Littérature scientifique sur le sujet « Dynamical Systems »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Dynamical Systems ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Dynamical Systems"

1

Hornstein, John, et V. I. Arnold. « Dynamical Systems. » American Mathematical Monthly 96, no 9 (novembre 1989) : 861. http://dx.doi.org/10.2307/2324864.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Chillingworth, D. R. J., D. K. Arrowsmith et C. M. Place. « Dynamical Systems ». Mathematical Gazette 79, no 484 (mars 1995) : 233. http://dx.doi.org/10.2307/3620112.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Jacob, G. « Dynamical systems ». Mathematics and Computers in Simulation 42, no 4-6 (novembre 1996) : 639. http://dx.doi.org/10.1016/s0378-4754(97)84413-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Rota, Gian-Carlo. « Dynamical systems ». Advances in Mathematics 58, no 3 (décembre 1985) : 322. http://dx.doi.org/10.1016/0001-8708(85)90129-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Meiss, James. « Dynamical systems ». Scholarpedia 2, no 2 (2007) : 1629. http://dx.doi.org/10.4249/scholarpedia.1629.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Li, Zhiming, Minghan Wang et Guo Wei. « Induced hyperspace dynamical systems of symbolic dynamical systems ». International Journal of General Systems 47, no 8 (3 octobre 2018) : 809–20. http://dx.doi.org/10.1080/03081079.2018.1524467.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Nasim, Imran, et Michael E. Henderson. « Dynamically Meaningful Latent Representations of Dynamical Systems ». Mathematics 12, no 3 (2 février 2024) : 476. http://dx.doi.org/10.3390/math12030476.

Texte intégral
Résumé :
Dynamical systems are ubiquitous in the physical world and are often well-described by partial differential equations (PDEs). Despite their formally infinite-dimensional solution space, a number of systems have long time dynamics that live on a low-dimensional manifold. However, current methods to probe the long time dynamics require prerequisite knowledge about the underlying dynamics of the system. In this study, we present a data-driven hybrid modeling approach to help tackle this problem by combining numerically derived representations and latent representations obtained from an autoencoder. We validate our latent representations and show they are dynamically interpretable, capturing the dynamical characteristics of qualitatively distinct solution types. Furthermore, we probe the topological preservation of the latent representation with respect to the raw dynamical data using methods from persistent homology. Finally, we show that our framework is generalizable, having been successfully applied to both integrable and non-integrable systems that capture a rich and diverse array of solution types. Our method does not require any prior dynamical knowledge of the system and can be used to discover the intrinsic dynamical behavior in a purely data-driven way.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Caballero, Rubén, Alexandre N. Carvalho, Pedro Marín-Rubio et José Valero. « Robustness of dynamically gradient multivalued dynamical systems ». Discrete & ; Continuous Dynamical Systems - B 24, no 3 (2019) : 1049–77. http://dx.doi.org/10.3934/dcdsb.2019006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Landry, Nicholas W., et Juan G. Restrepo. « Hypergraph assortativity : A dynamical systems perspective ». Chaos : An Interdisciplinary Journal of Nonlinear Science 32, no 5 (mai 2022) : 053113. http://dx.doi.org/10.1063/5.0086905.

Texte intégral
Résumé :
The largest eigenvalue of the matrix describing a network’s contact structure is often important in predicting the behavior of dynamical processes. We extend this notion to hypergraphs and motivate the importance of an analogous eigenvalue, the expansion eigenvalue, for hypergraph dynamical processes. Using a mean-field approach, we derive an approximation to the expansion eigenvalue in terms of the degree sequence for uncorrelated hypergraphs. We introduce a generative model for hypergraphs that includes degree assortativity, and use a perturbation approach to derive an approximation to the expansion eigenvalue for assortative hypergraphs. We define the dynamical assortativity, a dynamically sensible definition of assortativity for uniform hypergraphs, and describe how reducing the dynamical assortativity of hypergraphs through preferential rewiring can extinguish epidemics. We validate our results with both synthetic and empirical datasets.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Akashi, Shigeo. « Embedding of expansive dynamical systems into symbolic dynamical systems ». Reports on Mathematical Physics 46, no 1-2 (août 2000) : 11–14. http://dx.doi.org/10.1016/s0034-4877(01)80003-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Dynamical Systems"

1

Behrisch, Mike, Sebastian Kerkhoff, Reinhard Pöschel, Friedrich Martin Schneider et Stefan Siegmund. « Dynamical Systems in Categories ». Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-129909.

Texte intégral
Résumé :
In this article we establish a bridge between dynamical systems, including topological and measurable dynamical systems as well as continuous skew product flows and nonautonomous dynamical systems; and coalgebras in categories having all finite products. We introduce a straightforward unifying definition of abstract dynamical system on finite product categories. Furthermore, we prove that such systems are in a unique correspondence with monadic algebras whose signature functor takes products with the time space. We substantiate that the categories of topological spaces, metrisable and uniformisable spaces have exponential objects w.r.t. locally compact Hausdorff, σ-compact or arbitrary time spaces as exponents, respectively. Exploiting the adjunction between taking products and exponential objects, we demonstrate a one-to-one correspondence between monadic algebras (given by dynamical systems) for the left-adjoint functor and comonadic coalgebras for the other. This, finally, provides a new, alternative perspective on dynamical systems.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zaks, Michael. « Fractal Fourier spectra in dynamical systems ». Thesis, [S.l.] : [s.n.], 2001. http://pub.ub.uni-potsdam.de/2002/0019/zaks.ps.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Haydn, Nicolai Theodorus Antonius. « On dynamical systems ». Thesis, University of Warwick, 1986. http://wrap.warwick.ac.uk/55813/.

Texte intégral
Résumé :
Part A. We prove existence of smooth invariant circles for area preserving twist maps close enough to integrable using renormalisation. The smoothness depends upon that of the map and the Liouville exponent of the rotation number. Part B. Ruelle and Capocaccia gave a new definition of Gibbs states on Smale spaces. Equilibrium states of suitable function there on are known to be Gibbs states. The converse in discussed in this paper, where the problem is reduced to shift spaces and there solved by constructing suitable conjugating homeomorphisms in order to verify the conditions for Gibbs states which Bowen gave for shift spaces, where the equivalence to equilibrium states is known. Part C. On subshifts which are derived from Markov partitions exists an equivalence relation which idendifies points that lie on the boundary set of the partition. In this paper we restrict to symbolic dynamics. We express the quotient space in terms of a non-transitive subshift of finite type, give a necessary and sufficient condition for the existence of a local product structure and evaluate the Zeta function of the quotient space. Finally we give an example where the quotient space is again a subshift of finite type.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Miles, Richard Craig. « Arithmetic dynamical systems ». Thesis, University of East Anglia, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323222.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Che, Dzul-Kifli Syahida. « Chaotic dynamical systems ». Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3410/.

Texte intégral
Résumé :
In this work, we look at the dynamics of four different spaces, the interval, the unit circle, subshifts of finite type and compact countable sets. We put our emphasis on chaotic dynamical system and exhibit sufficient conditions for the system on the interval, the unit circle and subshifts of finite type to be chaotic in three different types of chaos. On the interval, we reveal two weak conditions’s role as a fast track to chaotic behavior. We also explain how a strong dense periodicity property influences chaotic behavior of dynamics on the interval, the unit circle and subshifts of finite type. Finally we show how dynamics property of compact countable sets effecting the structure of the sets.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hillman, Chris. « Sturmian dynamical systems / ». Thesis, Connect to this title online ; UW restricted, 1998. http://hdl.handle.net/1773/5806.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Umenberger, Jack. « Convex Identifcation of Stable Dynamical Systems ». Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17321.

Texte intégral
Résumé :
This thesis concerns the scalable application of convex optimization to data-driven modeling of dynamical systems, termed system identi cation in the control community. Two problems commonly arising in system identi cation are model instability (e.g. unreliability of long-term, open-loop predictions), and nonconvexity of quality-of- t criteria, such as simulation error (a.k.a. output error). To address these problems, this thesis presents convex parametrizations of stable dynamical systems, convex quality-of- t criteria, and e cient algorithms to optimize the latter over the former. In particular, this thesis makes extensive use of Lagrangian relaxation, a technique for generating convex approximations to nonconvex optimization problems. Recently, Lagrangian relaxation has been used to approximate simulation error and guarantee nonlinear model stability via semide nite programming (SDP), however, the resulting SDPs have large dimension, limiting their practical utility. The rst contribution of this thesis is a custom interior point algorithm that exploits structure in the problem to signi cantly reduce computational complexity. The new algorithm enables empirical comparisons to established methods including Nonlinear ARX, in which superior generalization to new data is demonstrated. Equipped with this algorithmic machinery, the second contribution of this thesis is the incorporation of model stability constraints into the maximum likelihood framework. Speci - cally, Lagrangian relaxation is combined with the expectation maximization (EM) algorithm to derive tight bounds on the likelihood function, that can be optimized over a convex parametrization of all stable linear dynamical systems. Two di erent formulations are presented, one of which gives higher delity bounds when disturbances (a.k.a. process noise) dominate measurement noise, and vice versa. Finally, identi cation of positive systems is considered. Such systems enjoy substantially simpler stability and performance analysis compared to the general linear time-invariant iv Abstract (LTI) case, and appear frequently in applications where physical constraints imply nonnegativity of the quantities of interest. Lagrangian relaxation is used to derive new convex parametrizations of stable positive systems and quality-of- t criteria, and substantial improvements in accuracy of the identi ed models, compared to existing approaches based on weighted equation error, are demonstrated. Furthermore, the convex parametrizations of stable systems based on linear Lyapunov functions are shown to be amenable to distributed optimization, which is useful for identi cation of large-scale networked dynamical systems.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Freeman, Isaac. « A modular system for constructing dynamical systems ». Thesis, University of Canterbury. Mathematics, 1998. http://hdl.handle.net/10092/8888.

Texte intégral
Résumé :
This thesis discusses a method based on the dual principle of Rössler, and developed by Deng, for systematically constructing robust dynamical systems from lower dimensional subsystems. Systems built using this method may be modified easily, and are suitable for mathematical modelling. Extensions are made to this scheme, which allow one to describe a wider range of dynamical behaviour. These extensions allow the creation of systems that reproduce qualitative features of the Lorenz Attractor (including bifurcation properties) and of Chua's circuit, but which are easily extensible.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ozaki, Junichi. « Dynamical quantum effects in cluster dynamics of Fermi systems ». 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199083.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

CAPPELLINI, VALERIO. « QUANTUM DYNAMICAL ENTROPIES AND COMPLEXITY IN DYNAMICAL SYSTEMS ». Doctoral thesis, Università degli studi di Trieste, 2004. http://thesis2.sba.units.it/store/handle/item/12545.

Texte intégral
Résumé :
2002/2003
We analyze the behavior of two quantum dynamical entropies in connection with the classical limit. Using strongly chaotic classical dynamical systems as models (Arnold Cat Maps and Sawtooth Maps), we also propose a discretization procedure that resembles quantization; even in this case, studies of quantum dynamical entropy production are carried out and the connection with the continuous limit is explored. In both case (quantization and discretization) the entropy production converge to the Kolmogorov-Sinai invariant on time-scales that are logarithmic in the quantization (discretization) parameter.
XVI Ciclo
1969
Versione digitalizzata della tesi di dottorato cartacea.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Dynamical Systems"

1

Sternberg, Shlomo. Dynamical systems. Mineola, N.Y : Dover Publications, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

1937-, Arnolʹd V. I., et Novikov Sergeĭ Petrovich, dir. Integrable systems nonholonomic dynamical systems. Berlin : Springer-Verlag, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

service), SpringerLink (Online, dir. Dynamical Systems. Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Tu, Pierre N. V. Dynamical Systems. Berlin, Heidelberg : Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02779-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Arrowsmith, D. K., et C. M. Place. Dynamical Systems. Dordrecht : Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2388-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Alexander, James C., dir. Dynamical Systems. Berlin, Heidelberg : Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0082819.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Arnold, Ludwig, Christopher K. R. T. Jones, Konstantin Mischaikow et Geneviève Raugel. Dynamical Systems. Sous la direction de Russell Johnson. Berlin, Heidelberg : Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0095237.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kurzhanski, Alexander B., et Karl Sigmund, dir. Dynamical Systems. Berlin, Heidelberg : Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-662-00748-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Barreira, Luis, et Claudia Valls. Dynamical Systems. London : Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4835-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Pickl, Stefan, et Werner Krabs. Dynamical Systems. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13722-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Dynamical Systems"

1

Greiner, Walter. « Dynamical Systems ». Dans Classical Mechanics, 463–83. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03434-3_23.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

McLennan, Andrew. « Dynamical Systems ». Dans Advanced Fixed Point Theory for Economics, 289–330. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0710-2_15.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Neimark, Juri I. « Dynamical systems ». Dans Foundations of Engineering Mechanics, 5–28. Berlin, Heidelberg : Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-47878-2_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Collet, Pierre, Servet Martínez et Jaime San Martín. « Dynamical Systems ». Dans Quasi-Stationary Distributions, 227–68. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33131-2_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Michel, Anthony N., Ling Hou et Derong Liu. « Dynamical Systems ». Dans Systems & ; Control : Foundations & ; Applications, 19–76. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15275-2_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bhatia, Nam Parshad, et George Philip Szegö. « Dynamical Systems ». Dans Stability Theory of Dynamical Systems, 5–11. Berlin, Heidelberg : Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-62006-5_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Polderman, Jan Willem, et Jan C. Willems. « Dynamical Systems ». Dans Texts in Applied Mathematics, 1–25. New York, NY : Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4757-2953-5_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sun, Jian-Qiao, Fu-Rui Xiong, Oliver Schütze et Carlos Hernández. « Dynamical Systems ». Dans Cell Mapping Methods, 11–27. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0457-6_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Bubnicki, Zdzislaw. « Dynamical Systems ». Dans Analysis and Decision Making in Uncertain Systems, 169–200. London : Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3760-3_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Everest, Graham, et Thomas Ward. « Dynamical Systems ». Dans Heights of Polynomials and Entropy in Algebraic Dynamics, 29–50. London : Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-3898-3_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Dynamical Systems"

1

Jiang, Yunping, et Lan Wen. « DYNAMICAL SYSTEMS ». Dans Proceedings of the International Conference in Honor of Professor Liao Shantao. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814527002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Andersson, Stig I., Ǻke E. Andersson et Ulf Ottoson. « Dynamical Systems ». Dans Conference. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814535526.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Shan-Tao, Liao, Ye Yan-Qian et Ding Tong-Ren. « Dynamical Systems ». Dans Special Program at Nankai Institute of Mathematics. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814535892.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

« Dynamical systems ». Dans Proceedings of the 7th International ISAAC Congress. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814313179_others11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Boutayeb, M. « A decentralized software sensor based approach for large-scale dynamical systems ». Dans 2010 4th Annual IEEE Systems Conference. IEEE, 2010. http://dx.doi.org/10.1109/systems.2010.5482344.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Chen, Wenchao, Bo Chen, Yicheng Liu, Qianru Zhao et Mingyuan Zhou. « Switching Poisson Gamma Dynamical Systems ». Dans Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California : International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/281.

Texte intégral
Résumé :
We propose Switching Poisson gamma dynamical systems (SPGDS) to model sequentially observed multivariate count data. Different from previous models, SPGDS assigns its latent variables into mixture of gamma distributed parameters to model complex sequences and describe the nonlinear dynamics, meanwhile, capture various temporal dependencies. For efficient inference, we develop a scalable hybrid stochastic gradient-MCMC and switching recurrent autoencoding variational inference, which is scalable to large scale sequences and fast in out-of-sample prediction. Experiments on both unsupervised and supervised tasks demonstrate that the proposed model not only has excellent fitting and prediction performance on complex dynamic sequences, but also separates different dynamical patterns within them.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Rabinovich, Y., A. Sinclair et A. Wigderson. « Quadratic dynamical systems ». Dans Proceedings., 33rd Annual Symposium on Foundations of Computer Science. IEEE, 1992. http://dx.doi.org/10.1109/sfcs.1992.267761.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Pokorny, Pavel. « Excitable dynamical systems ». Dans 12th Czech-Slovak-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics, sous la direction de Jan Perina, Sr., Miroslav Hrabovsky et Jaromir Krepelka. SPIE, 2001. http://dx.doi.org/10.1117/12.417864.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

YOUNG, LAI-SANG. « DYNAMICAL SYSTEMS EVOLVING ». Dans International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0035.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ushiki, S. « Chaotic Dynamical Systems ». Dans RIMS Conference. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814536165.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Dynamical Systems"

1

Newhouse, Sheldon E. Dynamical Systems. Fort Belvoir, VA : Defense Technical Information Center, décembre 1987. http://dx.doi.org/10.21236/ada215319.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hale, Jack K. Analysis of Dynamical Systems. Fort Belvoir, VA : Defense Technical Information Center, août 1988. http://dx.doi.org/10.21236/ada204636.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Jones, Christopher, Steven Wiggins et George Haller. Dynamical Systems and Oceanography. Fort Belvoir, VA : Defense Technical Information Center, avril 1994. http://dx.doi.org/10.21236/ada279807.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Jones, Christopher, Steven Wiggins et George Haller. Dynamical Systems and Oceanography. Fort Belvoir, VA : Defense Technical Information Center, avril 1994. http://dx.doi.org/10.21236/ada282635.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hale, Jack K. Analysis of Dynamical Systems. Fort Belvoir, VA : Defense Technical Information Center, décembre 1985. http://dx.doi.org/10.21236/ada166224.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Weerasinghe, Ananda P. Controlled Stochastic Dynamical Systems. Fort Belvoir, VA : Defense Technical Information Center, avril 2007. http://dx.doi.org/10.21236/ada470046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Philip Holmes. NONLINEAR DYNAMICAL SYSTEMS - Final report. Office of Scientific and Technical Information (OSTI), décembre 2005. http://dx.doi.org/10.2172/888778.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Denman, Matthew R., et Arlo Leroy Ames. Dynamical systems probabilistic risk assessment. Office of Scientific and Technical Information (OSTI), mars 2014. http://dx.doi.org/10.2172/1177044.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Barbone, Paul E. Shock Survivability of Dynamical Systems. Fort Belvoir, VA : Defense Technical Information Center, mai 1999. http://dx.doi.org/10.21236/ada363045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Glinsky, Michael Edwin, et Poul Hjorth. Helicity in Hamiltonian dynamical systems. Office of Scientific and Technical Information (OSTI), décembre 2019. http://dx.doi.org/10.2172/1595915.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie