Littérature scientifique sur le sujet « Dynamical transition »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Dynamical transition ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Dynamical transition"

1

Beaulieu, Samuel, Shuo Dong, Nicolas Tancogne-Dejean, Maciej Dendzik, Tommaso Pincelli, Julian Maklar, R. Patrick Xian et al. « Ultrafast dynamical Lifshitz transition ». Science Advances 7, no 17 (avril 2021) : eabd9275. http://dx.doi.org/10.1126/sciadv.abd9275.

Texte intégral
Résumé :
Fermi surface is at the heart of our understanding of metals and strongly correlated many-body systems. An abrupt change in the Fermi surface topology, also called Lifshitz transition, can lead to the emergence of fascinating phenomena like colossal magnetoresistance and superconductivity. While Lifshitz transitions have been demonstrated for a broad range of materials by equilibrium tuning of macroscopic parameters such as strain, doping, pressure, and temperature, a nonequilibrium dynamical route toward ultrafast modification of the Fermi surface topology has not been experimentally demonstrated. Combining time-resolved multidimensional photoemission spectroscopy with state-of-the-art TDDFT+U simulations, we introduce a scheme for driving an ultrafast Lifshitz transition in the correlated type-II Weyl semimetal Td-MoTe2. We demonstrate that this nonequilibrium topological electronic transition finds its microscopic origin in the dynamical modification of the effective electronic correlations. These results shed light on a previously unexplored ultrafast scheme for controlling the Fermi surface topology in correlated quantum materials.
Styles APA, Harvard, Vancouver, ISO, etc.
2

KIM, SANG PYO. « DYNAMICAL THEORY OF PHASE TRANSITIONS AND COSMOLOGICAL EW AND QCD PHASE TRANSITIONS ». Modern Physics Letters A 23, no 17n20 (28 juin 2008) : 1325–35. http://dx.doi.org/10.1142/s0217732308027692.

Texte intégral
Résumé :
We critically review the cosmological EW and QCD phase transitions. The EW and QCD phase transitions would have proceeded dynamically since the expansion of the universe determines the quench rate and critical behaviors at the onset of phase transition slow down the phase transition. We introduce a real-time quench model for dynamical phase transitions and describe the evolution using a canonical real-time formalism. We find the correlation function, the correlation length and time and then discuss the cosmological implications of dynamical phase transitions on EW and QCD phase transitions in the early universe.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Appert, C., et S. Zaleski. « Dynamical liquid-gas phase transition ». Journal de Physique II 3, no 3 (mars 1993) : 309–37. http://dx.doi.org/10.1051/jp2:1993135.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Meibohm, Jan, et Massimiliano Esposito. « Landau theory for finite-time dynamical phase transitions ». New Journal of Physics 25, no 2 (1 février 2023) : 023034. http://dx.doi.org/10.1088/1367-2630/acbc41.

Texte intégral
Résumé :
Abstract We study the time evolution of thermodynamic observables that characterise the dissipative nature of thermal relaxation after an instantaneous temperature quench. Combining tools from stochastic thermodynamics and large-deviation theory, we develop a powerful theory for computing the large-deviation statistics of such observables. Our method naturally leads to a description in terms of a dynamical Landau theory, a versatile tool for the analysis of finite-time dynamical phase transitions. The topology of the associated Landau potential allows for an unambiguous identification of the dynamical order parameter and of the phase diagram. As an immediate application of our method, we show that the probability distribution of the heat exchanged between a mean-field spin model and the environment exhibits a singular point, a kink, caused by a finite-time dynamical phase transition. Using our Landau theory, we conduct a detailed study of the phase transition. Although the manifestation of the new transition is similar to that of a previously found finite-time transition in the magnetisation, the properties and the dynamical origins of the two turn out to be very different.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Žunkovič, Bojan, Alessandro Silva et Michele Fabrizio. « Dynamical phase transitions and Loschmidt echo in the infinite-range XY model ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 374, no 2069 (13 juin 2016) : 20150160. http://dx.doi.org/10.1098/rsta.2015.0160.

Texte intégral
Résumé :
We compare two different notions of dynamical phase transitions in closed quantum systems. The first is identified through the time-averaged value of the equilibrium-order parameter, whereas the second corresponds to non-analyticities in the time behaviour of the Loschmidt echo. By exactly solving the dynamics of the infinite-range XY model, we show that in this model non-analyticities of the Loschmidt echo are not connected to standard dynamical phase transitions and are not robust against quantum fluctuations. Furthermore, we show that the existence of either of the two dynamical transitions is not necessarily connected to the equilibrium quantum phase transition.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Prasad, R., et Ritam Mallick. « Dynamical Phase Transition in Neutron Stars ». Astrophysical Journal 859, no 1 (23 mai 2018) : 57. http://dx.doi.org/10.3847/1538-4357/aabf3b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Vollmayr-Lee, K., W. Kob, K. Binder et A. Zippelius. « Dynamical heterogeneities below the glass transition ». Journal of Chemical Physics 116, no 12 (2002) : 5158. http://dx.doi.org/10.1063/1.1453962.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Henriksen, Niels E., et Flemming Y. Hansen. « Transition-state theory and dynamical corrections ». Physical Chemistry Chemical Physics 4, no 24 (5 novembre 2002) : 5995–6000. http://dx.doi.org/10.1039/b207021a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Seibert, David. « Dynamical hadronization transition and hydrodynamical stability ». Physical Review D 32, no 10 (15 novembre 1985) : 2812–21. http://dx.doi.org/10.1103/physrevd.32.2812.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Nagatani, Takashi. « Dynamical transition in random supply chain ». Physica A : Statistical Mechanics and its Applications 335, no 3-4 (avril 2004) : 661–70. http://dx.doi.org/10.1016/j.physa.2003.12.027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Dynamical transition"

1

Proeme, Arno. « Nonequilibrium dynamical transition in the asymmetric exclusion process ». Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/5286.

Texte intégral
Résumé :
Over the last few decades the interests of statistical physicists have broadened to include the detailed quantitative study of many systems - chemical, biological and even social - that were not traditionally part of the discipline. These systems can feature rich and complex spatiotemporal behaviour, often due to continued interaction with the environment and characterised by the dissipation of flows of energy and/or mass. This has led to vigorous research aimed at extending the established theoretical framework and adapting analytical methods that originate in the study of systems at thermodynamic equilibrium to deal with out-of-equilibrium situations, which are much more prevalent in nature. This thesis focuses on a microscopic model known as the asymmetric exclusion process, or ASEP, which describes the stochastic motion of particles on a one-dimensional lattice. Though in the first instance a model of a lattice gas, it is sufficiently general to have served as the basis to model a wide variety of phenomena. That, as well as substantial progress made in analysing its stationary behaviour, including the locations and nature of phase transitions, have led to it becoming a paradigmatic model of an exactly solvable nonequilibrium system. Recently an exact solution for the dynamics found a somewhat enigmatic transition, which has not been well understood. This thesis is an attempt to verify and better understand the nature of that dynamical transition, including its relation, if any, to the static phase transitions. I begin in Chapter 2 by reviewing known results for the ASEP, in particular the totally asymmetric variant (TASEP), driven at the boundaries. I present the exact dynamical transition as it was first derived, and a reduced description of the dynamics known as domain wall theory (DWT), which locates the transition at a different place. In Chapter 3, I investigate solutions of a nonlinear PDE that constitutes a mean-field, continuum approximation of the ASEP, namely the Burgers equation, and find that a similar dynamical transition occurs there at the same place as predicted by DWT but in disagreement with the exact result. Next, in Chapter 4 I report on efforts to observe and measure the dynamical transition through Monte Carlo simulation. No directly obvious physical manifestation of the transition was observed. The relaxation of three different observables was measured and found to agree well with each other but only slightly better with the exact transition than with DWT. In Chapter 5 I apply a numerical renormalisation scheme known as the Density Matrix Renormalisation Group (DMRG) method and find that it confirms the exact dynamical transition, ruling out the behaviour predicted by DWT. Finally in Chapter 6 I demonstrate that a perturbative calculation, involving the crossing of eigenvalues, allows us to rederive the location of the dynamical transition found exactly, thereby offering some insight into the nature of the transition.
Styles APA, Harvard, Vancouver, ISO, etc.
2

FOMINA, Margarita. « THE PHYSICAL ORIGIN OF PROTEIN DYNAMICAL TRANSITION : A LIQUID-LIQUID TRANSITION IN HYDRATION WATER ? » Doctoral thesis, Università degli Studi di Palermo, 2015. http://hdl.handle.net/10447/106561.

Texte intégral
Résumé :
In this thesis I study, by means of neutron scattering, calorimetry, and dielectric spectroscopy, the physical origin of protein dynamical transition (PDT) which is usually observed at ~230 K in protein hydrated powders and is deemed necessary for protein function. Measurements reported in this thesis have been performed on hydrated powders of Myoglobin. The combined use of different experimental techniques gives a coherent description of the PDT and reveals a connection with a liquid-liquid crossover occurring in the protein hydration water at about the same temperature. In order to deepen our understanding of this connection and to obtain a direct experimental evidence of the existence of a liquid-liquid transition (LLT) in supercooled water at low temperatures, we investigated a second system, i.e. deeply cooled water confined within the pores of a 3-dimensional disordered SiO2 xerogel. In this system the hydrophilic surface of the matrix pores mimics the protein surface, while water confined within the pores mimics the protein hydration water. Using the same experimental techniques, we obtained evidence for the presence of a LLT, occurring at about 230 K, between a low density liquid (LDL) predominant at lower temperatures and a high density liquid predominant at higher temperatures. In conclusion, we suggest that the LLT in protein hydration shell is the physical origin of the biologically relevant protein dynamical transition.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mitchell, Radford. « Transition to turbulence and mixing in a quasi-two-dimensional Lorentz force-driven Kolmogorov flow ». Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49045.

Texte intégral
Résumé :
The research in this thesis was motivated by a desire to understand the mixing properties of quasi-two-dimensional flows whose time-dependence arises naturally as a result of fluid-dynamic instabilities. Additionally, we wished to study how flows such as these transition from the laminar into the turbulent regime. This thesis presents a numerical and theoretical investigation of a particular fluid dynamical system introduced by Kolmogorov. It consists of a thin layer of electrolytic fluid that is driven by the interaction of a steady current with a magnetic field produced by an array of bar magnets. First, we derive a theoretical model for the system by depth-averaging the Navier-Stokes equation, reducing it to a two-dimensional scalar evolution equation for the vertical component of vorticity. A code was then developed in order to both numerically simulate the fluid flow as well as to compute invariant solutions. As the strength of the driving force is increased, we find a number of steady, time-periodic, quasiperiodic, and chaotic flows as the fluid transitions into the turbulent regime. Through long-time advection of a large number of passive tracers, the mixing properties of the various flows that we found were studied. Specifically, the mixing was quantified by computing the relative size of the mixed region as well as the mixing rate. We found the mixing efficiency of the flow to be a non-monotonic function of the driving current and that significant changes in the flow did not always lead to comparable changes in its transport properties. However, some very subtle changes in the flow dramatically altered the degree of mixing. Using the theory of chaos as it applies to Hamiltonian systems, we were able to explain many of our results.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Park, Hyunhang. « Spin Systems far from Equilibrium : Aging and Dynamic Phase Transition ». Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/19323.

Texte intégral
Résumé :
Among the many non-equilibrium processes encountered in nature we deal with two different but related aspects. One is the non-equilibrium relaxation process that is at the origin of \'aging phenomena••, and the other one is a non-equilibrium phase transition, called ••dynamic phase transition••. One of the main purposes of our research is to explore more realistic situations than studied previously. Indeed, in the study of aging phenomena certain kinds of disorder effects are considered, and we introduce the ••surface•• as a spatial boundary to the system undergoing the dynamic phase transition. In order to observe these processes as clearly as possible, we study in both cases simple spin systems. Using Monte Carlo simulations we first investigate aging in three-dimensional Ising spin glasses as well as in two-dimensional Ising models with disorder quenched to low temperatures. The time-dependent dynamical correlation length L(t) is determined numerically and the scaling behavior of various two-time quantities as a function of L(t)/L(s) is discussed where t and s are two different times. For disordered Ising models deviations of L(t) from algebraic growth law show up. The generalized scaling forms as a function of L(t)/L(s) reveal a generic simple aging scenario for Ising spin glasses as well as for disordered Ising ferromagnets. We also study the local critical phenomena at a dynamic phase transition by means of numerical simulations of kinetic Ising models with surfaces subjected to a periodic oscillating field. We examine layer-dependent quantities, such as the period-averaged magnetization per layer Q(z) and the layer susceptibility ¥ö(z), and determine local critical exponents through finite size scaling. Both for two and three dimensions, we find that the values of the surface exponents differ from those of the equilibrium critical surface. It is revealed that the surface phase diagram of the non-equilibrium system is not identical to that of the equilibrium system in three dimensions.
Ph. D.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Brown, Roger Keith. « Triangular proximity-coupled arrays : phase transition in a magnetic field and dynamical properties / ». The Ohio State University, 1985. http://rave.ohiolink.edu/etdc/view?acc_num=osu148726282507655.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Nájera, Ocampo Oscar. « Study of the dimer Hubbard Model within Dynamical Mean Field Theory and its application to VO₂ ». Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS462/document.

Texte intégral
Résumé :
J'étudie en détail la solution d'un modèle simplifié d'électrons fortement corrélés, à savoir le modèle de Hubbard dimérisé. Ce modèle est la réalisation la plus simple d'un problème de cluster DMFT. Je fournis une description détaillée des solutions dans une région de coexistence où l'on trouve deux états (méta) stables des équations DMFT, l'un métallique et l'autre isolant. De plus, je décris en détail comment ces états disparaissent à leurs lignes critiques respectives. Je clarifie le rôle clé joué par la corrélation intra-dimère, qui agit ici en complément des corrélations de Coulomb.Je passe en revue la question importante du passage continue entre unisolant Mott et un isolant Peierls où je caractérise une variété de régimes physiques. Dans un subtil changement de la structure électronique, lesbandes de Hubbard évoluent des bandes purement incohérentes (Mott) à desbandes purement cohérentes (Peierls) à travers un état inattendu au caractère mixte. Je trouve une température d'appariement singulet T* en-dessous de laquelle les électrons localisés à chaque site atomique peuvent se lier dans un singulet et minimiser leur entropie. Ceci constitue un nouveau paradigme d'un isolant de Mott paramagnétique.Enfin, je discute la pertinence de mes résultats pour l'interprétation de différentes études expérimentales sur VO₂. Je présente plusieurs arguments qui me permettent d'avancer la conclusion que la phase métallique, à vie longue (métastable) induite dans les expériences pompe-sonde, et l'état métallique métastable M₁, thermiquement activé dans des nano-domaines, sont identiques. De plus, ils peuvent tous être qualitativement décrits, dans le cadre de notre modèle, par un métal corrélé dimérisé
We study in detail the solution of a basic strongly correlated model,namely, the dimer Hubbard model. This model is the simplest realization ofa cluster DMFT problem.We provide a detailed description of the solutions in the ``coexistentregion'' where two (meta)stable states of the DMFT equations are found, onea metal and the other an insulator. Moreover, we describe in detail howthese states break down at their respective critical lines. We clarify thekey role played by the intra-dimer correlation, which here acts in additionto the onsite Coulomb correlations.We review the important issue of the Mott-Peierls insulator crossoverwhere we characterize a variety of physical regimes. In a subtle change inthe electronic structure the Hubbard bands evolve from purely incoherent(Mott) to purely coherent (Peierls) through a state with unexpected mixedcharacter. We find a singlet pairing temperature T* below which thelocalized electrons at each atomic site can bind into a singlet and quenchtheir entropy, this uncovers a new paradigm of a para-magnetic Mottinsulator.Finally, we discuss the relevance of our results for the interpretation ofvarious experimental studies in VO₂. We present a variety of argumentsthat allow us to advance the conclusion that the long-lived (meta-stable)metallic phase, induced in pump-probe experiments, and the thermallyactivated M₁ meta-stable metallic state in nano-domains are the same.In fact, they may all be qualitatively described by the dimerizedcorrelated metal state of our model
Styles APA, Harvard, Vancouver, ISO, etc.
7

Tan, Xiao. « Partitioning and Control for Dynamical Systems Evolving on Manifolds ». Licentiate thesis, KTH, Reglerteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-283672.

Texte intégral
Résumé :
With the development and integration of cyber-physical and safety-critical systems, control systems are expected to achieve tasks that include logic rules, receptive decision-making, safety constraints, and so forth. For example, in a persistent surveillance application, an unmanned aerial vehicle might be required to "take photos of areas A and B infinitely often, always avoid unsafe region C, and return to the charging point when the battery level goes low." One possible design approach to achieve such complex specifications is automata-based planning using formal verification algorithms. Central to the existing formal verification of continuous-time systems is the notion of abstraction, which consists of partitioning the state space into cells, and then formulating a certain control problem on each cell. The control problem is characterized as finding a state feedback to make all the closed-loop trajectories starting from one cell reach and enter a consecutive cell in finite time without intruding any other cells. This essentially abstracts the continuous system into a finite-state transition graph. The complex specifications can thus be checked against the simple transition model using formal verification tools, which yields a sequence of cells to visit consecutively. While control algorithms have been developed in the literature for linear systems associated with a polytopic partitioning of the state space, the partitioning and control problem for systems on a curved space is a relatively unexplored research area. In this thesis, we consider $ SO (3) $ and $ \ mathbb {S} ^ 2 $, the two most commonly encountered manifolds in mechanical systems, and propose several approaches to address the partitioning and control problem that in principle could be generalized to other manifolds. Chapter 2 proposes a discretization scheme that consists of sampling point generation and cell construction. Each cell is constructed as a ball region around a sampling point with an identical radius. Uniformity measures for the sampling points are proposed. As a result, the $SO(3)$ manifold is discretized into interconnected cells whose union covers the whole space. A graph model is naturally built up based on the cell adjacency relations. This discretization method, in general, can be extended to any Riemannian manifold. To enable the cell transitions, two reference trajectories are constructed corresponding to the cell-level plan. We demonstrate the results by solving a constrained attitude maneuvering problem with arbitrary obstacle shapes. It is shown that the algorithm finds a feasible trajectory as long as it exists at that discretization level. In Chapter 3, the 2-sphere manifold is considered and discretized into spherical polytopes, an analog of convex polytopes in the Euclidean space. Moreover, with the gnomonic projection, we show that the spherical polytopes can be naturally mapped into Euclidean polytopes and the dynamics on the manifold locally transform to a simple linear system via feedback linearization. Based on this transformation, the control problems then can be solved in the Euclidean space, where many control schemes exist with safe cell transition guarantee. This method serves as a special case that solves the partition-and-control problem by transforming the states and dynamics on manifold to Euclidean space in local charts. In Chapter 4, we propose a notion of high-order barrier functions for general control affine systems to guarantee set forward invariance by checking their higher order derivatives. This notion provides a unified framework to constrain the transient behavior of the closed-loop trajectories, which is essential in the cell-transition control design. The asymptotic stability of the forward invariant set is also proved, which is highly favorable for robustness with respect to model perturbations. We revisit the cell transition problem in Chapter 2 and show that even with a simple stabilizing nominal controller, the proposed high-order barrier function framework provides satisfactory transient performance.

QC 20201012

Styles APA, Harvard, Vancouver, ISO, etc.
8

Kreilos, Tobias [Verfasser], et Bruno [Akademischer Betreuer] Eckhardt. « Turbulence Transition in Shear Flows and Dynamical Systems Theory / Tobias Kreilos. Betreuer : Bruno Eckhardt ». Marburg : Philipps-Universität Marburg, 2014. http://d-nb.info/1052995128/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Rusz, Ján, Shunsuke Muto et Kazuyoshi Tatsumi. « Energy Loss by Channeled Electrons : A Quantitative Study on Transition Metal Oxides ». Cambridge University Press, 2013. http://hdl.handle.net/2237/20834.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Borrero, Daniel. « Subcritical Transition to Turbulence in Taylor-Couette Flow ». Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53140.

Texte intégral
Résumé :
Turbulence is ubiquitous in naturally-occurring and man-made flows. Despite its importance in scientific and engineering applications, the transition from smooth laminar flow to disorganized turbulent flow is poorly understood. In some cases, the transition can be understood in the context of linear stability theory, which predicts when the underlying laminar solution will become unstable as a parameter is varied. For a large class of flows, however, this approach fails spectacularly, with theory predicting that the laminar flow is stable but experiments and simulations showing the emergence of spatiotemporal complexity. In this dissertation, the direct or subcritical transition to turbulence in Taylor-Couette flow (i.e., the flow between independently rotating co-axial cylinders) is studied experimentally. Chapter 1 discusses different scenarios for the transition to turbulence and recent advances in understanding the subcritical transition within the framework of dynamical systems theory. Chapter 2 presents a comprehensive review of earlier investigations of linearly stable Taylor-Couette flow. Chapter 3 presents the first systematic study of long-lived super-transients in Taylor-Couette flow with the aim of determining the correct dynamical model for turbulent dynamics in the transitional regime. Chapter 4 presents the results of experiments regarding the stability of Taylor-Couette flow to finite-amplitude perturbations in the form of injection/suction of fluid from the test section. Chapter 5 presents numerical investigations of axisymmetric laminar states with realistic boundary conditions. Chapter 6 discusses in detail the implementation of time-resolved tomographic particle image velocimetry (PIV) in the Taylor-Couette geometry and presents preliminary tomographic PIV measurements of the growth of turbulent spots from finite-amplitude perturbations. The main results are summarized in Chapter 7.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Dynamical transition"

1

Reithmeier, Eduard. Periodic solutions of nonlinear dynamical systems : Numerical computation, stability, bifurcation, and transition to chaos. Berlin : Springer-Verlag, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Phase transition dynamics. Cambridge : Cambridge University Press, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ma, Tian, et Shouhong Wang. Phase Transition Dynamics. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29260-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ma, Tian, et Shouhong Wang. Phase Transition Dynamics. New York, NY : Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-8963-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Park, Kyung-Ae, et Dalchoong Kim, dir. Korean Security Dynamics in Transition. New York : Palgrave Macmillan US, 2001. http://dx.doi.org/10.1057/9780230107465.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Karafili, Elona. Cluster Dynamics in Transition Economies. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69842-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

1955-, Park Kyung-Ae, et Kim Tal-chung, dir. Korean security dynamics in transition. New York : Palgrave, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hölscher, Jens. Social cohesion and transition dynamics. Berlin-Dahlem : Institut für Wirtschaftspolitik und Wirtschaftsgeschichte, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Lippert, E., et J. D. Macomber, dir. Dynamics During Spectroscopic Transitions. Berlin, Heidelberg : Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79407-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Yousuff, Hussaini M., Voigt Robert G, Institute for Computer Applications in Science and Engineering. et Langley Research Center, dir. Instability and transition. New York : Springer-Verlag, 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Dynamical transition"

1

Ma, Tian, et Shouhong Wang. « Dynamical Transitions in Chemistry and Biology ». Dans Phase Transition Dynamics, 467–529. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29260-7_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ma, Tian, et Shouhong Wang. « Dynamical Transitions in Chemistry and Biology ». Dans Phase Transition Dynamics, 447–525. New York, NY : Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8963-4_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Belta, Calin, Boyan Yordanov et Ebru Aydin Gol. « Transition Systems ». Dans Formal Methods for Discrete-Time Dynamical Systems, 3–25. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50763-7_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Egger, J. « The Blocking Transition ». Dans Irreversible Phenomena and Dynamical Systems Analysis in Geosciences, 181–97. Dordrecht : Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4778-8_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Platzer, Paul, Bertrand Chapron et Pierre Tandeo. « Dynamical Properties of Weather Regime Transitions ». Dans Mathematics of Planet Earth, 223–36. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18988-3_14.

Texte intégral
Résumé :
AbstractLarge-scale weather can often be successfully described using a small amount of patterns. A statistical description of reanalysed pressure fields identifies these recurring patterns with clusters in state-space, also called “regimes”. Recently, these weather regimes have been described through instantaneous, local indicators of dimension and persistence, borrowed from dynamical systems theory and extreme value theory. Using similar indicators and going further, we focus here on weather regime transitions. We use 60 years of winter-time sea-level pressure reanalysis data centered on the North-Atlantic ocean and western Europe. These experiments reveal regime-dependent behaviours of dimension and persistence near transitions, although in average one observes an increase of dimension and a decrease of persistence near transitions. The effect of transition on persistence is stronger and lasts longer than on dimension. These findings confirm the relevance of such dynamical indicators for the study of large-scale weather regimes, and reveal their potential to be used for both the understanding and detection of weather regime transitions.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Franco, Tertuliano, Patrícia Gonçalves et Adriana Neumann. « Dynamical Phase Transition in Slowed Exclusion Processes ». Dans Springer Proceedings in Mathematics & ; Statistics, 269–78. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04849-9_16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kapusta, Joseph I. « Dynamical Evolution of the Electroweak Phase Transition ». Dans NATO ASI Series, 19–43. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1304-3_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Lévy, F. A., et A. Grisel. « Lattice Dynamical Study of Transition Metal Trichalcogenides ». Dans Electronic Properties of Inorganic Quasi-One-Dimensional Compounds, 269–308. Dordrecht : Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-015-6926-2_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Zong, Alfred. « Dynamical Slowing-Down in an Ultrafast Transition ». Dans Springer Theses, 125–47. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81751-0_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Broer, Henk W., et Heinz Hanßmann. « Hamiltonian Perturbation Theory (and Transition to Chaos) ». Dans Mathematics of Complexity and Dynamical Systems, 657–82. New York, NY : Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1806-1_41.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Dynamical transition"

1

George, Deepu, et A. G. Markelz. « The Peptide Dynamical Transition ». Dans Frontiers in Optics. Washington, D.C. : OSA, 2010. http://dx.doi.org/10.1364/fio.2010.fme6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Picozzi, Antonio, et Marc Haelterman. « Transition towards dynamical parametric solitary waves ». Dans Nonlinear Guided Waves and Their Applications. Washington, D.C. : OSA, 1999. http://dx.doi.org/10.1364/nlgw.1999.wd25.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Affouard, F., et M. Descamps. « Dynamical transition in orientationally disordered crystals ». Dans PHYSICS OF GLASSES. ASCE, 1999. http://dx.doi.org/10.1063/1.1301461.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Schweigert, V. A. « Dynamical Phase Transition in Dust Crystals ». Dans DUSTY PLASMAS IN THE NEW MILLENNIUM : Third Conference on the Physics of Dusty Plasmas. AIP, 2002. http://dx.doi.org/10.1063/1.1527813.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Krishnan, M., R. Schulz, Jeremy C. Smith, Dong-Qing Wei et Xi-Jun Wang. « Protein Dynamical Transition : Role of Methyl Dynamics and Local Diffusion ». Dans THEORY AND APPLICATIONS OF COMPUTATIONAL CHEMISTRY—2008. AIP, 2009. http://dx.doi.org/10.1063/1.3108363.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bhandari, Preeti, Vikas Malik et Deepak Kumar. « Relaxation and possible dynamical transition in electron glass ». Dans DAE SOLID STATE PHYSICS SYMPOSIUM 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4980180.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

« Dynamical modeling of the floral transition in legumes ». Dans SYSTEMS BIOLOGY AND BIOINFORMATICS. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/sbb-2019-33.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Itoh, Sumiko, Hiroh Miyagawa et Yasuaki Hiwatari. « Molecular dynamics study on the glass transition of LiI about dynamical singularities ». Dans Slow dynamics in condensed matter. AIP, 1992. http://dx.doi.org/10.1063/1.42437.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Knab, Joseph, Jing-Yin Chen, Yunfen He et Andrea Markelz. « Dynamical Transition Observed in Lysozyme Solutions at THz Frequencies ». Dans Optical Terahertz Science and Technology. Washington, D.C. : OSA, 2007. http://dx.doi.org/10.1364/otst.2007.mb3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mamaghanian, Hossein, Mohammad B. Shamsollahi et Sepideh Hajipour. « Tracking Dynamical Transition of Epileptic EEG Using Particle Filter ». Dans 2008 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). IEEE, 2008. http://dx.doi.org/10.1109/isspit.2008.4775727.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Dynamical transition"

1

Fu, G., J. Van Dam et M. Rosenbluth. Dynamical transition to second stability in auxiliary heated tokamaks. Office of Scientific and Technical Information (OSTI), mars 1989. http://dx.doi.org/10.2172/6309193.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

R.A. Kolesnikov et J.A. Krommes. The Transition to Collisionless Ion-temperature-gradient-driven Plasma Turbulence : A Dynamical Systems Approach. Office of Scientific and Technical Information (OSTI), octobre 2004. http://dx.doi.org/10.2172/835931.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kushnir, V. I., et A. T. Macrander. A criterion for the dynamical to kinematical transition of x-ray diffraction on a bent crystal. Office of Scientific and Technical Information (OSTI), septembre 1993. http://dx.doi.org/10.2172/10188471.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Yılmaz, Fatih. Understanding the Dynamics of the Renewable Energy Transition : A Determinant Index Approach. King Abdullah Petroleum Studies and Research Center, février 2022. http://dx.doi.org/10.30573/ks--2021-mp03.

Texte intégral
Résumé :
Renewable energy is a key component of global energy transitions. To better identify its dynamics, this study constructs a composite index to measure countries’ renewable energy transition potential. Based on two decades of academic research, we identify 45 main enabling factors of the renewable energy transition. We classify these factors into seven subindices: economic factors, financial development, human capital, energy access, energy security, environmental sustainability and institutional infrastructure. We then aggregate the subindices into a composite index, which we call the renewable energy transition potential index. This index and its subindices are available for 149 countries for the period from 1990 to 2018.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Perdigão, Rui A. P., et Julia Hall. Spatiotemporal Causality and Predictability Beyond Recurrence Collapse in Complex Coevolutionary Systems. Meteoceanics, novembre 2020. http://dx.doi.org/10.46337/201111.

Texte intégral
Résumé :
Causality and Predictability of Complex Systems pose fundamental challenges even under well-defined structural stochastic-dynamic conditions where the laws of motion and system symmetries are known. However, the edifice of complexity can be profoundly transformed by structural-functional coevolution and non-recurrent elusive mechanisms changing the very same invariants of motion that had been taken for granted. This leads to recurrence collapse and memory loss, precluding the ability of traditional stochastic-dynamic and information-theoretic metrics to provide reliable information about the non-recurrent emergence of fundamental new properties absent from the a priori kinematic geometric and statistical features. Unveiling causal mechanisms and eliciting system dynamic predictability under such challenging conditions is not only a fundamental problem in mathematical and statistical physics, but also one of critical importance to dynamic modelling, risk assessment and decision support e.g. regarding non-recurrent critical transitions and extreme events. In order to address these challenges, generalized metrics in non-ergodic information physics are hereby introduced for unveiling elusive dynamics, causality and predictability of complex dynamical systems undergoing far-from-equilibrium structural-functional coevolution. With these methodological developments at hand, hidden dynamic information is hereby brought out and explicitly quantified even beyond post-critical regime collapse, long after statistical information is lost. The added causal insights and operational predictive value are further highlighted by evaluating the new information metrics among statistically independent variables, where traditional techniques therefore find no information links. Notwithstanding the factorability of the distributions associated to the aforementioned independent variables, synergistic and redundant information are found to emerge from microphysical, event-scale codependencies in far-from-equilibrium nonlinear statistical mechanics. The findings are illustrated to shed light onto fundamental causal mechanisms and unveil elusive dynamic predictability of non-recurrent critical transitions and extreme events across multiscale hydro-climatic problems.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Baader, Franz, et Marcel Lippmann. Runtime Verification Using a Temporal Description Logic Revisited. Technische Universität Dresden, 2014. http://dx.doi.org/10.25368/2022.203.

Texte intégral
Résumé :
Formulae of linear temporal logic (LTL) can be used to specify (wanted or unwanted) properties of a dynamical system. In model checking, the system’s behaviour is described by a transition system, and one needs to check whether all possible traces of this transition system satisfy the formula. In runtime verification, one observes the actual system behaviour, which at any point in time yields a finite prefix of a trace. The task is then to check whether all continuations of this prefix to a trace satisfy (violate) the formula. More precisely, one wants to construct a monitor, i.e., a finite automaton that receives the finite prefix as input and then gives the right answer based on the state currently reached. In this paper, we extend the known approaches to LTL runtime verification in two directions. First, instead of propositional LTL we use the more expressive temporal logic ALC-LTL, which can use axioms of the Description Logic (DL) ALC instead of propositional variables to describe properties of single states of the system. Second, instead of assuming that the observed system behaviour provides us with complete information about the states of the system, we assume that states are described in an incomplete way by ALC-knowledge bases. We show that also in this setting monitors can effectively be constructed. The (double-exponential) size of the constructed monitors is in fact optimal, and not higher than in the propositional case. As an auxiliary result, we show how to construct Büchi automata for ALC-LTL-formulae, which yields alternative proofs for the known upper bounds of deciding satisfiability in ALC-LTL.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zurek, Wojciech. Dynamics of Quantum Phase Transitions. Office of Scientific and Technical Information (OSTI), novembre 2020. http://dx.doi.org/10.2172/1726154.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Getmansky, Mila, Peter Lee et Andrew Lo. Hedge Funds : A Dynamic Industry In Transition. Cambridge, MA : National Bureau of Economic Research, août 2015. http://dx.doi.org/10.3386/w21449.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Pakko, Michael R. Changing Technology Trends, Transition Dynamics and Growth Accounting. Federal Reserve Bank of St. Louis, 2000. http://dx.doi.org/10.20955/wp.2000.014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Welch, C. Lessons Learned from Alternative Transportation Fuels : Modeling Transition Dynamics. Office of Scientific and Technical Information (OSTI), février 2006. http://dx.doi.org/10.2172/876230.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie