Articles de revues sur le sujet « Dynamical transition »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Dynamical transition.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Dynamical transition ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Beaulieu, Samuel, Shuo Dong, Nicolas Tancogne-Dejean, Maciej Dendzik, Tommaso Pincelli, Julian Maklar, R. Patrick Xian et al. « Ultrafast dynamical Lifshitz transition ». Science Advances 7, no 17 (avril 2021) : eabd9275. http://dx.doi.org/10.1126/sciadv.abd9275.

Texte intégral
Résumé :
Fermi surface is at the heart of our understanding of metals and strongly correlated many-body systems. An abrupt change in the Fermi surface topology, also called Lifshitz transition, can lead to the emergence of fascinating phenomena like colossal magnetoresistance and superconductivity. While Lifshitz transitions have been demonstrated for a broad range of materials by equilibrium tuning of macroscopic parameters such as strain, doping, pressure, and temperature, a nonequilibrium dynamical route toward ultrafast modification of the Fermi surface topology has not been experimentally demonstrated. Combining time-resolved multidimensional photoemission spectroscopy with state-of-the-art TDDFT+U simulations, we introduce a scheme for driving an ultrafast Lifshitz transition in the correlated type-II Weyl semimetal Td-MoTe2. We demonstrate that this nonequilibrium topological electronic transition finds its microscopic origin in the dynamical modification of the effective electronic correlations. These results shed light on a previously unexplored ultrafast scheme for controlling the Fermi surface topology in correlated quantum materials.
Styles APA, Harvard, Vancouver, ISO, etc.
2

KIM, SANG PYO. « DYNAMICAL THEORY OF PHASE TRANSITIONS AND COSMOLOGICAL EW AND QCD PHASE TRANSITIONS ». Modern Physics Letters A 23, no 17n20 (28 juin 2008) : 1325–35. http://dx.doi.org/10.1142/s0217732308027692.

Texte intégral
Résumé :
We critically review the cosmological EW and QCD phase transitions. The EW and QCD phase transitions would have proceeded dynamically since the expansion of the universe determines the quench rate and critical behaviors at the onset of phase transition slow down the phase transition. We introduce a real-time quench model for dynamical phase transitions and describe the evolution using a canonical real-time formalism. We find the correlation function, the correlation length and time and then discuss the cosmological implications of dynamical phase transitions on EW and QCD phase transitions in the early universe.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Appert, C., et S. Zaleski. « Dynamical liquid-gas phase transition ». Journal de Physique II 3, no 3 (mars 1993) : 309–37. http://dx.doi.org/10.1051/jp2:1993135.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Meibohm, Jan, et Massimiliano Esposito. « Landau theory for finite-time dynamical phase transitions ». New Journal of Physics 25, no 2 (1 février 2023) : 023034. http://dx.doi.org/10.1088/1367-2630/acbc41.

Texte intégral
Résumé :
Abstract We study the time evolution of thermodynamic observables that characterise the dissipative nature of thermal relaxation after an instantaneous temperature quench. Combining tools from stochastic thermodynamics and large-deviation theory, we develop a powerful theory for computing the large-deviation statistics of such observables. Our method naturally leads to a description in terms of a dynamical Landau theory, a versatile tool for the analysis of finite-time dynamical phase transitions. The topology of the associated Landau potential allows for an unambiguous identification of the dynamical order parameter and of the phase diagram. As an immediate application of our method, we show that the probability distribution of the heat exchanged between a mean-field spin model and the environment exhibits a singular point, a kink, caused by a finite-time dynamical phase transition. Using our Landau theory, we conduct a detailed study of the phase transition. Although the manifestation of the new transition is similar to that of a previously found finite-time transition in the magnetisation, the properties and the dynamical origins of the two turn out to be very different.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Žunkovič, Bojan, Alessandro Silva et Michele Fabrizio. « Dynamical phase transitions and Loschmidt echo in the infinite-range XY model ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 374, no 2069 (13 juin 2016) : 20150160. http://dx.doi.org/10.1098/rsta.2015.0160.

Texte intégral
Résumé :
We compare two different notions of dynamical phase transitions in closed quantum systems. The first is identified through the time-averaged value of the equilibrium-order parameter, whereas the second corresponds to non-analyticities in the time behaviour of the Loschmidt echo. By exactly solving the dynamics of the infinite-range XY model, we show that in this model non-analyticities of the Loschmidt echo are not connected to standard dynamical phase transitions and are not robust against quantum fluctuations. Furthermore, we show that the existence of either of the two dynamical transitions is not necessarily connected to the equilibrium quantum phase transition.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Prasad, R., et Ritam Mallick. « Dynamical Phase Transition in Neutron Stars ». Astrophysical Journal 859, no 1 (23 mai 2018) : 57. http://dx.doi.org/10.3847/1538-4357/aabf3b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Vollmayr-Lee, K., W. Kob, K. Binder et A. Zippelius. « Dynamical heterogeneities below the glass transition ». Journal of Chemical Physics 116, no 12 (2002) : 5158. http://dx.doi.org/10.1063/1.1453962.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Henriksen, Niels E., et Flemming Y. Hansen. « Transition-state theory and dynamical corrections ». Physical Chemistry Chemical Physics 4, no 24 (5 novembre 2002) : 5995–6000. http://dx.doi.org/10.1039/b207021a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Seibert, David. « Dynamical hadronization transition and hydrodynamical stability ». Physical Review D 32, no 10 (15 novembre 1985) : 2812–21. http://dx.doi.org/10.1103/physrevd.32.2812.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Nagatani, Takashi. « Dynamical transition in random supply chain ». Physica A : Statistical Mechanics and its Applications 335, no 3-4 (avril 2004) : 661–70. http://dx.doi.org/10.1016/j.physa.2003.12.027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Kim, C. U., M. W. Tate et S. M. Gruner. « Protein dynamical transition at 110 K ». Proceedings of the National Academy of Sciences 108, no 52 (13 décembre 2011) : 20897–901. http://dx.doi.org/10.1073/pnas.1110840108.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Cladis, P. E., Wim van Saarloos, David A. Huse, J. S. Patel, J. W. Goodby et P. L. Finn. « Dynamical test of phase transition order ». Physical Review Letters 62, no 15 (10 avril 1989) : 1764–67. http://dx.doi.org/10.1103/physrevlett.62.1764.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Takayasu, Hideki, et Mitsuhiro Matsuzaki. « Dynamical phase transition in threshold elements ». Physics Letters A 131, no 4-5 (août 1988) : 244–47. http://dx.doi.org/10.1016/0375-9601(88)90020-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Davies, Paul CW, Lloyd Demetrius et Jack A. Tuszynski. « Cancer as a dynamical phase transition ». Theoretical Biology and Medical Modelling 8, no 1 (2011) : 30. http://dx.doi.org/10.1186/1742-4682-8-30.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Broderix, Kurt, Paul M. Goldbart et Annette Zippelius. « Dynamical Signatures of the Vulcanization Transition ». Physical Review Letters 79, no 19 (10 novembre 1997) : 3688–91. http://dx.doi.org/10.1103/physrevlett.79.3688.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Fukao, Koji, et Yoshihisa Miyamoto. « Dynamical Transition and Crystallization of Polymers ». Physical Review Letters 79, no 23 (8 décembre 1997) : 4613–16. http://dx.doi.org/10.1103/physrevlett.79.4613.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Sharma, Akansha, Deepu K. George, Kimberly Crossen, Jeffrey McKinney, Cheryl Kerfeld et Andrea Markelz. « Is the Protein Dynamical Transition useful ? » Biophysical Journal 118, no 3 (février 2020) : 521a. http://dx.doi.org/10.1016/j.bpj.2019.11.2866.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Un Kim, Chae, Mark W. Tate et Sol M. Gruner. « Protein Dynamical Transition at Cryogenic Temperatures ». Biophysical Journal 104, no 2 (janvier 2013) : 223a—224a. http://dx.doi.org/10.1016/j.bpj.2012.11.1261.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Zanatta, Marco, Letizia Tavagnacco, Elena Buratti, Monica Bertoldo, Francesca Natali, Ester Chiessi, Andrea Orecchini et Emanuela Zaccarelli. « Evidence of a low-temperature dynamical transition in concentrated microgels ». Science Advances 4, no 9 (septembre 2018) : eaat5895. http://dx.doi.org/10.1126/sciadv.aat5895.

Texte intégral
Résumé :
A low-temperature dynamical transition has been reported in several proteins. We provide the first observation of a “protein-like” dynamical transition in nonbiological aqueous environments. To this aim, we exploit the popular colloidal system of poly-N-isopropylacrylamide (PNIPAM) microgels, extending their investigation to unprecedentedly high concentrations. Owing to the heterogeneous architecture of the microgels, water crystallization is avoided in concentrated samples, allowing us to monitor atomic dynamics at low temperatures. By elastic incoherent neutron scattering and molecular dynamics simulations, we find that a dynamical transition occurs at a temperatureTd~ 250 K, independently from PNIPAM mass fraction. However, the transition is smeared out on approaching dry conditions. The quantitative agreement between experiments and simulations provides evidence that the transition occurs simultaneously for PNIPAM and water dynamics. The similarity of these results with hydrated protein powders suggests that the dynamical transition is a generic feature in complex macromolecular systems, independently from their biological function.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Helfmann, Luzie, Enric Ribera Borrell, Christof Schütte et Péter Koltai. « Extending Transition Path Theory : Periodically Driven and Finite-Time Dynamics ». Journal of Nonlinear Science 30, no 6 (10 septembre 2020) : 3321–66. http://dx.doi.org/10.1007/s00332-020-09652-7.

Texte intégral
Résumé :
Abstract Given two distinct subsets A, B in the state space of some dynamical system, transition path theory (TPT) was successfully used to describe the statistical behavior of transitions from A to B in the ergodic limit of the stationary system. We derive generalizations of TPT that remove the requirements of stationarity and of the ergodic limit and provide this powerful tool for the analysis of other dynamical scenarios: periodically forced dynamics and time-dependent finite-time systems. This is partially motivated by studying applications such as climate, ocean, and social dynamics. On simple model examples, we show how the new tools are able to deliver quantitative understanding about the statistical behavior of such systems. We also point out explicit cases where the more general dynamical regimes show different behaviors to their stationary counterparts, linking these tools directly to bifurcations in non-deterministic systems.
Styles APA, Harvard, Vancouver, ISO, etc.
21

SCHUSTER, H. G., M. LE VAN QUYEN, M. CHAVEZ, J. KÖHLER, J. MAYER et J. C. CLAUSSEN. « DYNAMICAL BEHAVIOR AND CONTROL OF COUPLED THRESHOLD ELEMENTS WITH SELF-INHIBITION ». International Journal of Bifurcation and Chaos 19, no 09 (septembre 2009) : 3119–28. http://dx.doi.org/10.1142/s0218127409024694.

Texte intégral
Résumé :
Coupled threshold elements with self-inhibition display a phase transition to an oscillating state where the elements fire in synchrony with a period T that is of the order of the dead-time caused by self-inhibition. This transition is noise-activated and therefore displays strong collectively enhanced stochastic resonance. For an exponentially decaying distribution of dead-times the transition to the oscillating state occurs, coming from high noise temperatures, via a Hopf bifurcation and coming from low temperatures, via a saddle node bifurcation. The transitions can be triggered externally by noise and oscillating signals. This opens up new possibilities for controlling slow wave sleep.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Calvo, H. L., et H. M. Pastawski. « Dynamical phase transition in vibrational surface modes ». Brazilian Journal of Physics 36, no 3b (septembre 2006) : 963–66. http://dx.doi.org/10.1590/s0103-97332006000600044.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Mishustin, I. N., J. Pedersen et O. Scavenius. « Fluid dynamical description of the chiral transition ». Acta Physica Hungarica A) Heavy Ion Physics 5, no 4 (août 1997) : 377–85. http://dx.doi.org/10.1007/bf03156113.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Yu, Lei, Edward Ott et Qi Chen. « Transition to chaos for random dynamical systems ». Physical Review Letters 65, no 24 (10 décembre 1990) : 2935–38. http://dx.doi.org/10.1103/physrevlett.65.2935.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Chatfield, David C., Ronald S. Friedman, Donald G. Truhlar et David W. Schwenke. « Quantum-dynamical characterization of reactive transition states ». Faraday Discussions of the Chemical Society 91 (1991) : 289. http://dx.doi.org/10.1039/dc9919100289.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Brillaux, Éric, et Francesco Turci. « Dynamical solid–liquid transition through oscillatory shear ». Soft Matter 15, no 21 (2019) : 4371–79. http://dx.doi.org/10.1039/c8sm01950a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Teitel, S., D. Kutasov et E. Domany. « Diffusion and dynamical transition in hierarchical systems ». Physical Review B 36, no 1 (1 juillet 1987) : 684–98. http://dx.doi.org/10.1103/physrevb.36.684.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Nieuwenhuizen, Th M. « Solvable Glassy System : Static versus Dynamical Transition ». Physical Review Letters 78, no 18 (5 mai 1997) : 3491–94. http://dx.doi.org/10.1103/physrevlett.78.3491.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Sharia, Onise, et Graeme Henkelman. « Analytic dynamical corrections to transition state theory ». New Journal of Physics 18, no 1 (8 janvier 2016) : 013023. http://dx.doi.org/10.1088/1367-2630/18/1/013023.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Götze, Wolfgang. « Dynamical Phenomena Near the Liquid-Glass Transition* ». Zeitschrift für Physikalische Chemie 156, Part_1 (janvier 1988) : 3–22. http://dx.doi.org/10.1524/zpch.1988.156.part_1.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Li, Xiang, Guanrong Chen et King-Tim Ko. « Transition to chaos in complex dynamical networks ». Physica A : Statistical Mechanics and its Applications 338, no 3-4 (juillet 2004) : 367–78. http://dx.doi.org/10.1016/j.physa.2004.02.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Orecchini, A., et A. Paciaroni. « High-temperature dynamical transition in β-lactoglobulin ». Physica B : Condensed Matter 350, no 1-3 (juillet 2004) : E595—E598. http://dx.doi.org/10.1016/j.physb.2004.03.159.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Vatansever, Zeynep Demir, et Ümit Akıncı. « Dynamical phase transition characteristics of FeC2 monolayer ». Materials Research Express 5, no 2 (1 février 2018) : 026101. http://dx.doi.org/10.1088/2053-1591/aaa741.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Ferry, Myriam, Violaine Cahouët et Luc Martin. « Postural coordination modes and transition : dynamical explanations ». Experimental Brain Research 180, no 1 (26 janvier 2007) : 49–57. http://dx.doi.org/10.1007/s00221-006-0843-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Persson, B. N. J. « Layering transition : dynamical instabilities during squeeze-out ». Chemical Physics Letters 324, no 4 (juillet 2000) : 231–39. http://dx.doi.org/10.1016/s0009-2614(00)00606-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Tsobgni Nyawo, Pelerine, et Hugo Touchette. « A minimal model of dynamical phase transition ». EPL (Europhysics Letters) 116, no 5 (1 décembre 2016) : 50009. http://dx.doi.org/10.1209/0295-5075/116/50009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

LUQI, LIN ZHANG et MIKE SABOE. « THE DYNAMICAL MODELS FOR SOFTWARE TECHNOLOGY TRANSITION ». International Journal of Software Engineering and Knowledge Engineering 14, no 02 (avril 2004) : 179–205. http://dx.doi.org/10.1142/s0218194004001592.

Texte intégral
Résumé :
Currently, systematic techniques for assessing macro mechanisms for transferring software engineering technologies are non-existent. This leads to inefficient allocation of research resources and increased risk to software technology intensive programs. Consequently, software technology transition today is an ill-defined and non-repeatable, inefficient process for bringing advanced software engineering technologies to market. This paper develops two dynamical models of a software technology transition from both macroscopic and microscopic views. The models are developed utilizing information theory, communication theory, chaos control theory, and learning curve principles. The combination of those scientifically sound mechanisms provides a basis for assessing, and/or prescribing a portfolio of technologies and the implementing macro infrastructure. This provides the theoretical framework for a practical method for a program manager to establish a high capacity transition channel, which accelerates technology maturation and insertion. Experiments based on very large number of data have been performed. Data samples assess the following technologies: software engineering, software technology transfer, Ada, Java, abstract data types, rate monotonic analysis, cost models, software standards, and software work breakdown structures.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Nieuwenhuizen, Th M. « Thermodynamic description of a dynamical glassy transition ». Journal of Physics A : Mathematical and General 31, no 10 (13 mars 1998) : L201—L207. http://dx.doi.org/10.1088/0305-4470/31/10/004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Cheney, Brian G., et Hans C. Andersen. « Dynamical corrections to quantum transition state theory ». Journal of Chemical Physics 118, no 21 (juin 2003) : 9542–51. http://dx.doi.org/10.1063/1.1570404.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Derrida, B. « Dynamical phase transition in nonsymmetric spin glasses ». Journal of Physics A : Mathematical and General 20, no 11 (1 août 1987) : L721—L725. http://dx.doi.org/10.1088/0305-4470/20/11/009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Markelz, Andrea G., Joseph R. Knab, Jing Yin Chen et Yunfen He. « Protein dynamical transition in terahertz dielectric response ». Chemical Physics Letters 442, no 4-6 (juillet 2007) : 413–17. http://dx.doi.org/10.1016/j.cplett.2007.05.080.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Şengül, Taylan. « Dynamical transition theory of hexagonal pattern formations ». Communications in Nonlinear Science and Numerical Simulation 91 (décembre 2020) : 105455. http://dx.doi.org/10.1016/j.cnsns.2020.105455.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Li, C. B., A. Shojiguchi, M. Toda et T. Komatsuzaki. « Dynamical Hierarchy in Transition States of Reactions ». Few-Body Systems 38, no 2-4 (28 avril 2006) : 173–79. http://dx.doi.org/10.1007/s00601-005-0130-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Li, C. B., A. Shojiguchi, M. Toda et T. Komatsuzaki. « Dynamical Hierarchy in Transition States of Reactions ». Few-Body Systems 40, no 1-2 (22 novembre 2006) : 129. http://dx.doi.org/10.1007/s00601-006-0168-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Wang, Tao, Tiangang Yang, Chunlei Xiao, Zhigang Sun, Donghui Zhang, Xueming Yang, Marissa L. Weichman et Daniel M. Neumark. « Dynamical resonances in chemical reactions ». Chemical Society Reviews 47, no 17 (2018) : 6744–63. http://dx.doi.org/10.1039/c8cs00041g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Gabel, Frank, Dominique Bicout, Ursula Lehnert, Moeava Tehei, Martin Weik et Giuseppe Zaccai. « Protein dynamics studied by neutron scattering ». Quarterly Reviews of Biophysics 35, no 4 (novembre 2002) : 327–67. http://dx.doi.org/10.1017/s0033583502003840.

Texte intégral
Résumé :
1. Introduction 3282. Basic concepts of neutron scattering 3292.1 Introduction 3292.2 Neutron-scattering functions 3312.3 Coherent and incoherent neutron scattering. The particular role of hydrogen in incoherent scattering 3322.4 Total elastic scattering, EISF and mean square displacement (MSD) 3332.5 Quasielastic scattering and relaxation function 3342.6 Inelastic scattering and density of states 3353. Experimental aspects and instruments 3353.1 Energy and space resolution 3353.2 General sample aspects 3353.3 Potential effects of D2O on dynamics 3363.4 Experimental 2H (deuterium) labelling 3364. Physics of protein dynamics 3364.1 Models 3364.2 The dynamical transition 3384.3 Effective force constants 3395. Dynamics of hydrated protein powders 3395.1 First experiments on myoglobin 3405.2 Dynamical transitions in other proteins 3405.3 The role of hydration water 3415.4 Influence of the solvent 3445.5 Diffusional motions within proteins by QENS 3465.6 Inelastic neutron scattering and vibrational spectra 3475.7 Conclusions 3516. Membranes 3526.1 Lipid bilayers 3536.2 BR and the purple membrane (PM) 3536.2.1 The dynamical transition in the PM 3536.2.2 QENS from oriented PM 3546.2.3 Hydration dependence of PM motions 3556.2.4 Local dynamics in PM studied by isotope labelling 3566.2.5 Dynamics of different BR conformations 3577. Protein solutions 3587.1 From powders to solutions 3587.2 Water dynamics and solvent dependence of the dynamical transition in proteins 3598. Comparing neutron scattering with other techniques 3599. Biological relevance 3609.1 Dynamics–activity relations 3609.2 Dynamics–stability relations (adaptation to extreme environments) 3609.3 Protein folding 36110. Acknowledgements 36411. References 364This review of protein dynamics studied by neutron scattering focuses on data collected in the last 10 years. After an introduction to thermal neutron scattering and instrumental aspects, theoretical models that have been used to interpret the data are presented and discussed. Experiments are described according to sample type, protein powders, solutions and membranes. Neutron-scattering results are compared to those obtained from other techniques. The biological relevance of the experimental results is discussed. The major conclusion of the last decade concerns the strong dependence of internal dynamics on the macromolecular environment.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Kojima, Norimichi, Shin-ichi Ohkoshi et Seiji Miyashita. « Editorial (Thematic Issue : Phase Transition and Dynamical Properties of Spin Transition Materials) ». Current Inorganic Chemistry 6, no 1 (16 février 2016) : 3. http://dx.doi.org/10.2174/187794410601160216150155.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Kealley, C. S., A. V. Sokolova, G. J. Kearley, E. Kemner, M. Russina, A. Faraone, W. A. Hamilton et E. P. Gilbert. « Dynamical transition in a large globular protein : Macroscopic properties and glass transition ». Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1804, no 1 (janvier 2010) : 34–40. http://dx.doi.org/10.1016/j.bbapap.2009.06.027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Kalyakin, L. A. « Asymptotics of Dynamical Saddle-node Bifurcations ». Nelineinaya Dinamika 18, no 1 (2022) : 119–35. http://dx.doi.org/10.20537/nd220108.

Texte intégral
Résumé :
Dynamical bifurcations occur in one-parameter families of dynamical systems, when the parameter is slow time. In this paper we consider a system of two nonlinear differential equations with slowly varying right-hand sides. We study the dynamical saddle-node bifurcations that occur at a critical instant. In a neighborhood of this instant the solution has a narrow transition layer, which looks like a smooth jump from one equilibrium to another. The main result is asymptotics for a solution with respect to the small parameter in the transition layer. The asymptotics is constructed by the matching method with three time scales. The matching of the asymptotics allows us to find the delay of the loss of stability near the critical instant.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Ganev, H. G. « U(6) dynamical and quasi-dynamical symmetry in strongly deformed heavy nuclei ». EPJ Web of Conferences 194 (2018) : 05002. http://dx.doi.org/10.1051/epjconf/201819405002.

Texte intégral
Résumé :
The low-lying collective states of the ground, β and γ bands in154Sm and238U are investigated within the framework of the microscopic proton-neutron symplectic model (PNSM). For this purpose, the model Hamiltonian is diagonalized in a U(6)-coupled basis, restricted to the symplectic state space spanned by the fully symmetric U(6) vectors. A good description of the energy levels of the three bands under consideration, as well as the intraband B(E2) transition strengths between the states of the ground band is obtained for the two nuclei without the use of an effective charge. The calculations show that when the collective quadrupole dynamics is covered already by the symplectic bandhead structure, as in the case of154Sm, the results show the presence of a very good U(6) dynamical symmetry. In the case of238U, when we have an observed enhancement of the intraband B(E2) transition strengths, then the results show small admixtures from the higher major shells and a highly coherent mixing of different irreps which is manifested by the presence of a good U(6) quasi-dynamical symmetry in the microscopic structure of the collective states under consideration.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie