Littérature scientifique sur le sujet « Dynamical filtrations »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Dynamical filtrations ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Dynamical filtrations"
Bartłomiejczyk, P., et Z. Dzedzej. « Index filtrations and Morse decompositions for discrete dynamical systems ». Annales Polonici Mathematici 72, no 1 (1999) : 51–70. http://dx.doi.org/10.4064/ap-72-1-51-70.
Texte intégralGordin, M. I. « Double extensions of dynamical systems and constructing mixing filtrations ». Journal of Mathematical Sciences 99, no 2 (avril 2000) : 1053–60. http://dx.doi.org/10.1007/bf02673626.
Texte intégralJiao, Rui, Wei Liu et Yijun Hu. « The Optimal Consumption, Investment and Life Insurance for Wage Earners under Inside Information and Inflation ». Mathematics 11, no 15 (5 août 2023) : 3415. http://dx.doi.org/10.3390/math11153415.
Texte intégralKCHIA, YOUNES, et PHILIP PROTTER. « PROGRESSIVE FILTRATION EXPANSIONS VIA A PROCESS, WITH APPLICATIONS TO INSIDER TRADING ». International Journal of Theoretical and Applied Finance 18, no 04 (juin 2015) : 1550027. http://dx.doi.org/10.1142/s0219024915500272.
Texte intégralAtamanyuk, Volodymyr, et Yaroslav Gumnytskyi. « Mass Exchange Dynamics During the Second Filtration Drying Period ». Chemistry & ; Chemical Technology 3, no 2 (15 juin 2009) : 129–37. http://dx.doi.org/10.23939/chcht03.02.129.
Texte intégralRazvan, M. R. « On Conley's fundamental theorem of dynamical systems ». International Journal of Mathematics and Mathematical Sciences 2004, no 26 (2004) : 1397–401. http://dx.doi.org/10.1155/s0161171204202125.
Texte intégralSavrassov, Ju S. « Algorithms of filtration and extrapolation for discrete-time dynamical systems ». Acta Applicandae Mathematicae 30, no 3 (mars 1993) : 193–263. http://dx.doi.org/10.1007/bf00995471.
Texte intégralDuda, Zdzisław. « Hierarchical filtration for distributed linear multisensor systems ». Archives of Control Sciences 22, no 4 (1 décembre 2012) : 507–18. http://dx.doi.org/10.2478/v10170-011-0038-7.
Texte intégralH.Z, Igamberdiev, et Kholodzhayev B.A. « ALGORITHMS FOR SUSTAINABLE RECOVERY OF INPUT INFLUENCE ON THE BASIS OF DYNAMIC FILTRATION METHODS ». International Journal of Psychosocial Rehabilitation 24, no 03 (18 février 2020) : 232–39. http://dx.doi.org/10.37200/ijpr/v24i3/pr200774.
Texte intégralBang, Jong-Geun, et Yoong-Sup Yoon. « Analysis of Filtration Performance by Brownian Dynamics ». Transactions of the Korean Society of Mechanical Engineers B 33, no 10 (1 octobre 2009) : 811–19. http://dx.doi.org/10.3795/ksme-b.2009.33.10.811.
Texte intégralThèses sur le sujet "Dynamical filtrations"
Benzoni, Séverin. « Classification des filtrations dynamiques et étude des systèmes d'entropie positive ». Electronic Thesis or Diss., Normandie, 2024. https://theses.hal.science/tel-04835404.
Texte intégralIn this thesis, we explore the possible structures of measure preserving dynamical systems of the form $\bfX :=(X, \A, \mu, T)$ and their factor $\s$-algebras $\B \subset \A$. The first two chapters investigate various ways in which a factor $\s$-algebra $\B$ can sit in a dynamical system $\bfX :=(X, \A, \mu, T)$, i.e. we study some possible structures of the \emph{extension} $\A \arr \B$. In the first chapter, we consider the concepts of \emph{super-innovations} and \emph{standardness} of extensions, which are inspired from the theory of filtrations. An important focus of our work is the introduction of the notion of \emph{confined extensions}, which first interested us because they have no super-innovation. We give several examples and study additional properties of confined extensions, including several lifting results. Then, we show our main result: the existence of non-standard extensions. Finally, this result finds an application to the study of dynamical filtrations, i.e. filtrations of the form $(\F_n)_{n \leq 0}$ such that each $\F_n$ is a factor $\s$-algebra. We show that there exist \emph{non-standard I-cosy dynamical filtrations}.The second chapter furthers the study of confined extensions by finding a new kind of such extensions, in the setup of Poisson suspensions: we take an infinite $\s$-finite measure-preserving dynamical system $(X, \mu, T)$ and a compact extension $(X \times G, \mu \otimes m_G, T_\phi)$, then we consider the corresponding Poisson extension $((X \times G)^*, (\mu \otimes m_G)^*, (T_\phi)_*) \to (X^*, \mu^*, T_*)$. We give conditions under which that extension is confined and build an example which fits those conditions.Lastly, the third chapter focuses on a family of dynamical filtrations: \emph{weak Pinsker filtrations}. The existence of those filtrations on any ergodic system comes from a recent result by Austin \cite{austin}, and they present themselves as a potential tool to describe positive entropy systems. We explore the links between the asymptotic structure of weak Pinsker filtrations and the properties of the underlying dynamical system. Naturally, we also ask whether, on a given system, the structure of weak Pinsker filtrations is unique up to isomorphism. We give a partial answer, in the case where the underlying system is Bernoulli. We conclude our work by giving two explicit examples of weak Pinsker filtrations
Lanthier, Paul. « Aspects ergodiques et algébriques des automates cellulaires ». Thesis, Normandie, 2020. http://www.theses.fr/2020NORMR034.
Texte intégralThe first part of this manuscript falls within the framework of probability theory, and is devoted to the study of filtrations generated by some cellular automata. We study two versions of an algebraic automaton acting on configurations whose states take values in a finite Abelian group: one is deterministic, and consists in adding the states of two consecutive cells, and the second is a random perturbation of the first one. From these automata, random Markovian processes are constructed and the filtrations generated by these processes are studied. Using the I-cosiness criterion, we show that the two filtrations are standard in the sense developed by Vershik. However, cellular automata have the particularity of commuting with the coordinate shift operator. In this thesis, we introduce a new classification of the filtrations called "dynamic" which takes into account the action of this transformation. Filtrations are no longer defined on probability spaces but on dynamical systems, and are in this case "factor" filtrations: each sigma-algebra is invariant by the dynamics of the system. The counterpart of standardity from the dynamic point of view is studied. This creates a necessary criterion for dynamic standardity called "dynamic I-cosiness". The question of whether the dynamic I-cosiness is sufficient remains open, but a first result in this direction is given, showing that a strengthened version of the dynamic I-cosiness leads to dynamic standardity. By establishing that it does not satisfy the criterion of dynamic I-cosiness, it is proved that the factor filtration generated by the deterministic automaton is not dynamically standard, and therefore that the dynamic classification of the filtrations differs from the classification developed by Vershik. The probabilistic automaton depends on an error parameter, and it is shown by a percolation argument that the factor filtration generated by this automaton is dynamically standard for large enough values of this parameter. It is conjectured that it will not be dynamically standard for very small values of this parameter. The second part of this manuscript, more algebraic, has its origin in a musical problem, linked to the calculation of intervals in a periodic melodic line. The work presented here continues the research of the Romanian composer Anatol Vieru and of Moreno Andreatta and Dan Vuza, but in an original way from the point of view of cellular automata. We study the action on periodic sequences of two algebraic cellular automata, one of which is identical to that of the first part. The questions on the characterization of reducible and reproducible sequences as well as the associated times have been deepened and improved for these two automata. The calculation of preimages and images via the two automata was explained. The question of the evolution of the periods was treated with the creation of a tool called "characteristic" which allows to describe and control the evolution of the period in negative times. Simulations show that the evolution of the periods when the preimages are drawn at random follows an almost regular pattern, and the explanation of this phenomenon remains an open question. The mathematical results of this second part have been used in the "Automaton" module of a free composing software called "UPISketch ». This module allows a composer to create melodic lines by iterating images or taking successive preimages of a starting melodic line
Khan, Muhammad Waleed. « Dynamic filtration at soil-geotextile interfaces ». Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/39882/.
Texte intégralTurkson, Abraham K. « Electro-ultrafiltration with rotating dynamic membranes ». Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=72036.
Texte intégralFour dynamic membranes, Zr(IV) oxide, calcium oleate, poly-2-vinylpyridine and cadmium sulfide, were used to filter bovine serum albumin (BSA) in a disodium phosphate solution at pH = 8 and Prussian blue in distilled water. Prussian blue is a particle of 0.01(mu)m diameter with a zeta potential of -41mV while BSA is a macromolecule of 69,000 molecular weight, a Stokes-Einstein radius of 0.0038(mu)m and a zeta potential of -23.3mV at pH = 8. For BSA, the flux declined with time while the rejection increased. Filtrate fluxes increased with rotation rate and electric field and declined with concentration for both feeds. The flux declined beyond N = 2000rpm and was constant above C(,0) = 5.0wt%. For Prussian blue, the rejection was greater than 90% at all levels of E, N and C(,0). For BSA, the rejection increased with rotation rate and declined with concentration. The BSA rejection declined above N = 2000rpm and was constant beyond C(,0) = 0.5wt%.
A mathematical model was derived to predict the time variation of filtrate flux and a rejection model was used to predict the effect of surface concentration on BSA rejection.
Schousboe, Frederik Carl. « Media Velocity Considerations in Pleated Air Filtration ». Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6632.
Texte intégralWang, Yuyan. « Simulation of pulsatile flow in baffled permeable channel for membrane filtration system ». Thesis, University of Bath, 1993. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332793.
Texte intégralFLEISCHMAN, GREGORY JOSEPH. « FLUID FILTRATION FROM CAPILLARY NETWORKS (MICROCIRCULATION, MATHEMATICAL MODELING) ». Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/187998.
Texte intégralCao, Shiya. « Analysis of Household Water Filtration in China : A System Dynamics Model ». Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/1268.
Texte intégralArthur, Kevin Gordon. « An experimental and theoretical study of the filtration characteristics of water-based drilling muds ». Thesis, Heriot-Watt University, 1986. http://hdl.handle.net/10399/1082.
Texte intégralRoberts, Mark. « Assessment of glomerular dynamics in human pregnancy using theoretical analysis and dextran sieving coefficients ». Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336811.
Texte intégralLivres sur le sujet "Dynamical filtrations"
Klotz, Dietmar. Berechnete Durchlässigkeiten handelsüblicher Brunnenfilterrohre und Kunststoff-Kiesbelagfilter (Stand 1990). Neuherberg : GSF-Forschungszentrum für Umwelt und Gesundheit, 1991.
Trouver le texte intégralJohn, Harlim, dir. Filtering complex turbulent systems. Cambridge : Cambridge University Press, 2012.
Trouver le texte intégralV, Panfilova I., dir. Osrednennye modeli filtrat͡s︡ionnykh prot͡s︡essov s neodnorodnoĭ vnutrenneĭ strukturoĭ. Moskva : "Nauka", 1996.
Trouver le texte intégralPankov, V. N. (Viktor Nikolaevich) et Panʹko, S. V. (Sergeĭ Vasilʹevich), dir. Matematicheskai︠a︡ teorii︠a︡ t︠s︡elikov ostatochnoĭ vi︠a︡zkoplastichnoĭ nefti. Tomsk : Izd-vo Tomskogo universiteta, 1989.
Trouver le texte intégralMazo, Aleksandr, et Konstantin Potashev. The superelements. Modeling of oil fields development. ru : INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1043236.
Texte intégralEspedal, M. S. Filtration in porous media and industrial application : Lectures given at the 4th session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Cetraro, Italy, August 24-29, 1998. Sous la direction de Fasano A, Mikelić A et Centro internazionale matematico estivo. Berlin : Springer, 2000.
Trouver le texte intégralEndlich, Karlhans, et Rodger Loutzenhiser. Tubuloglomerular feedback, renal autoregulation, and renal protection. Sous la direction de Neil Turner. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0209.
Texte intégralCharry, Luisa, Pranav Gupta et Vimal Thakoor. Introducing a Semi-Structural Macroeconomic Model for Rwanda. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198785811.003.0018.
Texte intégralAndrle, Michal, Andrew Berg, R. Armando Morales, Rafael Portillo et Jan Vlcek. On the Sources of Inflation in Kenya. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198785811.003.0015.
Texte intégralEspedal, M. S., et A. Mikelic. Filtration in Porous Media and Industrial Application : Lectures given at the 4th Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held ... Mathematics / Fondazione C.I.M.E., Firenze). Springer, 2001.
Trouver le texte intégralChapitres de livres sur le sujet "Dynamical filtrations"
Shub, Michael. « Filtrations ». Dans Global Stability of Dynamical Systems, 8–12. New York, NY : Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4757-1947-5_2.
Texte intégralShub, Michael. « Sequences of Filtrations ». Dans Global Stability of Dynamical Systems, 13–19. New York, NY : Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4757-1947-5_3.
Texte intégralÇetin, Umut, et Albina Danilova. « Static Markov Bridges and Enlargement of Filtrations ». Dans Dynamic Markov Bridges and Market Microstructure, 81–117. New York, NY : Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8835-8_4.
Texte intégralSpitzenberger, Andy, Katrin Bauer et Rüdiger Schwarze. « Reactive Cleaning and Active Filtration in Continuous Steel Casting ». Dans Multifunctional Ceramic Filter Systems for Metal Melt Filtration, 427–52. Cham : Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-40930-1_17.
Texte intégralSirbiladze, Gia. « Problems of States Estimation (Filtration) of Extremal Fuzzy Processes ». Dans Extremal Fuzzy Dynamic Systems, 255–88. New York, NY : Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4250-9_8.
Texte intégralKempken, R., H. Rechtsteiner, J. Schäfer, U. Katz, O. Dick, R. Weidemeier et I. Sellick. « Dynamic Membrane Filtration in Mammalian Cell Culture Harvest ». Dans Animal Cell Technology, 379–84. Dordrecht : Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5404-8_60.
Texte intégralXie, Xiaomin, Wenxiang Zhang, Luhui Ding, Philippe Schmitz et Luc Fillaudeau. « Hydrodynamic Enhancement by Dynamic Filtration for Environmental Applications ». Dans Environmental Chemistry for a Sustainable World, 243–64. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33978-4_6.
Texte intégralRõõm, Rein, et Aarne Männik. « Acoustic Filtration in Pressure-Coordinate Models ». Dans IUTAM Symposium on Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics, 221–26. Dordrecht : Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0792-4_29.
Texte intégralNicklas, Jan, Lisa Ditscherlein, Shyamal Roy, Stefan Sandfeld et Urs A. Peuker. « Microprocesses of Agglomeration, Hetero-coagulation and Particle Deposition of Poorly Wetted Surfaces in the Context of Metal Melt Filtration and Their Scale Up ». Dans Multifunctional Ceramic Filter Systems for Metal Melt Filtration, 361–86. Cham : Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-40930-1_15.
Texte intégralBoguslavskiy, Josif A. « Identification of Parameters of Nonlinear Dynamic Systems ; Smoothing, Filtration, Forecasting of State Vectors ». Dans Dynamic Systems Models, 71–108. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-04036-3_5.
Texte intégralActes de conférences sur le sujet "Dynamical filtrations"
Mao, Xinyu, Irmgard Bischofberger et Anette E. Hosoi. « Poster : Manta-inspired filtration ». Dans 77th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2024. http://dx.doi.org/10.1103/aps.dfd.2024.gfm.p2673818.
Texte intégralErshov, Ivan A., Oleg V. Stukach, Igor V. Sychev et Igor B. Tsydenzhapov. « The Wavelet Filtration Denoising in the Raman Distributed Temperature Sensing ». Dans 2020 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2020. http://dx.doi.org/10.1109/dynamics50954.2020.9306138.
Texte intégralBelim, S. V., et S. B. Larionov. « The algorithm of the impulse noise filtration in images based on an algorithm of community detection in graphs ». Dans 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2017. http://dx.doi.org/10.1109/dynamics.2017.8239433.
Texte intégralVan Der Zwaag, Claas H., Tor Henry Omland et Tore Vandbakk. « Dynamic Filtration : Seepage Losses on Tyrihans ». Dans SPE International Symposium and Exhibition on Formation Damage Control. Society of Petroleum Engineers, 2012. http://dx.doi.org/10.2118/151678-ms.
Texte intégralPeng, Shuang Jiu, et J. M. Peden. « Prediction of Filtration Under Dynamic Conditions ». Dans SPE Formation Damage Control Symposium. Society of Petroleum Engineers, 1992. http://dx.doi.org/10.2118/23824-ms.
Texte intégralErshov, Ivan A., Oleg V. Stukach, Nina V. Myasnikova, Igor B. Tsydenzhapov et Igor V. Sychev. « The Resolution Enhancement in the Distributed Temperature Sensor with the Extremal Filtration Method ». Dans 2020 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2020. http://dx.doi.org/10.1109/dynamics50954.2020.9306163.
Texte intégralVaussard, A., M. Martin, O. Konirsch et J. M. Patroni. « An Experimental Study of Drilling Fluids Dynamic Filtration ». Dans SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1986. http://dx.doi.org/10.2118/15412-ms.
Texte intégralLi, D., B. Rong, X. Rui et Y. Liu. « Modelling of cake filtration in centrifugal dewatering by finite difference ». Dans 1st International Conference on Mechanical System Dynamics (ICMSD 2022). Institution of Engineering and Technology, 2022. http://dx.doi.org/10.1049/icp.2022.1791.
Texte intégralLu, Junfeng, Yang Chu et Wen-Qiang Lu. « An Investigation for the Usability of K-K Equations for Nano Porous Membranes ». Dans ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18088.
Texte intégralOviroh, Peter Ozaveshe, Lesego M. Mohlala et Tien-Chien Jen. « Effects of Defects on Nanoporous Graphene and MoS2 ». Dans ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23442.
Texte intégralRapports d'organisations sur le sujet "Dynamical filtrations"
Clague, D., T. Weisgraber, J. Rockway et K. McBride. Dynamic simulation tools for the analysis and optimization of novel collection, filtration and sample preparation systems. Office of Scientific and Technical Information (OSTI), février 2006. http://dx.doi.org/10.2172/894770.
Texte intégral