Thèses sur le sujet « Dystrophie myotonique de type 1 (DM1) »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Dystrophie myotonique de type 1 (DM1) ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Lallemant, Louison. « Pathologie neuronale et gliale en lien avec les atteintes neurologiques de la dystrophie myotonique de type 1 (DM1) ». Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS404.pdf.
Texte intégralMyotonic dystrophy type 1 (DM1) is a severe neuromuscular disease affecting many tissues and organs. The debilitating neurological manifestations vary from executive dysfunction in adults, to attention deficits and low processing speed in pediatric patients, to severe intellectual disability in congenital cases. DM1 neurological manifestations have a profound impact on the daily life of patients and their families, and there is currently no treatment for this disease. DM1 is caused by the abnormal expansion of a CTG repeat in DMPK gene. Expanded DMPK transcripts are toxic because they accumulate in the cell nucleus, disrupting the activity of important RNA-binding proteins. As a consequence, DM1 cells show abnormal RNA metabolism and processing of many downstream transcripts. Despite progress in the understanding of the muscle pathophysiology, the disease mechanisms remain unclear in the CNS. We still do not know which cell types and molecular pathways are primarily affected in the brain and how they contribute to DM1 neurological symptoms. In order to investigate this problem, our laboratory has developed a transgenic mouse model of DM1: DMSXL mice express expanded human DMPK transcripts in multiple tissues, notably in the brain, and display relevant behavioral, electrophysiological and neurochemical phenotypes. Using this mouse model, the objective of my thesis was to better understand the cellular and molecular mechanisms involved in the neuronal and non-neuronal impairment linked to the neurological damages of DM1. I first focused on the characterization of the different cell types in the DMSXL brain. A multi-omics study was carried out on DMSXL neurons, astrocytes and oligodendrocytes. Our results, which show that glial cells are more impacted by CTG repeats, have allowed us to better understand the cellular and molecular mechanisms of DM1 in the CNS, but above all to emphasize the importance of studying not only the neurons, but also astrocytes and oligodendrocytes in the pathological context of DM1. I then got involved in the study of astrocyte pathology in DM1. We thus demonstrated that DMSXL astrocytes exhibited reduced ramification and impaired cell adhesion, and had a strong negative impact on neuritogenesis. In the same time, I also participated in the study of oligodendroglia impairment in DM1. We found that the toxic CUG RNA disrupts the molecular program of oligodendrocyte (OL) differentiation, impairing the transcriptome changes occurring during the oligodendrocyte precursor cells (OPC)-OL transition and leading to transient hypomyelination in mice. I also studied the neuronal pathology in DMSXL mice. Our results demonstrated that the accumulation of toxic RNA foci in neurons perturbs mainly protein phosphorylation, which seems to lead to neuronal morphological defects associated with vesicle dynamics impairment and axonal transport defects. The three main cell types of the brain therefore present significant damage in the context of DM1, which could have an impact on crucial processes of cerebral functioning. Indeed, we have demonstrated an alteration in neurotransmission and synaptic plasticity in DMSXL mice. All together my work has provided novel insight into the cell-specific mechanisms operating in DM1, demonstrating the implication of astrocyte, oligodendrocyte and neuron defects in a DM1mouse model, and contributing towards an integrative understanding of brain pathology
Minier, Lisa. « Evaluation de la personnalité, du coping et de la régulation émotionnelle de patients atteints de Dystrophie Myotonique de type 1 (DM1) ». Thesis, Paris 10, 2019. http://faraway.parisnanterre.fr/login?URL=http://bdr.parisnanterre.fr/theses/intranet/2019/2019PA100112/2019PA100112.pdf.
Texte intégralMyotonic Dystrophy type 1 (DM1) is a neuromuscular disease with multiple impairments leading to blunted affect, apathy, hypersomnia, fatigue, social cognition deficit and theory of mind deficit. In this research, personality traits, coping, and emotion regulation of 60 DM1 patients were assessed. All this information will help us design DM1 adapted psychological care.Regarding personality, our main result is that patients show similar N scores to the healthy control group despite our expectations (high scores in relation with the severity of the disease and its complications). In the light of our coping results, it seems that DM1 patients are using a large variety of coping strategies. However, apathy and reduced motivation constitute obstacles for coping strategies. Finally, apathy and fatigue do not influence emotion regulation in our sample DM1. Furthermore, Cognitive reevaluation strategy seems preserved from the disease’s consequences. This strategy might be an important advantage in the preservation of quality of life in DM1, despite the disease progression. A DM1 specific Cognitive Behavioral Therapy showed promising results. Other psychotherapeutic approaches could be explored, namely Acceptance and Commitment Therapy
Coldefy, Maurin Anne-Sophie. « Implication des voies de signalisation des MAPK, ERK1/2 et p38, dans la dystrophie myotonique de type 1 (DM1) ». Nice, 2006. http://www.theses.fr/2006NICE4059.
Texte intégralThe aim of this work was to characterize a putative role of ERK1/2 and p38 MAPK in the myotonic dystrophy 1, called DM1. DM1, the most frequent dystrophy in adults, is a multi-systemic disorder which mainly affects skeletal muscles (myotonia, progressive wasting and weakness, delay in muscular differentiation). DM1 is an autosomal dominant inherited disease. The genetic mutation is an expansion of CTG trinucleotide repeats tract in the DMPK 3’ untranslated region. DMPK encodes a serine/threonine kinase but its function is still unknown. ERK1/2 and p38 MAPK signalling pathways play central and essential roles in cells physiology and are implicated in various cellular processes including muscular differentiation. We show that ERK1/2 and p38 activation is significantly diminished in muscular biopsies from DM1 patients. This diminished activation is not correlated with a diminution of DMPK expression in DM1, as we observed in transgenic mice, Dmpk knock-out or DMPK over-expressing mice. However, in C2C12 cells expressing CUG repeats in 3’ UTR of GFP, ERK1/2 and p38 activation is altered. In DM1, the diminution of ERK1/2 and p38 activation could be due to the expression of CUG repeats tract rather than to the decrease of DMPK expression. Our results and our recently developed molecular tools will enable us to further understand the implication of ERK1/2 and p38 MAPK in DM1 as well as Dmpk function in muscular differentiation
Ney, Michel. « Rôle de l'inclusion de l'exon 7 de BIN1 dans la faiblesse musculaire des patients atteints de dystrophie myotonique ». Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAJ077/document.
Texte intégralMyotonic dystrophy of type 1 (DM1), is an inherited genetic disease affecting around 1 in 8000 person. Patients suffering from DM1 develop essentially muscle disorders such as muscle weakness, muscle loss and atrophy. The cause of DM1 is explained by the mutation of a gene called “DMPK“.During my thesis, I discovered that the alternative splicing of BIN1 mRNA was altered in the muscle of DM1 patients. Indeed, the BIN1 exon 7, which is normally absent in healthy muscle, is aberrantly expressed in DM1 muscle. By using a mouse model, I found that the forced expression of BIN1 exon 7 was responsible of the alteration of both muscle structure and function. Notably, we found a decrease in muscle fibers area (atrophy) and an increase of muscle weakness, compared to wild-type mice. Therefore, this work will help in the understanding of the disease mechanism and could explain the causes of muscle weakness and atrophy, which have never been elucidated to this date
De, Dea Diniz Damily. « The study of the consequences of serca1’s missplicing on muscle function in myotonic dystrophy type 1 ». Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS569.
Texte intégralMyotonic Dystrophy Type 1 (DM1) is a neuromuscular disease that affects mainly the skeletal muscle with the presence of myotonia and progressive atrophy and is caused by abnormal CTG expansion in the 3'UTR of the DMPK gene. The expression of the mutated RNA induces the loss of function of the MBNL1 splicing factor and leads to the re-expression of fetal isoforms of certain transcripts in the adult tissues of DM1 patients. In order to identify new mechanisms involved in muscle dysfunction, I developed a model of muscle cells conditionally expressing 960 interrupted CTG repeats. Following the targeted expression of RNA-960CUG in myotubes, transcriptome analysis shows that despite the presence of functions/biological processes typical of DM1, the induction of non-DM1 associated pathways and the absence of phenotype suggest that this model is not appropriate for this study of molecular mechanisms. I also did a study of the impact of the ATP2A1 (SERCA1) misplicing, present in DM1 patients, on the muscular function. I used an antisense approach to promote the exclusion of exon 22 from Atp2a1 in the muscle of two animal models, leading to the reexpression of the Serca1b fetal isoform. The re-expression of Serca1b in the muscle of adult wild-type mice leads to a slowing contraction and a loss of muscle mass. In zebrafish, this modification on Atp2a1 splicing causes an alteration on the locomotion. All of these results indicate that reexpression of Serca1b affects muscle function and may contribute to muscle symptoms in DM1
Vergnol, Amélie. « Les isoformes CaVβ1 : rôle dans la formation de la jonction neuromusculaire et implication dans la physiopathologie de la Dystrophie Myotonique de type 1 ». Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS305.
Texte intégralFour CaVβ proteins (CaVβ1 to CaVβ4) are described as regulatory subunit of Voltage-gated Ca2+ channel (VGCC), each exhibiting specific expression pattern in excitable cells based on their function. While primarily recognized for their role in VGCC regulation, CaVβ proteins also function independently of channels, acting as regulators of gene expression. Among these, CaVβ1 is expressed in skeletal muscle as different isoforms. The adult constitutive isoform, CaVβ1D, is located at the sarcolemma and more specifically at the triad, where it plays a crucial role in regulating CaV1 to control Excitation-Contraction Coupling (ECC) mechanism, essential for muscle contraction.In this thesis, we further explored the less studied CaVβ1 isoforms, with a particular focus on embryonic/perinatal variants, including the previously described CaVβ1E. We investigated their roles in the neuromuscular and muscular systems. Indeed, CaVβ1 proteins have been showed as essential for NeuroMuscular Junction (NMJ) development, though the involvement of specific isoform remains unclear. Our investigation assessed the role of CaVβ1 isoforms at different stages of NMJ formation and maturation/maintenance. Additionally, given the deregulation of CaVβ1 in Myotonic Dystrophy Type 1 (DM1), we explored its functional role in this muscular pathological context.First, we identified CaVβ1A as another isoform expressed during embryogenesis and perinatal stages. Our findings revealed that CaVβ1 isoforms expressions are regulated by the differential activation of promoters during development: a promoter1 in exon 1 drives CaVβ1A/E expressions, while a promoter2 in exon 2B controls CaVβ1D expression. Interestingly, nerve damage in adult muscle triggers a shift toward the promoter1 activation and leading to the re-expression of CaVβ1A/E transcripts. Furthermore, we found that CaVβ1 embryonic/perinatal isoforms are critical for proper in vitro pre-patterning of myotubes and that their postnatal expressions influences NMJ maturation/maintenance. In the pathological context of DM1, we observed the increased expression of CaVβ1A/E, which appears to mitigate myotonia symptoms. In addition, we found that the modulation of their expression is linked with MBNL proteins, which are central in the pathophysiology of DM1. In conclusion, this thesis work has clarified knowledge of the various CaVβ1 isoforms in skeletal muscle and provides new insights into their role in two independent contexts of NMJ development and DM1 pathophysiology. Understanding CaVβ1 protein regulation in skeletal muscle is essential to decipher muscle homeostasis mechanisms and potentially identify new therapeutic targets to face muscular disorders
Bigot, Anne. « Mécanismes de sénescence et programme myogénique ». Paris 6, 2007. http://www.theses.fr/2007PA066397.
Texte intégralArandel, Ludovic. « Développement d'une thérapie génique pour la Dystrophie Myotonique de type 1 ». Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS229.
Texte intégralMyotonie dystrophy types 1(DM1) and 2 (DM2) are autosomal dominant multisystem diseases with a strong neuromuscular component. They are characterized by progressive myotonia, muscle weakness, cognitive impairment, and cardiac conduction defects. These diseases are caused by abnormal amplification of C(C)TG repeat sequences located in the 3'UTR region of the DMPK gene and in the intron of the CNBP gene, respectively. These expansion-containing sequences are transcribed and retained in the nucleus as riboprotein aggregates. The presence of these toxic C(C)UG RNAs induces sequestration of the MBNL family of RNA-binding proteins, leading to their loss of function and deregulation of alternative splicing events, many ofv/hich are associated with clinical symptoms in patients. There is currently no1reatment for DM. In this thesis, I have developed a gene therapy tool based on a modification of the MBNL1 protein. This C- terminal truncated MBNL derivative (MBNLΔ) acts as a decoy to release endogenous MBNL proteins sequestered by mutant RNAs. Our approach was validated in muscle cells from DM1 patients and in a mouse model of the disease after AAV virus injection. Treatment with MBNLΔ allows the delocalisation of endogenous MBNL proteins from the foci, modifies the foci dynamics, corrects the transcriptome and myotonia, which is maintained 1 year after injection
Gagnon, Éric. « La qualité de vie chez les personnes atteintes de dystrophie myotonique de type 1 ». Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/28772/28772.pdf.
Texte intégralMyotonic dystrophy type 1 (DM1) is a hereditary neuromuscular disorder characterised by multisystemics anomalies. DM1 is delimited by four clinical phenotypes (congenital, childhood, adulthood and mild). These different phenotypes have different levels of disability but little is known about their respective quality of life (QOL). RESULTS. Subjects with the mild phenotype present superior subjective QOL and health-related quality of life (HRQOL) than the subjects with the adult phenotype. Relations between subjective QOL and HRQOL is usually at a low level but with both studied phenotypes, physically related relations between the different subscales show moderated to elevated relations. CONCLUSION. The results show the difference between the adult and the mild phenotypes and the relevance to make complementary studies so as to identify the explanatory factors making for better clinical interventions.
Gagnon, Éric. « La qualité de vie chez les personnes atteintes de dystrophie myotonique de type 1 ». Master's thesis, Université Laval, 2011. http://hdl.handle.net/20.500.11794/23494.
Texte intégralMyotonic dystrophy type 1 (DM1) is a hereditary neuromuscular disorder characterised by multisystemics anomalies. DM1 is delimited by four clinical phenotypes (congenital, childhood, adulthood and mild). These different phenotypes have different levels of disability but little is known about their respective quality of life (QOL). RESULTS. Subjects with the mild phenotype present superior subjective QOL and health-related quality of life (HRQOL) than the subjects with the adult phenotype. Relations between subjective QOL and HRQOL is usually at a low level but with both studied phenotypes, physically related relations between the different subscales show moderated to elevated relations. CONCLUSION. The results show the difference between the adult and the mild phenotypes and the relevance to make complementary studies so as to identify the explanatory factors making for better clinical interventions.
Légaré, Cecilia. « Déterminants génétiques et épigénétiques de la variabilité phénotypique de la dystrophie myotonique de type 1 ». Mémoire, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/11602.
Texte intégralAbstract : Myotonic dystrophy type 1 (DM1) is an autosomal dominant disorder caused by a CTG repeat extension in the 3’ untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. Worldwide, the prevalence of DM1 is 8.26 affected persons per 100 000 persons, but it goes up to 158 affected persons per 100 000 in the Saguenay-Lac-St-Jean region of the province of Quebec (Canada) due to a founder effect. Clinical presentation includes muscular weakness, myotonia, cataracts, respiratory insufficiency, cardiac arrhythmia, hypersomnolence and endocrine and cognitive problems. There is a large variability in the presence and severity of these symptoms that is only partially explained by the CTG repeat length. Many mechanisms such as splicing defects, impaired regulation of transcription factors, repeat-associated non-ATG translation and epigenetic modifications, including DNA methylation, may explain this variability. The objective of this study was to assess the impacts of DNA methylation measured at the DMPK gene locus on phenotypic variability in DM1. We report that DNA methylation upstream of the repeat was negatively correlated with CTG repeat length whereas downstream DNA methylation was positively correlated. The presence of a variant repeat within the CTG repeat was associated with a higher level of DNA methylation. Linear multiple regression models support that DNA methylation contributes significantly and independently of the CTG repeat length to the variability of the ankle dorsiflexor, grip and pinch strengths, as well as forced vital capacity, peak expiratory flow and maximal inspiratory and expiratory pressures. DNA methylation could thus explain part of the phenotypic variability in DM1 and, together with CTG repeat length, could help improve the prediction of the progression of the disease.
Brien, Mélissa. « Habitudes alimentaires et apports nutritionnels chez les personnes présentant une dystrophie myotonique de type 1 ». Thèse, Université Laval, 2016. http://constellation.uqac.ca/3882/1/Brien_uqac_0862N_10187.pdf.
Texte intégralDesjardins, Patrick. « Évaluation de la capacité fonctionnelle chez des patients atteints de la dystrophie myotonique de type 1 ». Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/30290/30290.pdf.
Texte intégralMerien, Antoine. « Étude de la fonction des protéines MBNL au cours du développement à l’aide de cellules souches humaines induites à la pluripotence ». Thesis, université Paris-Saclay, 2021. https://www.biblio.univ-evry.fr/theses/2021/interne/2021UPASQ015.pdf.
Texte intégralAlternative splicing has emerged as a fundamental mechanism not only for the diversification of protein isoforms but also for the spatiotemporal control of development. Therefore, a better understanding of how this mechanism is regulated has the potential not only to elucidate fundamental biological principles, but also to decipher pathological mechanisms involved in diseases where normal splicing networks are mis-regulated. As part of this thesis, we took advantage of human pluripotent stem cells to decipher during human myogenesis the role of MBNL proteins, a family of tissue-specific splicing regulators whose loss of function is associated with Myotonic Dystrophy type 1 (DM1), an inherited neuromuscular disease. Thanks to the CRISPR/Cas9 technology, we generated human-induced pluripotent stem cells (hiPSCs) depleted in MBNL proteins and evaluated the molecular and functional consequences of this loss on the generation of skeletal muscle cells. Our results indicated that MBNL proteins are specifically required for the late myogenic maturation but not for early myogenic commitment. By a transcriptomic analysis, we were able to highlight the molecular pathways regulated by these proteins during myogenesis, as well as the compensatory effects between MBNL paralogs. This study also allowed us to identify a new alternative splicing defect in DM1, regulated by MBNL proteins, which leads to structural abnormalities of the muscular post-synaptic compartment. Together, our results reveal the temporal requirement of MBNL proteins in human myogenesis and allow the identification of new molecular pathways regulated by these proteins that could be involved in the development of DM1. In the longer term, the tools developed in this study should also facilitate the identification of new therapeutic strategies capable to cope with the loss of function of these proteins
Tran, Hélène. « Mécanismes moléculaires associés aux changements d'épissage de Tau dans une Tauopathie, la dystrophie myotonique de type 1 ». Phd thesis, Université du Droit et de la Santé - Lille II, 2010. http://tel.archives-ouvertes.fr/tel-00625483.
Texte intégralTran-Ladam, Hélène. « Mécanismes moléculaires associés aux changements d'épissage de Tau dans une Tauopathie, la dystrophie myotonique de type 1 ». Thesis, Lille 2, 2010. http://www.theses.fr/2010LIL2S037/document.
Texte intégralTau pathology is a brain lesion common to more than twenty neurodegenerative disorders. It consists of the abnormal aggregation of the microtubule-associated protein Tau into neurofibrillary tangles. Mechanisms underlying Tau aggregation are not fully understood yet. However, among the different etiological hypothesises, the one of a relationship between Tau mis-splicing and Tau aggregates particularly interests us. Here, we proposed a disease model, being myotonic dystrophy type I (DMI), in which Tau mis-splicing and Tau aggregate occur. DM1 is the most common adult form of muscular dystrophy. It is an inherited autosomal disorder characterised by a dynamic instable CTG repeats (over 50) in the 3’UTR of DMPK gene. DM1 pathogenesis is suggested to result from a RNA toxic gain of function whereby mutant transcripts modify the splicing machinery activity leading thus to a mis-splicing of several pre-mRNA targets including Tau. In this context, our objectives were to 1) characterize Tau mis-splicing in several DM1 brain patients 2) Model it and identify the trans-regulating splicing factors likely involved and 3) Propose a therapeutic approach to reverse it. Tau mis-splicing was always observed for both exons 2 and 3 in human adult DM1 brain and consisted of a reduced inclusion. Tau exon 10 splicing was seldom mis-regulated and associated with an increase of the CELF proteins family. CELF proteins are splicing factors previously described to regulate alternative splicing of Tau exons 2, 3 and 10. In addition to the CELF proteins, we also investigated the potential role of the splicing factor MBNL1, which was shown to play an essential role in DM1 physiopathology through its sequestration by the CUG repeats. MBNL1’s brain expression was ill-defined. Here, we report that MBNL1’s expression level was not altered but its splicing modified in adult DM1 brain. In addition, we provide evidences by a relationship study between the structure and the function of MBNL1 that this mis-splicing event favored its sequestration to the foci by modifying its cell-localization, splicing activity and oligomerization properties. MBNL1 mis-splicing does not influence Tau mis-splicing. However its loss of expression reproduced the mis-splicing of Tau exons 2/3 as observed in DM1 brain. Interestingly, the overexpression of MBNL1 in the presence of the CTG repeats partially restored a normal splicing of Tau as well as several other mis-regulated pre-mRNA targets. Further experiments performed with different molecular constructs lead us to hypothezied that the reversal of the abnormal splicing events observed in DM1 was mediated by a saturation of the CUG binding sites that lead to the release of a free pool of MBNL1, recovering thus its splicing function. This work leads us to design a new molecular tool that might be of interest to reverse the pathological events observed in DM1
Dhaenens, Claire-Marie. « "Etude de l'effet trans-dominant de la mutation du gène de la dystrophie myotonique (type 1) sur l'épissage des gènes MBNL1 et Tau" ». Lille 2, 2006. http://www.theses.fr/2006LIL2S029.
Texte intégralLaurent, François-Xavier. « Une nouvelle fonction pour la DEAD-box ARN hélicase p68/DDX5 dans la Dystrophie Myotonique de type 1 ». Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00662593.
Texte intégralPicchio, Lucie. « Mise en place, caractérisation phénotypique et transcriptomique d'un modèle de Drosophilie de la Dystrophie Myotonique de type 1 ». Thesis, Clermont-Ferrand 1, 2013. http://www.theses.fr/2013CLF1MM15/document.
Texte intégralMyotonic Dystrophy Type 1 (DM1) or Steinert's disease is the most common genetic neuromuscular disorder affecting 1 out of 8000 people worldwide. This multisystemic disease affects particularly the skeletal muscles (myotonia, muscle weakness and wasting) and the heart, which can exhibit various symptoms like conduction disturbances and arrhythmia (auricular fibrillation and flutter). DM1 is caused by an unstable CTG repeat expansion in the 3' non-translated region of the DMPK gene. In healthy individuals, the number of CTG repeats ranges from 5 to 37 whereas DM1 patients carry from 50 to thousands repeats. It is well established that when expanded non-coding repeats aggregate into foci within muscle nuclei and sequester the MBNL1 splicing factor. However, the involvement of the stabilization and accumulation of CUGBP1 following PKC hyper-phosphorylation in the disease is a controversial matter in the DM1 community. Lately, in addition to the disruption of the balance between MBNL1/CUGBP1, several mechanisms were identified as part of the DM1 pathogenesis. Among them, transcription factors perturbations, altered maturation of miRNA, kinases activation… each of them leading eventually to transcriptomic alterations. In order to investigate the effect of toxic repeat expression on phenotypic and transcriptomic alterations, we generated three inducible site-specific Drosophila lines expressing 240, 600 and 960 triplet repeats. We worked in parallel on a mbl (MBNL1 orthologue) knocked-down line and two bru-3 (CUGBP1 orthologue) gain of function lines. When expressed in somatic muscles, CTG repeats lead to altered motility, fiber splitting, reduced fiber size and affected myoblast fusion process in a Mbl and Bru-3 dependent manner. In addition, toxic repeats cause fiber hyper-contraction in a Mbldependentmanner due to dSERCA mis-splicing. Comparative transcriptional profiling performed on larval muscles of different conditions show that mbl attenuation reproduces 70-82% of DM1 transcriptomic deregulations whereas bru-3 gain of function represents 32-53% of transcritomic alterations. Thus Mbl appears as a key factor of transcripts deregulations observed in DM1 muscles. On the contrary, physiologic analyses performed on adult hearts suggest that Bru-3 is a key factor for cardiac phenotypes. Indeed, on one hand, mbl attenuated flies display dilated cardiomyopathy, a symptom barely diagnosed in patients. On the other hand, bru-3 gain of function line and DM1 lines display fibrillation, which evolves withage or repeat size into a phenotype reminiscent of heart insufficiency in patients
Carpentier, Céline. « Etude de l'épissage alternatif de l'exon 2 de Tau dans un modèle de tauopathie : la dystrophie myotonique de type 1 ». Thesis, Lille 2, 2013. http://www.theses.fr/2013LIL2S031.
Texte intégralMyotonic Dystrophy Type 1 (DM1) belongs to the group of pathologies referred as misregulated alternative splicing or spliceopathies. DM1 is a multisystemic inherited disease characterized by an unstable CTG-repeat expansion in the 3’ UTR of the DMPK gene. These CUG expansions are not translated, but they inhibit nuclear exportation of DMPK transcripts modifying in this way, the pool of available splicing regulating factors like CELF (CUGBP and ETR-3 like factor) and MBNL (Muscleblind Like) families. This deregulation leads to a default of alternative splicing of numerous transcripts, particularly in skeletal muscle, heart and brain. Beyond them, we focus on RNA from the microtubule-associated protein Tau (MAPT). In human brain, six Tau RNA variants have been described from alternative splicing of exons 2, 3 and 10. In DM1 brains, it has been reported a repression of the inclusion of these exons. The functionality of alternative splicing of Tau exon 2 in DM1 can be studied by the use of minigenes. These minigenes are constituted of Tau sequences more or less deleted, inserted in a plasmidic vector. We demonstrated that the nature of the vector has an influence on splicing. The construction of different minigenes permit to choose the one more adaptated to the research of cis-elements involved in both normal and pathological splicing of Tau RNAs. So, cis elements implicated in regulation of Tau exon 2 are distant of the exon (between nucleotides +500 and +2100 upstream exon 2). On the over hand, cis elements targeted by CUG repetitions in DM1 are close to exon 2 (in 25O nucleotides around exon 2). In this CUG expansions, some splicing factors like MBNL family members can be sequestered. In our cellular model, extinction of expression of MBNL1 and the use of minigenes mutants for MBNL sites show that these factors are implicated in both regulation and deregulation of Tau exon 2 alternative splicing. Moreover, over-expression of MBNL2 can restore a normal Tau exon 2 splicing in presence of DM1 mutation. This restoration is increased when MBNL1 is also over-expressed, suggesting a synergic effect between MBNL1 and MBNL2. Secondly, we studied the involvement of other families of splicing factors such as ubiquitary factors (SR, hnRNP) or factors implicated in others pathologies with triplets expansions (p68, Sam68, Fox). Exon 10 deregulation was very studied in FTDP-17 (Frontotemporal dementia and parkinsonism linked to chromosome 17) but not in DM1. So, Tau endogene has been analysed to study both exon 2 and 10. So, new factors implicated in regulation of exon 2 (CELF2, 4, 6, PTB1 and 2, Sam68, MBNL2) and 10 (Sam68, MBNL2, Fox 1 and 2) were identified. For the first time, the implication of the factors CELF5, SC35, SRp20, SRp75, 9G8 for exon 2 and CELF3, hnRNPA1, Fox1 for exon 10 in the restoration of a normal Tau splicing in presence of DM1 mutation have been identified. In conclusion, our data show that Tau exon 2 and 10, both alterated in DM1 pathology, are regulated and deregulated by different mechanisms
Algalarrondo, Vincent. « Troubles de l'excitabilité cardiaque dans la dystrophie myotonique de type 1 et l'insuffisance cardiaque : étude de deux modèles murins ». Paris 7, 2014. http://www.theses.fr/2014PA077040.
Texte intégralCardiac tissue is electrically active and propagates electrical impulses through a series of complex physiological processes. Here, we examined the ability of myocytes to generate and propagate cardiac influx in two rodent models: a mouse model of myotonic dystrophy type 1 (DM1 ) and a rat model of heart failure and atrial remodeling. DM1 is a disease associated with conduction disorders and cardiac arrhythmias. DM1 is due to the toxic expansion of a CTG sequence. The mechanism of conduction disorders is currently unknown. We established a parallel between DM1 and various pathologies resulting from a mutation of the cardiac sodium channel Nav1. 5 (Brugada syndrome) in DM1 patients. These similarities suggested for an abnormal cardiac sodium current IN,. In the murine model DMSXL of DM1, there was indeed an increased sensitivity to 'Na blockers and 'Na inactivation was accelerated. These results suggested that 'Na is involved in the genesis of conduction disorders in DM1. Atrial fibrillation (AF) is the most common arrhythmia in humans and is strongly associated with heart failure (HF). In an HF model, we characterized the atrial remodeling and demonstrated that atrial excitability was decreased. Atrial remodeling was also associated with atrial alterations at the cellular and tissue level. The integration of these alterations in a computer model confirmed the imbalance between cellular and tissue remodeling during atrial remodeling
Pontual, Laure de. « Identification de nouveaux facteurs chimiques capables de moduler l'instabilité des répétitions CTG dans la dystrophie myotonique de type 1 ». Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS198.pdf.
Texte intégralMyotonic dystrophy type 1 (DM1) is the most common dystrophy in adults, with an estimated prevalence of 1:8000 individuals. It is a multisystemic disease characterized by muscle, cardiac, cognitive, and digestive impairments, which contribute to a reduction in both life expectancy and quality of life for patients. DM1 is caused by an abnormal expansion of CTG repeats in the 3'UTR of the DMPK gene. In the general population, the number of repeats is under 35 CTG, whereas in patients, it exceeds 50 CTG and can reach several thousand repeats. As in other diseases caused by repeat expansions, the CTG expansion in DM1 is unstable. The repeat size increases across generations (intergenerational instability) and within tissues during a patient's lifetime (somatic instability). The number of inherited repeats and the level of somatic instability correlate with the age of onset and severity of symptoms. Thus, targeting the mutation itself to stabilize or reduce CTG repeat length is the most promising therapeutic strategy, as it would address all the pathophysiological mechanisms resulting from the mutation.Initially, my thesis work focused on identifying repositioned chemical molecules capable of modulating repeat instability. Screening the 1280 molecules from the Prestwick Chemical Library allowed me to identify 39 candidate molecules that alter the expression of a reporter gene, suggesting they could modulate repeat instability. After directly studying their effect on instability, I excluded four of these molecules that do not modulate repeat expression. I demonstrated that a fifth molecule, clomipramine, can modulate repeat instability in the screening cell model but not in murine and human DM1 fibroblasts.Concurrently, I showed that RGFP966, a selective HDAC3 inhibitor, induced contractions of CTG repeats in murine DM1 fibroblasts with approximately 650 repeats. This effect appears to depend on the dose of RGFP966 or the size of the CTG repeat, as it was not replicated in human DM1 fibroblasts with 350 CTG repeats. An RNA-seq approach in murine cells treated with RGFP966 identified several candidate genes involved in DNA replication as possible modifiers of instability. I also showed a decrease in bidirectional DMPK transcription associated with a probable hypermethylation downstream of the repeats in murine DM1 cells. In conclusion, my data suggest that RGFP966 modulates CTG repeat instability in DM1 through multiple mechanisms, potentially including chromatin structure modification at the DM1 locus and alterations in DNA replication.Overall, my thesis project contributed to the understanding of repeat instability mechanisms and the identification of chemical compounds that modulate instability dynamics. My work also highlighted the limitations of each model used and the complexity of identifying small molecules that alter CTG triplet dynamics in reporter cell models. Additionally, I participated in developing long-read sequencing (with and without amplification) for DM1, providing a rapid and highly informative new tool for the analysis of somatic mosaicism
Laustriat, Delphine. « Les cellules souches pluripotentes en modélisation pathologique pour l'identification de nouvelles cibles thérapeutiques : application à la Dystrophie Myotonique de type 1 ». Thesis, Evry-Val d'Essonne, 2010. http://www.theses.fr/2010EVRY0017.
Texte intégralMyotonic Dystrophy type 1 (DM1), or Steinert disease, is one of the most common neuromuscular disorders in adults for whom no therapeutic solution other than symptomatic is available at present. The mutation, which consists in an unstable CTG expansion located in the 3' transcribed but untranslated region of the DMPK gene, leads in particular to the deregulation of several RNA-binding proteins. This engenders various splicing defects that are associated to the multisystemic symptoms. The availability of a preimplantation genetic diagnosis enabled the derivation of human embryonic stem cell lines (hESC) from embryos carrying the causative mutation. These cell lines, and now the induced pluripotent stem cells established from patients, constitute promising models for genetic disease’s exploration. Besides the possibility to investigate the pathology in a natural context, these cells open the way to every cell phenotypes without any quantitative restriction and thus appear as a valuable tool for large scale screening, and particularly for functional genomics approaches that systematically explore the involvement of genes in a given phenotype. The aim of my work was to explore the potential of such an approach by developing a loss of function RNA interference screen in order to identify new therapeutic targets by using a hESC line expressing the DM1 mutation. To that purpose we first identified a disease relevant cell population, i.e. hESC derived-mesenchymal progenitors expressing two DM1 biomarkers – foci and INSR splicing defects, suitable for large scale siRNA transfection. Then we developed, miniaturized and automated the transfection’s and phenotype detection’s steps. Finally, once all the conditions determined, we conducted a screening of a siRNA library targeting RNA-binding proteins that led to the identification of several candidate genes, including ELAVL1 which appears as a new DM1 therapeutic target. Indeed, its knockdown resulted in the improvement of several pathological splicing defects and normalized the glucose uptake impairment. We also showed that the enrichment of its nuclear fraction through the use of AMPK activators, some of which being widely prescribed anti-diabetic drug, was able to mimic this corrective effect. My work thus underlies the interest of coupling RNAi screening to pathological pluripotent stem cells for the identification of new therapeutic targets with the view to accelerate drug discovery, and particularly in the case of rare diseases
Vautrin, Audrey. « Etude des dérégulations de l'épissage alternatif du pré-ARN messager de la troponine T cardiaque humaine associées aux dystrophies myotoniques de types 1 et 2 et des caractéristiques du facteur d'épissage MBNL1 impliqué dans ces pathologies ». Thesis, Nancy 1, 2011. http://www.theses.fr/2011NAN10141/document.
Texte intégralAmplifications of CTG motifs in the human DMPK gene are responsible for Myotonic Dystrophy of type 1. The resulting CUG repeats in pre-mRNAs capture the MBNL1 splicing factor, leading to mis-regulation of MBNL1 pre-mRNA targets. Due to the recent discovery of MBNL1 and its numerous isoforms (9) resulting from alternative splicing, little is known on how MBNL1 regulates splicing and how a decreased level of available MBNL1 generates splicing miss-regulations. First, we defined which of the MBNL1 alternative and constitutive exons are required for: i) RNA binding, ii) splicing activity and, iii) MBNL1 sub-cellular localization. Second, for a more precise definition of the MBNL1 RNA binding properties, we performed SELEX experiments using a library of RNA stem-loop structures containing a 18-nt long randomized sequence. Its leads to the identification of 12-nt long sequence adopting a peculiar stem-loop structure, whose importance for MBNL1 binding was revealed by its preservation by compensatory base-pair mutations. Finally, based on the above data, we studied the mechanisms involved in regulation of hcTNT exon 5 splicing. By in cellulo assays, we defined the hcTNT pre-mRNA region required for both normal inclusion and for the trans-dominant effect of CUG repeats. Within this region, we identified six new potential MBNL1 sites and demonstrated their functional role by in vitro and in cellulo assays. We also identified several additional splicing regulatory elements involved in normal and CUG-deregulated exon 5 inclusion and already showed a role of hnRNP H in splicing regulation. Altogether, our data bring new information important for understanding the pathology
Roussel, Marie-Pier. « Adaptations du muscle squelettique induites par l'entraînement physique en résistance, aigu et chronique, chez les patients atteints de dystrophie myotonique de type 1 ». Thèse, Université Laval, 2017. http://constellation.uqac.ca/4446/1/Roussel_uqac_0862N_10399.pdf.
Texte intégralDenis, Jérôme Alexandre. « MODELISATION PATHOLOGIQUE DES MALADIES MONOGENIQUES PAR L'UTILISATION DES CELLULES SOUCHES EMBRYONNAIRES HUMAINES. PREUVE DE CONCEPT APPLIQUEE A LA DYSTROPHIE MYOTONIQUE DE TYPE 1 ». Phd thesis, Université d'Evry-Val d'Essonne, 2010. http://tel.archives-ouvertes.fr/tel-00545797.
Texte intégralGhanem, Dana. « Mécanismes moléculaires de la régulation et de la dérégulation de l'épissage alternatif de Tau et cTNT dans la Dystrophie Myotonique de Type 1 ». Phd thesis, Université du Droit et de la Santé - Lille II, 2009. http://tel.archives-ouvertes.fr/tel-00430481.
Texte intégralGauthier, Morgane. « Etude des mécanismes moléculaires de la Dystrophie Myotonique de Type 1 à l'aide de cellules souches embryonnaires humaines porteuses de la mutation causale ». Thesis, Evry-Val d'Essonne, 2012. http://www.theses.fr/2012EVRY0009/document.
Texte intégralAbstract not available
Ghanem, Le Dizès Dana. « Mécanismes moléculaires de la régulation et de la dérégulation de l'épissage alternatif de tau et cTNT dans la dystrophie myotonique de type 1 ». Lille 2, 2009. http://tel.archives-ouvertes.fr/tel-00430481/fr/.
Texte intégralDenis, Jérôme. « Modélisation pathologique des maladies monogéniques par l'utilisation des cellules souches embryonnaires humaines : preuve de concept appliquée à la dystrophie myotonique de type 1 ». Thesis, Evry-Val d'Essonne, 2010. http://www.theses.fr/2010EVRY0042/document.
Texte intégralAmong their promising applications, human embryonic stem cells lines (hES) have huge potential to improve the understanding of molecular and cellular mechanisms involved in the development of monogenic diseases. This application of modeling pathologic became possible using hES cell lines carrying the causal mutation of a monogenic disease, obtained during pre-implantation diagnosis. The team where I did my thesis work demonstrated that hES cell lines and their progeny, carrying the causal mutation in myotonic dystrophy type 1 (DM1), expressing the molecular defects characteristic of the pathology, allowing more relevant analysis than primary cultures derived from biopsies of patients and validates the use of this cell model. In this context, in the first part of my thesis, my goal was to develop culture conditions for hES cell differentiation into normal and mutant neural lineage in order to obtain homogeneous populations of neural progenitors and neural stem cells and to characterize their phenotypic and fonctional preperties. Next, using a transcriptomic method, I compared the expression profile of neural progenitors to another homogeneous population of mesenchymal precursors. Thus, I identified genes and signaling pathways specific to each of these populations. (Article 1). In the second part of my work, my contribution to the pathological modeling of DM1 was to use these mutant neural progenitor cells and neural stem cells to explore the pathophysiological mechanisms involved in neurological symptoms observed in this pathology. Thus, I have identified a cell signaling pathway defects in mTORC1 pathway based on the observation that NSC cells carrying DM1 mutation proliferated more slowly than control cells (Article II).At last, I also studied the expression of Tau protein, a protein involved in Alzheimer’s disease and I have highlighted changes suggesting impairement of axonal transport in neurons derived from hES cell lines mutant. These results, together with those performed in the team, can provide proof of concept for the benefit of such a cell model for modeling disease monogenic diseases
Maury, Yves. « Utilisation de cellules souches pluripotentes humaines pour le développement de criblages phénotypiques dans le cadre de la dystrophie myotonique de type 1 et l'amyotrophie spinale infantile ». Thesis, Evry-Val d'Essonne, 2013. http://www.theses.fr/2013EVRY0019/document.
Texte intégralFor only few years, Human pluripotent stem cells (PSC) have become wide spread models in order to study and decipher cellular or molecular mechanims involved in monogenic diseases, but also for the development of large scale screening strategies allowing the identification of new therapeutics among thousands of chemicals. Mythesis research aimed at the development of such strategies, miniaturizing and automating PSC biology within the framework of two monogenic diseases, namely spinal muscular atrophy (SMA) and myotonic dystrophy type 1 (DM1).Basically, PSC based screening programs are generally built around three main steps which are the access to a stem cell model, the identification of a relevant cell type and lastly the screening campaign. There is actually two main ways to generate human PSC. Firstly, human embryonic stem cells (hES) can be derived from the inner cell mass of blastocyte through a pre-implantation diagnosis and secondly, induced pluripotent stem cells (iPS) can be generated after somatic cell reprogramming in vitro. A part of my work has consisted in the generation of hiPS cellular models for SMA by reprogramming fibroplasts that carried SMN1 gene deletion, followed bay the characterization of several dozen of independant clones with high throughput. Then an optimization process of the protocol for the generation of Motoneuron from PSC has been done multiplying experimental conditions. This finally allowed the description of a fast and efficient protocol to generate the most affected cell type in SMA. Finally, DM1 mutated hES were uded for the screening of 12.000 compounds among which a chemical family has been identified to rescue DM1 typical splicing and myogenesis defects
Allard-Chamard, Xavier. « Impact du génotype de l'ACTN3 sur la conservation et l'évolution de la force musculaire chez les individus atteints de dystrophie myotonique de type 1 ». Master's thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/33549.
Texte intégralLe but de cette investigation vise à analyser l’impact du génotype de l’ACTN3 sur la conservation et l’évolution de la force musculaire chez les individus atteints de DM1. Cette étude se veut une recherche longitudinale, les patients ayant été évalués sur deux périodes séparées de 9 ans (temps 1 et temps 2). L’analyse de l’impact du génotype de l’ACTN3 comporte deux volets. Le premier volet a pour objectif d’identifier si l’absence de protéine alpha-actinine 3 (génotype 577XX) provoque chez les personnes atteintes de DM1 un niveau de force musculaire global plus faible que chez l’individu des deux autres génotypes, en l’occurrence 577RX et 577RR. Le deuxième volet, quant à lui, a pour objet la comparaison de la perte de force musculaire entre le temps 1 et le temps 2 des trois génotypes. Les patients ont été recrutés dans le registre de la clinique neuromusculaire du Saguenay. Les personnes invitées à participer à cette étude devaient avoir été testées par une analyse génétique confirmant la présence de la maladie (phénotype adulte et tardif) et être âgées de 18 ans ou plus. Un total de 113 participants, soit 42 hommes et 71 femmes, a été en mesure de compléter cette étude longitudinale. Ces derniers ont été évalués à l’aide de 17 tests musculaires. Les résultats du temps 2 ont montré que l’absence de la protéine alpha-actinine 3 chez les hommes atteints de DM1 induisait un niveau de force musculaire global plus faible que chez ceux de génotype 577RX. En effet, le sexe masculin de génotype 577XX a vu sa force décroître plus rapidement au fil des années. Somme toute, si l’encadrement le permet, connaître le profil génotypique associé au gène ACTN3 chez les hommes atteints de DM1 est un élément important à prendre en considération afin de ralentir la progression de la maladie et d’optimiser les stratégies de réadaptation
The purpose of this investigation was to analyze the impact of the genotype of ACTN3 on the conservation and evolution of muscle strength in individuals with DM1. This study was a longitudinal study, the patients having been evaluated on two different occasions with 9 years in between (time 1 and time 2). The analysis of the impact of the ACTN3 genotype had two components. The first part aimed at identifying whether the absence of alpha-actinin 3 protein (genotype 577XX) caused a lower level of overall muscular strength in people with DM1 when compared to the other two genotypes, in this case 577RX and 577RR. The second part aimed at comparing the loss of muscle strength between time 1 and time 2 for the three genotypes. Patients were recruited from the Saguenay Neuromuscular Clinic Registry. Those invited to participate in this study had been previously tested by a genetic analysis confirming the presence of the disease (adult and late phenotype) and be 18 years of age or older. A total of 113 participants, 42 men and 71 women, were able to complete this longitudinal study. These were assessed using 17 muscle tests. At time 2, results showed that the absence of alpha-actinin 3 protein in men with DM1 induced a lower level of overall muscle strength than men with 577RX genotype. Indeed, the male genotype 577XX had a more rapid decrease in strength over the years. In light of these results, knowing the genotype profile associated with the ACTN3 gene in men with DM1 is an important element to consider in order to optimize rehabilitation strategies.
Mery-Bories, Julie. « Utilisation des cellules souches pluripotentes humaines pour avancer dans la compréhension des atteintes neuromusculaires associées à la Dystrophie Myotonique de type 1 Building neuromuscular junctions invitro ». Thesis, université Paris-Saclay, 2021. https://www.biblio.univ-evry.fr/theses/2021/interne/2021UPASL012.pdf.
Texte intégralMyotonic Dystrophy type I (DM1) is a rare neuromuscular disease that is mainly characterized by myotonia, progressive muscle weakness and wasting. DM1 is an autosomal dominant disorder caused by an expanded CTG repeat in the 3' UTR of DMPK gene. This abnormal expansion leads to a toxic gain-of-function of the mutated mRNAs which aggregate within the nucleus in association with different RNA binding proteins such as the MBNL family proteins. Several studies suggest the involvement of motoneurons and the neuromuscular junction in the muscular defects observed in DM1 patients. However, the mechanisms by which this intercellular system might be affected in DM1 is still poorly understood. The aim of this project was to decipher the direct and indirect consequences of the DMPK mutation and the impact of MBNL sequestration in the pre-synaptic compartment and determine the pathological contribution of motorneurons in DM1 physiopathology. Thanks to the recent development by the team of a protocol allowing the efficient conversion of human pluripotent stem cells (hiPSCs), our results demonstrated that DM1 hiPSC-derived motoneurons exhibit a defective neuritic arborization that can be mimicked by the depletion of MBNL proteins. To further evaluate the functional consequences of these findings, we developed a humanized cellular model based on the coculture of hiPSC-derived motoneurons and micropatterned human primary skeletal muscle cells. Our results demonstrated that expression of DM1 mutation only in the pre-synaptic compartment led to functional defects at the post-synaptic level. Interestingly, similar results were obtained with the specific depletion of MBNL proteins in the pre-synaptic compartment.Thanks to a transcriptomic approach, we identified a panel of deregulated genes involved in synaptic plasticity which may affect function or stability of the neuromuscular junction. Altogether, these findings hold several new implications for DM pathogenesis
Beaulieu, Daniel. « Inhibition de la différenciation myogénique par un facteur soluble sécrété par des myoblastes dérivés de muscules squelettiques de sujets atteints de la dystrophie myotonique de type 1 ». Thesis, Université Laval, 2005. http://www.theses.ulaval.ca/2005/22662/22662.pdf.
Texte intégralMyotonic dystrophy (DM1), the most common form of inherited neuromuscular disease in adults, affects 1 in 8000 individuals worldwide. DM1 is an autosomal dominant muscular dystrophy with very variable symptom presentations. Adult onset DM1 is primarily characterized by myotonia, muscle wasting and weakness, but also affects a number of organs and tissues. One characteristic of the disease is the presence of a severe congenital form (CDM1), which differs from the adult form. CDM1 is characterized by a delay in the development of skeletal muscles. This form is associated with hypotonia, respiratory complications and mental retardation. DM1 is caused by the expansion of an unstable CTG trinucleotide repeat in the 3’untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. To date, the mechanisms by which the DM1 mutation affects skeletal muscles development or regeneration are unknown. A previous study demonstrated that serum produced by mothers of children with congenital myotonic dystrophy inhibits myogenic differentiation. In this study, we hypothesized that CDM1 myoblasts secrete a soluble factor that blocks myogenic differentiation. We provide evidence that this soluble factor is produced by DM1 and CDM1 myoblasts which may be involved in their deficiency to fuse. The inhibitory effect is proportional to the length of the CTG repeat expansion. In addition, the delay in muscle differentiation is associated with a specific reduction in myogenin gene expression. We believe that the DM1 mutation triggers the expression of a soluble factor, which is able to block myogenic differentiation. The identification of this soluble factor is presently under investigation.
Beaulieu, Daniel. « Inhibition de la différenciation myogénique par un facteur soluble sécrété par des myoblastes dérivés de muscules squelettiques de sujets atteints de la dystrophie myotonique de type 1 ». Master's thesis, Université Laval, 2006. http://hdl.handle.net/20.500.11794/18661.
Texte intégralMyotonic dystrophy (DM1), the most common form of inherited neuromuscular disease in adults, affects 1 in 8000 individuals worldwide. DM1 is an autosomal dominant muscular dystrophy with very variable symptom presentations. Adult onset DM1 is primarily characterized by myotonia, muscle wasting and weakness, but also affects a number of organs and tissues. One characteristic of the disease is the presence of a severe congenital form (CDM1), which differs from the adult form. CDM1 is characterized by a delay in the development of skeletal muscles. This form is associated with hypotonia, respiratory complications and mental retardation. DM1 is caused by the expansion of an unstable CTG trinucleotide repeat in the 3’untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. To date, the mechanisms by which the DM1 mutation affects skeletal muscles development or regeneration are unknown. A previous study demonstrated that serum produced by mothers of children with congenital myotonic dystrophy inhibits myogenic differentiation. In this study, we hypothesized that CDM1 myoblasts secrete a soluble factor that blocks myogenic differentiation. We provide evidence that this soluble factor is produced by DM1 and CDM1 myoblasts which may be involved in their deficiency to fuse. The inhibitory effect is proportional to the length of the CTG repeat expansion. In addition, the delay in muscle differentiation is associated with a specific reduction in myogenin gene expression. We believe that the DM1 mutation triggers the expression of a soluble factor, which is able to block myogenic differentiation. The identification of this soluble factor is presently under investigation.
Fortin, Anne-Marie. « Impact d'un programme d'exercices ciblé sur la force musculaire, la capacité cardiorespiratoire et l'amélioration des capacités fonctionnelles chez des adultes atteints de dystrophie myotonique de type 1 ». Master's thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/31593.
Texte intégralL’entraînement d’adultes atteints de dystrophie myotonique de type 1 a des spécificités encore méconnues. Le but de cette recherche est donc de vérifier l’impact d’un programme d’entraînement ciblé sur la force musculaire, l’endurance cardiorespiratoire ainsi que sur l’amélioration des capacités fonctionnelles chez des adultes atteints de DM1. Neuf participants (4 femmes et 5 hommes) âgés de 47,8 ± 4,6 ans ont complété un programme d’entraînement d’une durée de 8 semaines combinant un entraînement en force, un circuit d’endurance cardiorespiratoire ainsi que des exercices fonctionnels. En comparant les résultats du groupe avant et après les 8 semaines d’entraînements, on remarque une amélioration significative (p<0,05) pour 4 des 6 tests de force 1 RM et une tendance à l’amélioration de la capacité fonctionnelle. La durée du projet, l’absence d’un groupe témoin et le faible nombre de participants font en sorte qu’une interprétation prudente des résultats est requise. Malgré ces contraintes, les résultats préliminaires obtenus sont très prometteurs.
Training of adults suffering from myotonic dystrophy type 1 (DM 1) has specificities still unknown. The purpose of this research is therefore to verify the impact of a periodized training program targeted on muscle strength, cardiorespiratory endurance as well as improving functional capacities in adults with DM1. Nine participants (4 women and 5 men) aged 47.8 ± 4.6 years completed an 8-week training program combining strength training, cardiorespiratory endurance training and functional exercises. Comparing the results of the group before and after the 8 weeks of training, we noticed a significant improvement (p<0.05) for 4 of the 6 RM muscular strength tests and a tendency to improve the functional capacity. The duration of the project, the absence of a control group and the small number of participants mean that a careful interpretation of the results is required. Despite these constraints, it remains that the preliminary results obtained are very promising.
Philippe, Jean-Vincent. « Décryptage des mécanismes de régulation de l’épissage de l’exon 5 du pré-ARNm de la troponine T cardiaque : étude du rôle de l’épissage alternatif des pré-ARNm dans la réponse des cellules de vertébrés au stress oxydant ». Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0298/document.
Texte intégralMyotonic distrophy of type 1 (DM1) is a genetic disease characterized by skeletal muscle degeneration associated to myotonia. DM1 results from the instable expansion of CTG repeats within the 3’ untranslated region of the DMPK gene. The accumulation of mutated DMPK mRNAs within nuclear foci leads to the sequestration of the MBNL1 splicing factor and causes splicing misregulation of numerous pre-mRNAs. Among altered events the increase of the inclusion of exon 5 in the human cardiac troponin T (hcTNT) mRNA is of particular importance, since it contributes to the cardiac symptoms presented by the patients. Through collaborative work with N. Sergeant’s team from Lille, the team has studied the molecular bases of hcTNT exon 5 inclusion regulation and mapped 8 MBNL1 binding sites, including 6 new ones, within intronic regions surrounding exon 5. They also identified positive and negative splicing regulatory elements of which protein partners remain unidentified. The first objective of my PhD thesis was to test the functional importance of each individual MBNL1 binding site. The obtained results established that the 6 newly identified MBNL1 binding sites are involved in splicing regulation by MBNL1 and lead us to propose a new regulation model in which MBNL1 binds on triplets of MBNL1 sites present on each side of exon 5 and form a long distance structure via MBNL1-MBNL1 protein interaction. The formation of this looping-structure is expected to isolate exon 5 and limit its recognition by the spliceosome. In addition I searched for protein partners of the identified regulatory elements by affinity chromatography. By this way, I identified hnRNP H as a positive regulator of exon 5 inclusion. Its capacity to compete with MBNL1 to regulate splicing in cellulo by binding on exonic and intronic binding sites was further confirmed. The second part of my PhD work corresponds to the study of the global impact of oxidative stress, generated by exposition of HeLa cells to 500 µM of H2O2, on alternative splicing. This allows us to establish that the response of HeLa cells to oxidative stress involve two distincts phases: an early one (1h-8h) characterized by poor survival rate and high intracellular ROS content and a late phase (16-24h), associated with a decrease of the intracellular ROS level and the overexpression of the long non coding sat III RNAs. Based on this observation, we performed a transcriptome global analysis by using exon arrays from Affymetrix on RNA samples isolated 1, 2, 4 or 24 hours after the induction of the oxidative stress. We identified changes of the gene expression level or mRNA splicing pattern specific of each of the response phases. Data computing by bio-informatic tools identified the most affected cellular processes and functions during the cell response to oxidative stress. In order to better understand the mechanisms underlying alternative splicing modulation during oxidative stress, I started to study the impact of oxidative stress on the expression level and the cellular localization of spliceosome components and most common splicing regulation factors
Marteyn, Antoine. « Etude des mécanismes moléculaires et cellulaires impliqués dans le développement de la dystrophie myotonique de type 1 à l'aide de cellules souches embryonnaires humaines porteuses de la mutation causale ». Thesis, Evry-Val d'Essonne, 2010. http://www.theses.fr/2010EVRY0018/document.
