602. http://dx.doi.org/10.3788/lop49.031602.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Chang, Hongjin, Juan Xie, Baozhou Zhao, Botong Liu, Shuilin Xu, Na Ren, Xiaoji Xie, Ling Huang et Wei Huang. « Rare Earth Ion-Doped Upconversion Nanocrystals : Synthesis and Surface Modification ». Nanomaterials 5, no 1 (25 décembre 2014) : 1–25. http://dx.doi.org/10.3390/nano5010001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Lin, H., E. Y. B. Pun, B. J. Chen et Y. Y. Zhang. « Rare-earth ion doped lead- and cadmium-free bismuthate glasses ». Journal of Applied Physics 103, no 5 (mars 2008) : 056103. http://dx.doi.org/10.1063/1.2891252.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Zhao, Lijun, Hua Yang, Xueping Zhao, Lianxiang Yu, Yuming Cui et Shouhua Feng. « Magnetic properties of CoFe2O4 ferrite doped with rare earth ion ». Materials Letters 60, no 1 (janvier 2006) : 1–6. http://dx.doi.org/10.1016/j.matlet.2005.07.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

You-Hua, Jia, Zhong Biao, Ji Xian-Ming et Yin Jian-Ping. « Enhanced Laser Cooling of Rare-Earth-Ion-Doped Composite Material ». Chinese Physics Letters 25, no 10 (octobre 2008) : 3779–82. http://dx.doi.org/10.1088/0256-307x/25/10/071.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Chen, G. Y., Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun et F. P. Wang. « Two-color upconversion in rare-earth-ion-doped ZrO2 nanocrystals ». Applied Physics Letters 89, no 16 (16 octobre 2006) : 163105. http://dx.doi.org/10.1063/1.2363146.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

John, Rita, et Rajaram Rajakumari. « Synthesis and Characterization of Rare Earth Ion Doped Nano ZnO ». Nano-Micro Letters 4, no 2 (juin 2012) : 65–72. http://dx.doi.org/10.1007/bf03353694.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Okumura, Miwa, Masaaki Tamatani, Ariane K. Albessard et Naotoshi Matsuda. « Luminescence Properties of Rare Earth Ion-Doped Monoclinic Yttrium Sesquioxide ». Japanese Journal of Applied Physics 36, Part 1, No. 10 (15 octobre 1997) : 6411–15. http://dx.doi.org/10.1143/jjap.36.6411.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Aminov, L. K., et I. N. Kurkin. « Rare-earth ion clusters in doped crystals with fluorite structure ». Physics of the Solid State 51, no 4 (avril 2009) : 741–43. http://dx.doi.org/10.1134/s1063783409040143.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

PATEL, DARAYAS, CALVIN VANCE, NEWTON KING, MALCOLM JESSUP, LEKARA GREEN et SERGEY SARKISOV. « STRONG VISIBLE UPCONVERSION IN RARE EARTH ION-DOPED NaYF4 CRYSTALS ». Journal of Nonlinear Optical Physics & ; Materials 19, no 02 (juin 2010) : 295–301. http://dx.doi.org/10.1142/s0218863510005133.

Texte intégral
Résumé :
NaYF 4: Er 3+, Yb 3+ crystals were prepared by simple synthetic method. Under 980 nm laser excitation, 408 nm, 539 nm and 655 nm upconversion emissions were recorded. Laser power and signal intensities of the upconverted emissions were obtained to understand the upconversion mechanisms.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Crozatier, V., G. Gorju, F. Bretenaker, J. L. Le Gouët, I. Lorgeré et E. Baldit. « Photon echoes in an amplifying rare-earth-ion-doped crystal ». Optics Letters 30, no 11 (1 juin 2005) : 1288. http://dx.doi.org/10.1364/ol.30.001288.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Hong, Shi, et Lun Wang. « Up/downconversion luminescence rare-earth ion-doped Y2O3 1D nanocrystals ». Science China Chemistry 55, no 7 (11 février 2012) : 1242–46. http://dx.doi.org/10.1007/s11426-012-4509-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Lei, Bingfu, Yingliang Liu, Junwen Zhang, Jianxin Meng, Shiqing Man et Shaozao Tan. « Persistent luminescence in rare earth ion-doped gadolinium oxysulfide phosphors ». Journal of Alloys and Compounds 495, no 1 (avril 2010) : 247–53. http://dx.doi.org/10.1016/j.jallcom.2010.01.141.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Wang, Hai-Qiao, Miroslaw Batentschuk, Andres Osvet, Luigi Pinna et Christoph J. Brabec. « Rare-Earth Ion Doped Up-Conversion Materials for Photovoltaic Applications ». Advanced Materials 23, no 22-23 (21 avril 2011) : 2675–80. http://dx.doi.org/10.1002/adma.201100511.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Geskus, Dimitri, Shanmugam Aravazhi, Sonia M. García-Blanco et Markus Pollnau. « Giant Optical Gain in a Rare-Earth-Ion-Doped Microstructure ». Advanced Materials 24, no 10 (24 octobre 2011) : OP19—OP22. http://dx.doi.org/10.1002/adma.201101781.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Gregorkiewicz, T., et J. M. Langer. « Lasing in Rare-Earth-Doped Semiconductors : Hopes and Facts ». MRS Bulletin 24, no 9 (septembre 1999) : 27–32. http://dx.doi.org/10.1557/s0883769400053033.

Texte intégral
Résumé :
Semiconductors doped with rare-earth (RE) elements have attracted a lot of attention as alternative materials for producing electrically pumpe d semiconductor lasers whose emission wavelength is very weakly dependent on temperature. This prospect is especially attractive in the case of indirect-gap Silicon, whose photonic applications as the material for light emitters still remain more of a hope than a reality. In view of a desirable emission wavelength at 1.5 μm, a lot of research has concentrated on Si:Er (see Coffa et al. for a recent review). It is generally recognized that doping with Er ions presents one of the most promising approaches to Silicon photonics. However, despiteintensive investigations, stimulated emission has not been conclusively demonstrated for Si.Er or for any other RE-doped semiconductor. This is in striking contrast to optical amplifiers and lasers based on various erbium-doped glasses. In this article, which builds on recent articles in MRS Bulletin on Silicon photonics, we will address the issues relevant to efficient light generation by semiconductors doped with RE elements in general, and specifically by Si:Er-based structures.The intraimpurity electronic structure of RE ions is dominate d by electron-electron and spin-orbit interactions within the 4f shell. In the case of Er3+, they produce separated J-multiplets with 4I15/2 and 4I13/2 as the ground and the lowest-lying excited states, respectively. Due to the effective Screening of 4f electrons by the outer electron Shells, the host has a very limited influence and changes only slightly the relative positions of the levels. Depending on a particular site symmetry, the even terms of the crystal field split the free-ion J-multiplets into the Stark components typically by several meV for the ground State. The energy-level diagram of an Er3+ ion in a cubic crystal field is shown in Figure 1, where the energy transfer paths relevant for Si:Er are also schematically indicated. The odd terms of the crystal field potential admix the states of opposite parity to the 4f11 configuration of the Er3+ ion, thereby introducing a certain degree of electric-dipole strength into the otherwise forbidden intra-4f-shell transitions. This effect enhance s slightly the magnetic-dipole strength of the 4I15/2 ↔ 4I13/2 transition and is host- and site-dependent. There-fore, Er-related center s of different microstructure can be fairly easily identified.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie