Littérature scientifique sur le sujet « Dynamic Graph Generation »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Dynamic Graph Generation ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Dynamic Graph Generation"
Fan, Shaohua, Shuyang Zhang, Xiao Wang et Chuan Shi. « Directed Acyclic Graph Structure Learning from Dynamic Graphs ». Proceedings of the AAAI Conference on Artificial Intelligence 37, no 6 (26 juin 2023) : 7512–21. http://dx.doi.org/10.1609/aaai.v37i6.25913.
Texte intégralKe, Qingchao, et Jian Lin. « Dynamic Generation of Knowledge Graph Supporting STEAM Learning Theme Design ». Applied Sciences 12, no 21 (30 octobre 2022) : 11001. http://dx.doi.org/10.3390/app122111001.
Texte intégralChen, Libin, Luyao Wang, Chengyi Zeng, Hongfu Liu et Jing Chen. « DHGEEP : A Dynamic Heterogeneous Graph-Embedding Method for Evolutionary Prediction ». Mathematics 10, no 22 (9 novembre 2022) : 4193. http://dx.doi.org/10.3390/math10224193.
Texte intégralYang, Yu, An Wang, Hua Wang, Wei-Ting Zhao et Dao-Qiang Sun. « On Subtrees of Fan Graphs, Wheel Graphs, and “Partitions” of Wheel Graphs under Dynamic Evolution ». Mathematics 7, no 5 (24 mai 2019) : 472. http://dx.doi.org/10.3390/math7050472.
Texte intégralSingh, Priyank Kumar, Sami Ur Rehman, Darshan J, Shobha G et Deepamala N. « Automated dynamic schema generation using knowledge graph ». IAES International Journal of Artificial Intelligence (IJ-AI) 11, no 4 (1 décembre 2022) : 1261. http://dx.doi.org/10.11591/ijai.v11.i4.pp1261-1269.
Texte intégralKumari, Kabita, et Hashim Zahoor. « SmartGraphAI : Real Time Graph Generation with AI ». INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no 11 (27 novembre 2024) : 1–8. http://dx.doi.org/10.55041/ijsrem39110.
Texte intégralShen, Yanyan, Lei Chen, Jingzhi Fang, Xin Zhang, Shihong Gao et Hongbo Yin. « Efficient Training of Graph Neural Networks on Large Graphs ». Proceedings of the VLDB Endowment 17, no 12 (août 2024) : 4237–40. http://dx.doi.org/10.14778/3685800.3685844.
Texte intégralChen, I.-Ming, et Guilin Yang. « Automatic Model Generation for Modular Reconfigurable Robot Dynamics ». Journal of Dynamic Systems, Measurement, and Control 120, no 3 (1 septembre 1998) : 346–52. http://dx.doi.org/10.1115/1.2805408.
Texte intégralChen, Jin, Xiaofeng Ji et Xinxiao Wu. « Adaptive Image-to-Video Scene Graph Generation via Knowledge Reasoning and Adversarial Learning ». Proceedings of the AAAI Conference on Artificial Intelligence 36, no 1 (28 juin 2022) : 276–84. http://dx.doi.org/10.1609/aaai.v36i1.19903.
Texte intégralMaghawry, Noura, Samy Ghoniemy, Eman Shaaban et Karim Emara. « An Automatic Generation of Heterogeneous Knowledge Graph for Global Disease Support : A Demonstration of a Cancer Use Case ». Big Data and Cognitive Computing 7, no 1 (24 janvier 2023) : 21. http://dx.doi.org/10.3390/bdcc7010021.
Texte intégralThèses sur le sujet "Dynamic Graph Generation"
Bridonneau, Vincent. « Generation and Analysis of Dynamic Graphs ». Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH23.
Texte intégralIn this thesis, we investigate iterative processes producing a flow of graphs. These processes findapplications both in complex networks and time-varying graphs. Starting from an initial configurationcalled a seed, these processes produce a continuous flow of graphs. A key question arises when theseprocesses impose no constraints on the size of the generated graphs: under what conditions can we ensurethat the graphs do not become empty? And how can we account for the changes between successive stepsof the process? To address the first question, we introduced the concept of sustainability, which verifieswhether an iterative process is likely to produce graphs with periodic behaviors. We defined and studied agraph generator that highlights the many challenges encountered when exploring this notion. Regardingthe second question, we designed a metric to quantify the changes occurring between two consecutive stepsof the process. This metric was tested on various generators as well as on real-world data, demonstratingits ability to capture the dynamics of a network, whether artificial or real. The study of these two conceptshas opened the door to many new questions and strengthened the connections between complex networkanalysis and temporal graph theory
Pogulis, Jakob. « Generation of dynamic control-dependence graphs for binary programs ». Thesis, Linköpings universitet, Databas och informationsteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-110247.
Texte intégralFischer, Frank. « Dynamic Graph Generation and an Asynchronous Parallel Bundle Method Motivated by Train Timetabling ». Doctoral thesis, Universitätsbibliothek Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-118358.
Texte intégralFischer, Frank [Verfasser], Christoph [Akademischer Betreuer] Helmberg et Marco [Gutachter] Lübbecke. « Dynamic Graph Generation and an Asynchronous Parallel Bundle Method Motivated by Train Timetabling / Frank Fischer ; Gutachter : Marco Lübbecke ; Betreuer : Christoph Helmberg ». Chemnitz : Universitätsbibliothek Chemnitz, 2013. http://d-nb.info/1214245811/34.
Texte intégralZhu, Xiaoyan. « The dynamic, resource-constrained shortest path problem on an acyclic graph with application in column generation and literature review on sequence-dependent scheduling ». Texas A&M University, 2005. http://hdl.handle.net/1969.1/4996.
Texte intégralJain, Himanshu. « Dynamic Simulation of Power Systems using Three Phase Integrated Transmission and Distribution System Models : Case Study Comparisons with Traditional Analysis Methods ». Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/74234.
Texte intégralPh. D.
Gilbert, Frédéric. « Méthodes et modèles pour la visualisation de grandes masses de données multidimensionnelles nominatives dynamiques ». Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14498/document.
Texte intégralSince ten years, informations visualization domain knows a real interest.Recently, with the growing of communications, the research on social networks analysis becomes strongly active. In this thesis, we present results on dynamic social networks analysis. That means that we take into account the temporal aspect of data. We were particularly interested in communities extraction within networks and their evolutions through time. [...]
Saman, Nariman Goran. « A Framework for Secure Structural Adaptation ». Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-78658.
Texte intégralMensah, Pernelle. « Generation and Dynamic Update of Attack Graphs in Cloud Providers Infrastructures ». Thesis, CentraleSupélec, 2019. http://www.theses.fr/2019CSUP0011.
Texte intégralIn traditional environments, attack graphs can paint a picture of the security exposure of the environment. Indeed, they represent a model allowing to depict the many steps an attacker can take to compromise an asset. They can represent a basis for automated risk assessment, relying on an identification and valuation of critical assets in the network. This allows to design pro-active and reactive counter-measures for risk mitigation and can be leveraged for security monitoring and network hardening.Our thesis aims to apply a similar approach in Cloud environments, which implies to consider new challenges incurred by these modern infrastructures, since the majority of attack graph methods were designed with traditional environments in mind. Novel virtualization attack scenarios, as well as inherent properties of the Cloud, namely elasticity and dynamism are a cause for concern.To realize this objective, a thorough inventory of virtualization vulnerabilities was performed, for the extension of existing vulnerability templates. Based on an attack graph representation model suitable to the Cloud scale, we were able to leverage Cloud and SDN technologies, with the purpose of building Cloud attack graphs and maintain them in an up-to-date state. Algorithms able to cope with the frequent rate of change occurring in virtualized environments were designed and extensively tested on a real scale Cloud platform for performance evaluation, confirming the validity of the methods proposed in this thesis, in order to enable Cloud administrator to dispose of an up-to-date Cloud attack graph
Siddiqui, Asher. « Capturing JUnit Behavior into Static Programs : Static Testing Framework ». Thesis, Linnaeus University, School of Computer Science, Physics and Mathematics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-5510.
Texte intégralIn this research paper, it evaluates the benefits achievable from static testing framework by analyzing and transforming the JUnit3.8 source code and static execution of transformed code. Static structure enables us to analyze the code statically during creation and execution of test cases. The concept of research is by now well established in static analysis and testing development. The research approach is also increasingly affecting the static testing process and such research oriented work has proved particularly valuable for those of us who want to understand the reflective behavior of JUnit3.8 Framework.
JUnit3.8 Framework uses Java Reflection API to invoke core functionality (test cases creation and execution) dynamically. However, Java Reflection API allows developers to access and modify structure and behavior of a program. Reflection provides flexible solution for creating test cases and controlling the execution of test cases. Java reflection helps to encapsulate test cases in a single object representing the test suite. It also helps to associate each test method with a test object. Where reflection is a powerful tool to perform potential operations, on the other hand, it limits static analysis. Static analysis tools often cannot work effectively with reflection.
In order to avoid the reflection, Static Testing Framework provides a static platform to analyze the JUnit3.8 source code and transform it into non-reflective version that emulates the dynamic behavior of JUnit3.8. The transformed source code has possible leverage to replace reflection with static code and does same things in an execution environment of Static Testing Framework that reflection does in JUnit3.8. More besides, the transformed code also enables execution environment of Static Testing Framework to run test methods statically. In order to measure the degree of efficiency, the implemented tool is evaluated. The evaluation of Static Testing Framework draws results for different Java projects and these statistical data is compared with JUnit3.8 results to measure the effectiveness of Static Testing Framework. As a result of evaluation, STF can be used for static creation and execution of test cases up to JUnit3.8 where test cases are not creating within a test class and where real definition of constructors is not required. These problems can be dealt as future work by introducing a middle layer to execute test fixtures for each test method and by generating test classes as per real definition of constructors.
Livres sur le sujet "Dynamic Graph Generation"
Osipenko, Georgiy. Computer-oriented methods of dynamic systems. ru : INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/1912470.
Texte intégralMikov, Aleksandr. Generalized graphs and grammars. ru : INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1013698.
Texte intégralReynolds, Alan. Income and Wealth. Greenwood, 2006. http://dx.doi.org/10.5040/9798400669460.
Texte intégralChapitres de livres sur le sujet "Dynamic Graph Generation"
Grammatikakis, Konstantinos-Panagiotis, et Nicholas Kolokotronis. « Attack Graph Generation ». Dans Cyber-Security Threats, Actors, and Dynamic Mitigation, 281–334. Boca Raton : CRC Press, 2021. : CRC Press, 2021. http://dx.doi.org/10.1201/9781003006145-8.
Texte intégralZhang, Wenbin, Liming Zhang, Dieter Pfoser et Liang Zhao. « Disentangled Dynamic Graph Deep Generation ». Dans Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), 738–46. Philadelphia, PA : Society for Industrial and Applied Mathematics, 2021. http://dx.doi.org/10.1137/1.9781611976700.83.
Texte intégralKhademi, Mahmoud, et Oliver Schulte. « Dynamic Gated Graph Neural Networks for Scene Graph Generation ». Dans Computer Vision – ACCV 2018, 669–85. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20876-9_42.
Texte intégralFan, Feifan, Runwei Qiang, Chao Lv, Wayne Xin Zhao et Jianwu Yang. « Tweet Timeline Generation via Graph-Based Dynamic Greedy Clustering ». Dans Information Retrieval Technology, 304–16. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-28940-3_24.
Texte intégralHu, Lingfeng, Si Liu et Hanzi Wang. « An Effective Dynamic Reweighting Method for Unbiased Scene Graph Generation ». Dans Pattern Recognition and Computer Vision, 345–56. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-8429-9_28.
Texte intégralKrause, Franz, Kabul Kurniawan, Elmar Kiesling, Jorge Martinez-Gil, Thomas Hoch, Mario Pichler, Bernhard Heinzl et Bernhard Moser. « Leveraging Semantic Representations via Knowledge Graph Embeddings ». Dans Artificial Intelligence in Manufacturing, 71–85. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-46452-2_5.
Texte intégralYu, Hong Qing. « Dynamic Causality Knowledge Graph Generation for Supporting the Chatbot Healthcare System ». Dans Advances in Intelligent Systems and Computing, 30–45. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63092-8_3.
Texte intégralXiong, Yun, Yao Zhang, Hanjie Fu, Wei Wang, Yangyong Zhu et Philip S. Yu. « DynGraphGAN : Dynamic Graph Embedding via Generative Adversarial Networks ». Dans Database Systems for Advanced Applications, 536–52. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18576-3_32.
Texte intégralCao, Yuan, Rafael Fuchs et Anita Keshmirian. « Enhancing Argument Generation Using Bayesian Networks ». Dans Robust Argumentation Machines, 253–65. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-63536-6_15.
Texte intégralAllen, Robert B. « Using Causal Threads to Explain Changes in a Dynamic System ». Dans Leveraging Generative Intelligence in Digital Libraries : Towards Human-Machine Collaboration, 211–19. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-8088-8_18.
Texte intégralActes de conférences sur le sujet "Dynamic Graph Generation"
You, Sisi, et Bing-Kun Bao. « Dynamic Scene Graph Generation with Unified Temporal Modeling ». Dans 2024 IEEE International Conference on Multimedia and Expo (ICME), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icme57554.2024.10687612.
Texte intégralGao, Dequan, Jiwei Li, Xuewei Ding, Bao Feng, Zhifan Wang et Linfeng Zhang. « Database Alarm Reasoning with Event Knowledge Graph Based on Graph Attention Network and Dynamic Pattern Matching ». Dans 2024 Sixth International Conference on Next Generation Data-driven Networks (NGDN), 255–62. IEEE, 2024. http://dx.doi.org/10.1109/ngdn61651.2024.10744104.
Texte intégralWang, Song, Zhenming Zhang, Wei Li, Chen Yin, Yu Ma et Weiyao Xu. « Dynamic Residual Graph Attention Network for Network Intrusion Detection System ». Dans 2024 Sixth International Conference on Next Generation Data-driven Networks (NGDN), 53–56. IEEE, 2024. http://dx.doi.org/10.1109/ngdn61651.2024.10744080.
Texte intégralKhandelwal, Anant. « FloCoDe : Unbiased Dynamic Scene Graph Generation with Temporal Consistency and Correlation Debiasing ». Dans 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2516–26. IEEE, 2024. http://dx.doi.org/10.1109/cvprw63382.2024.00258.
Texte intégralChang, Che, Cheng-Hsiang Chiu, Boyang Zhang et Tsung-Wei Huang. « Incremental Critical Path Generation for Dynamic Graphs ». Dans 2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 771–74. IEEE, 2024. http://dx.doi.org/10.1109/isvlsi61997.2024.00150.
Texte intégralLiang, Xun, Hanyu Wang, Shichao Song, Mengting Hu, Xunzhi Wang, Zhiyu Li, Feiyu Xiong et Bo Tang. « Controlled Text Generation for Large Language Model with Dynamic Attribute Graphs ». Dans Findings of the Association for Computational Linguistics ACL 2024, 5797–814. Stroudsburg, PA, USA : Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.findings-acl.345.
Texte intégralYu, Zidong, Changhe Zhang, Xiaoyun Wang et Chao Deng. « End-to-End Hand Gesture Recognition Based on Dynamic Graph Topology Generating Mechanism and Weighted Graph Isomorphism Network ». Dans 2024 30th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/m2vip62491.2024.10746060.
Texte intégralKim, Daesik, YoungJoon Yoo, Jeesoo Kim, Sangkuk Lee et Nojun Kwak. « Dynamic Graph Generation Network : Generating Relational Knowledge from Diagrams ». Dans 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018. http://dx.doi.org/10.1109/cvpr.2018.00438.
Texte intégralZhou, Hao, Tom Young, Minlie Huang, Haizhou Zhao, Jingfang Xu et Xiaoyan Zhu. « Commonsense Knowledge Aware Conversation Generation with Graph Attention ». Dans Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California : International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/643.
Texte intégralLiang, Jiafeng, Yuxin Wang, Zekun Wang, Ming Liu, Ruiji Fu, Zhongyuan Wang et Bing Qin. « GTR : A Grafting-Then-Reassembling Framework for Dynamic Scene Graph Generation ». Dans Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California : International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/131.
Texte intégral