Texte intégralHuman pluripotent stem cells present far reaching implication not only for their therapeutic potential but also for the understanding of the molecular and cellular mechanisms of monogenic diseases. This application became at first possible by using human embryonic stem cells lines (hES) carrying the causal mutation of the monogenic disease, obtained during pre-implantation genetic diagnosis, thereafter through the development of somatic cells reprogramming into pluripotent stem cells (iPS). In line with this concept, we provided evidence that hES lines carrying the causal mutation of myotonic dystrophy type 1 (DM1), as well as their neural and mesodermal progenitors, expressed characteristic molecular defects of the pathology. Through a comparative study of their transcriptome profile, we identified a list of biomarkers which can be considered as new molecular signature of DM1. Among these genes, we showed that abnormal expression of some genes of the SLITRK family was responsible for the defective neuritic outgrowth observed in motor neuron cells derived from mutated hES, but that these cells could nonetheless interact with their muscular target. In parallel, we identified a Krab domain transcription factor which expression is strongly altered in DM1 and which seems to be involved in muscular regeneration defects associated with DM1. In conclusion, the aim of this work was to extend the spectrum of hES cells use for therapeutic purposes by accurately defining their capacity to model a genetic disease, enabling the elaboration of biotherapies targeted to disease specific molecular mechanisms
Petitclerc, Émilie. « Association entre le profil de force musculaire et les capacités fonctionnelles aux membres inférieurs chez les personnes atteintes des phénotypes adulte classique et adulte tardif de dystrophie myotonique de type 1 ». Mémoire, Université de Sherbrooke, 2015. http://hdl.handle.net/11143/8031.
Texte intégralAbstract: Purpose: The purposes of this study were 1) to describe lower limbs muscle strength and mobility capacities, and 2) to explore the respective contribution of lower limb muscle weaknesses on mobility in the adult and late-onset phenotypes of myotonic dystrophy type 1 (DM1). Methods: This study is a secondary analysis of part of the results of a larger study, whose purpose was to identify social participation and quality-of-life determinants in 200 DM1 patients (158 adult and 42 late-onset). The strength of four lower limb muscle groups was assessed using manual muscle testing (MMT) and handheld dynamometry quantitative muscle testing (QMT). Mobility capacities were assessed using standardized tests (Berg balance scale, 10 Meter Walk Test and Timed Up & Go). Results: Although the late-onset phenotype showed less weaknesses and mobility limitations than the adult phenotype (p <0.001-0.020), and although MMT showed no weakness in the late-onset phenotype, quantitative strength losses of 12-20% were measured in this phenotype, with the exception of the knee flexors. These weaknesses led to mobility limitations in 22-48% of participants with the late-onset phenotype. In the adult phenotype, muscle strength impairment was slightly more important distally than proximally (2-2.5/10 and 5.8-8.2% for MMT and QMT, respectively) (p <0.001-0.002). According to those results, the adult and late-onset phenotypes show different profiles of lower limb impairment, and should not be pooled for data analysis. A general progression of quantitative muscle weakness and of mobility scores was observed according to the Muscular Impairment Rating Scale (MIRS) classification. Quantitative weaknesses, with the exception of the knee flexors, and mobility limitations were observed from the first MIRS grades. QMT is therefore definitely a more effective tool for measuring weakness in DM1. Finally, ankle dorsiflexors and knee extensors seem to be good indicators of lower limb function in DM1. Conclusion: This study allowed a better characterization of lower limb weaknesses and mobility limitations in the adult and late-onset phenotypes of DM1, and explored the contribution of lower limb weaknesses on mobility capacities in this population. These results will be useful for developing more specific rehabilitation programs and for optimizing the evaluation of these impairments in the context of the upcoming therapeutic trials. Keywords: Myotonic dystrophy type 1, phenotypes, muscle strength, mobility capacities, lower limbs, explanatory variables, physiotherapy.
Mosbach, Valentine. « Contraction de répétitions de trinucléotides par induction ciblée d'une cassure double brin ». Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066040.
Texte intégralTrinucleotides repeats are a specific class of microsatellites whose large expansions are responsible for many human neurological disorders. Myotonic dystrophy type 1 (DM1) is due to an expansion of CTG repeats in the 3’UTR of DMPK gene, which can reach thousands of repeats. Molecular mechanisms leading to these large expansions are poorly understood but in vitro studies have shown the capacity of these repeats to form secondary structures, which probably interfere with mechanisms involving DNA synthesis. We shown that a TALEN used to induce double-strand break (DSB) in DM1 CTG repeats integrated in the yeast Saccharomyces cerevisiae is specific and leads to highly efficient repeat contractions after repair. Mechanism involved in TALEN-induced DSB only depends of RAD50 and RAD52 genes, suggesting the formation of secondary structures at DSB ends that need to be removed for repair initiation, followed by an intramolecular recombinaison repair such as SSA between repeats leading to their contraction. We compared the efficiency and specificity of a CRISPR-Cas9 and the TALEN to contract CTG repeats in yeast. Surprisingly, CRISPR-Cas9 induction do not lead to repeat contraction but to chromosomal rearrangement, suggesting a lack of specificity and a different repair mechanism than with the TALEN. At last, we studied whether these nucleases could contract CTG repeats to a non-pathological length in mammalian cells. Finally, TALEN induction in DM1 transgenic mice cells, and in DM1 human fibroblasts show promising repeat contractions
Dincã, Diana Mihaela. « Mechanisms of brain dysfunction in myotonic dystrophy type 1 : impact of the CTG expansion on neuronal and astroglial physiology ». Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCB054/document.
Texte intégralMyotonic dystrophy type 1 (DM1) is a severe disorder that affects many tissues, including the central nervous system (CNS). The degree of brain impairment ranges from executive dysfunction, attention deficits, low processing speed, behavioural changes and hypersomnia in the adult form, to pronounced intellectual disability in the congenital cases. The neurological manifestations have a tremendous impact on the academic, professional, social and emotional aspects of daily life. Today there is no cure for this devastating condition. DM1 is caused by the abnormal expansion of a CTG trinucleotide repeat in the 3’UTR of the DMPK gene. Expanded DMPK transcripts accumulate in RNA aggregates (or foci) in the nucleus of DM1 cells, disrupting the activity of important RNA-binding proteins, like the MBNL and CELF families, and leading to abnormalities in alternative splicing, gene expression, RNA polyadenylation, localisation and translation. In spite of recent progress, fundamental gaps in our understanding of the molecular and cellular mechanisms behind the neurological manifestations still exist: we do not know the contribution of each cell type of the CNS to brain dysfunction, or the molecular pathways specifically deregulated in response to the CTG expansion. The aim of my PhD project has been to gain insight into these two important questions using a relevant transgenic mouse model of DM1 and cell cultures derived thereof. In my studies I used the DMSXL mice, previously generated in my host laboratory. The DMSXL mice express expanded DMPK mRNA with more than 1,000 CTG repeats. They recreate relevant DM1 features, such as RNA foci and missplicing in multiple tissues. The functional impact of expanded DMPK transcripts in the CNS of DMSXL mice translates into behavioural and cognitive abnormalities and defective synaptic plasticity. To identify the molecular mechanisms behind these abnormalities, a global proteomics analysis revealed changes in both neuron-specific and glial-specific proteins in DMSXL brain. We also investigated RNA foci in DMSXL and human DM1 brains and found non-homogenous distribution between cell types, with a higher foci content in astrocytes relative to neurons. Together these results suggest that both neuronal and glial defects contribute to DM1 neuropathogenesis. The global proteomics analysis of DMSXL brains also identified abnormalities in neuronal synaptic proteins that we have validated in human brain samples. SYN1 is hyperphosphorilated in a CELF-dependent manner while RAB3A is upregulated in association with MBNL1 depletion. CELF and MBNL proteins regulate the alternative splicing of a subset of transcripts throughout development, and their deregulation in DM1 leads to abnormal expression of fetal splicing isoforms in adult DM1 brains. In this context, I have studied if RAB3A and SYN1 deregulations observed in adult brains are associated with splicing abnormalities or if they recreated embryonic expression and phosphorylation events. My results indicate that the synaptic proteins abnormalities observed in adult DMSXL brains are not caused by defective alternative splicing and do not recreate embryonic events. Thus, DM1 neuropathogenesis goes beyond missplicing and other molecular pathways must be explored in DM1 brains. To better understand the cellular sub-populations susceptible of accumulating toxic RNA foci we have studied foci distribution in different brain regions. We identified pronounced accumulation of toxic RNAs in Bergman astrocytes of DMSXL mice cerebellum and DM1 patients, associated with neuronal hyperactivity of Purkinje cells. A quantitative proteomics analysis revealed a significant downregulation of GLT1 – a glial glutamate transporter expressed by the Bergmann cell in the cerebellum. I have confirmed the GLT1 downregulation in other brain regions of mouse and human brain. (...)
Mosbach, Valentine. « Contraction de répétitions de trinucléotides par induction ciblée d'une cassure double brin ». Electronic Thesis or Diss., Paris 6, 2017. http://www.theses.fr/2017PA066040.
Texte intégralTrinucleotides repeats are a specific class of microsatellites whose large expansions are responsible for many human neurological disorders. Myotonic dystrophy type 1 (DM1) is due to an expansion of CTG repeats in the 3’UTR of DMPK gene, which can reach thousands of repeats. Molecular mechanisms leading to these large expansions are poorly understood but in vitro studies have shown the capacity of these repeats to form secondary structures, which probably interfere with mechanisms involving DNA synthesis. We shown that a TALEN used to induce double-strand break (DSB) in DM1 CTG repeats integrated in the yeast Saccharomyces cerevisiae is specific and leads to highly efficient repeat contractions after repair. Mechanism involved in TALEN-induced DSB only depends of RAD50 and RAD52 genes, suggesting the formation of secondary structures at DSB ends that need to be removed for repair initiation, followed by an intramolecular recombinaison repair such as SSA between repeats leading to their contraction. We compared the efficiency and specificity of a CRISPR-Cas9 and the TALEN to contract CTG repeats in yeast. Surprisingly, CRISPR-Cas9 induction do not lead to repeat contraction but to chromosomal rearrangement, suggesting a lack of specificity and a different repair mechanism than with the TALEN. At last, we studied whether these nucleases could contract CTG repeats to a non-pathological length in mammalian cells. Finally, TALEN induction in DM1 transgenic mice cells, and in DM1 human fibroblasts show promising repeat contractions
Antonio, Marie de. « Statistiques et modèles de survie pour améliorer la connaissance d’une maladie rare, la dystrophie myotonique The DM-Scope registry : a rare disease innovative framework bridging the gap between research and medical care Unraveling the myotonic dystrophy type 1 clinical spectrum : a systematic registry-based study - Implications for disease classification ». Thesis, Sorbonne université, 2020. http://www.theses.fr/2020SORUS096.
Texte intégralMyotonic dystrophy (DM) is considered one of the most complex neuromuscular diseases. Although research work over the past 30 years has permitted a better understanding of its underlying molecular mechanisms, the unusual nature of its genetic anomalies, its multisystemic expression and its broad clinical spectrum do not allow, at the moment, optimal patient management. The purpose of my work was to deepen our knowledge of this rare disease and to clarify its natural history. The first part of my manuscript is dedicated to the presentation of the DM-Scope Registry, on which all my thesis work is based. After the description of the concept, the functioning and the data collection platform, the manuscript features the characteristics of the DM1 cohort, from which our analyses were conducted : the clinical spectrum covered, multisystemic impairment, genotype/phenotype correlations, interrelations between symptoms and comparison to myotonic dystrophy type II (DM2). In the second part, we focus on the major progress achieved through the existence of DM-Scope and the analyses conducted during my thesis: (i) detailing the natural history of the disease, in particular proposing a new classification; (ii) highlighting the phenotype’s determining factors such as gender, mutation size, interrelations between symptoms. This work has led to recommendations for care, in particular for the transition from child to adult, but also the validation of important inclusion criteria for clinical trials such as gender. DM-Scope provides access to available biological samples for basic research studies and validates new therapeutic approaches. DM-Scope is now a worldwide leader and an essential tool in translational research in DM. The DM-Scope concept can be transferred to any other population and can be used for care management in other rare diseases. Finally, we present the development of a survival model built from the DM-Scope cohort. This model has three specificities: (i) it is applicable to high dimensional data, in such cases as DM-Scope, where there is a large number of measurements; (ii) it takes into account competitive risks, when patients are simultaneously exposed to several events. In our registry, the study of respiratory-related deaths is biased if competing events such as heart disease deaths are not taken into account ; (iii) it models the heterogeneity between patient groups probably due to divergent care, called \og centres effects \fg{}. DM-Scope data analysis requires such specificity of frailty models due to its multicentric coverage (55 centres). This model can be transferred and applied to other data, considering the following : more and more large-scaled registries are being used ; a majority of survival analyses includes censorship caused by the occurrence of the event of interest ; multicentre studies have become increasingly common
Poggi, Lucie. « Gene editing approaches of microsatellite disorders : shortening expanded repeats ». Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS412.
Texte intégralMicrosatellite disorders are a specific class of human diseases that are due to the expansion of repeated sequences above pathological thresholds. These disorders have varying symptoms and pathogenic mechanisms, caused by the expanded repeat. No cure exists for any of these dramatic conditions. This thesis is investigating new gene editing approaches to remove pathological expansions in the human genome. In a first part, a yeast-based screen was constructed to identify potent CRISPR-associated nucleases that can cut these microsatellites. The second part focuses on myotonic dystrophy type 1 (DM1), which is due to and expanded CTG repeat tract located at the 3’UTR of the DMKP gene. A nuclease, TALENCTG was designed to induce a double strand break into the CTG repeats. It was previously shown to be active in yeast cells, inducing contractions of CTG repeats from a DM1 patient integrated into the yeast genome. The TALEN was tested in DM1 patient cells. The nuclease was found to trigger some contraction events in patient cells. In vivo experiments were carried out in a mouse model of myotonic dystrophy type 1 containing a human genomic fragment from a patient and 1000 CTG. Intramuscular injections of recombinant AAV encoding the TALENCTG revealed that the nuclease is toxic and/or immunogenic in muscle cells in the tested experimental conditions. Finally, the reporter assay integrated in yeast to screen nucleases was transposed in HEK293FS cell line. The integrated cassette contains a CTG expansion from a myotonic dystrophy type 1 patient flanked by two halves of GFP genes. This system would enable to find nucleases active in human cells
Nguyen, Xuan-Tam. « Approches globales afin d’élucider les mécanismes pathogéniques de la dystrophie myotonique de type 1 ». Thèse, 2016. http://hdl.handle.net/1866/18667.
Texte intégralMyotonic dystrophy of type 1 (DM1) is a degenerative disorder implicating symptoms of muscular atrophy and myotony. In a molecular level, it is caused by the aberrant expansion of CUG repeats in the 3’-UTR region of the DMPK mRNA (Dystrophia Myotonica protein kinase). Excessive CUG repeats then form toxic aggregates (foci) enriched within the nucleus of DM1 patient cells. These RNA foci cause the abnormal sequestration of RNA Binding Proteins (RBP), in particular members of the Muscleblind-like protein 1 (MBNL), that normally bind the CUG motif of other target RNAs, and will hence alter their normal functions. In addition to their role in alternative splicing, MBNL1 has recently been implicated in the intracellular localisation of its RNA targets. It remains elusive whether the pathogenesis of DM1 could result from the deregulating effect of CUG repeats on the localisation of specific RNAs and RBP proteins. In this thesis, a fluorescent imaging-based screening of 322 RBPs in DM1 patient’s myoblasts has been conducted and this had led to the identification of new factors that may colocalize with pathogenic CUG expansions. Moreover, these DM1 myoblasts have been fractionated and subsequent RNA-sequencing has permitted the identification of transcripts that are delocalised between subcellular compartments. From the two large datasets generated from the RBP imaging-based screening and fractionation/RNA-sequencing, new avenues of research can be initiated to further understand not only DM1, but perhaps also other disorders that implicate microsatellite expansions.
Bouliane, Danielle. « Les stratégies d'adaptation utilisées par les femmes atteintes de la dystrophie myotonique de type 1 ». Thèse, 2015. http://constellation.uqac.ca/3731/1/Bouliane_uqac_0862N_10174.pdf.
Texte intégralDesjardins, Patrick. « Évaluation de la capacité fonctionnelle chez des patients atteints de la dystrophie myotonique de type 1 ». Thèse, 2012. http://constellation.uqac.ca/2717/1/030430878.pdf.
Texte intégralBurgoci, Vasile. « Étude du rôle des ARN non codants du cluster Dlk1-Dio3 dans la dystrophie myotonique de type 1 ». Thèse, 2019. http://hdl.handle.net/1866/22793.
Texte intégralBouchard, Claudia. « L'expérience des personnes aidantes auprès de leur partenaire atteint-e de dystrophie myotonique de type 1 : une analyse féministe de leurs pratiques d'aide et de soutien ». Thèse, 2010. http://constellation.uqac.ca/245/1/030165506.pdf.
Texte intégral« Inhibition de la différenciation myogénique par un facteur soluble sécrété par des myoblastes dérivés de muscules squelettiques de sujets atteints de la dystrophie myotonique de type 1 ». Thesis, Université Laval, 2005. http://www.theses.ulaval.ca/2005/22662/22662.pdf.
Texte intégral