Articles de revues sur le sujet « Dynamic contrast »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Dynamic contrast.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Dynamic contrast ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Halder, Amiya. « Dynamic Contrast Enhancement Algorithm ». International Journal of Computer Applications 74, no 12 (26 juillet 2013) : 1–4. http://dx.doi.org/10.5120/12934-9879.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Husband, J. E. « Fast dynamic contrast MRI ». European Journal of Cancer 35 (septembre 1999) : S306. http://dx.doi.org/10.1016/s0959-8049(99)81654-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Miles, K. A. « Dynamic contrast enhanced MR ». Clinical Radiology 51, no 1 (janvier 1996) : 78. http://dx.doi.org/10.1016/s0009-9260(96)80231-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Buckley, D., S. Blackband et R. Kerslake. « Dynamic contrast enhanced MR ». Clinical Radiology 51, no 1 (janvier 1996) : 78–79. http://dx.doi.org/10.1016/s0009-9260(96)80232-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Victor, Jonathan D., Mary M. Conte et Keith P. Purpura. « Dynamic shifts of the contrast-response function ». Visual Neuroscience 14, no 3 (mai 1997) : 577–87. http://dx.doi.org/10.1017/s0952523800012232.

Texte intégral
Résumé :
AbstractWe recorded visual evoked potentials in response to square-wave contrast-reversal checkerboards undergoing a transition in the mean contrast level. Checkerboards were modulated at 4.22 Hz (8.45-Hz reversal rate). After each set of 16 cycles of reversals, stimulus contrast abruptly switched between a “high” contrast level (0.06 to 1.0) to a “low” contrast level (0.03 to 0.5). Higher contrasts attenuated responses to lower contrasts by up to a factor of 2 during the period immediately following the contrast change. Contrast-response functions derived from the initial second following a conditioning contrast shifted by a factor of 2–4 along the contrast axis. For low-contrast stimuli, response phase was an advancing function of the contrast level in the immediately preceding second. For high-contrast stimuli, response phase was independent of the prior contrast history. Steady stimulation for periods as long as 1 min produced only minor effects on response amplitude, and no detectable effects on response phase. These observations delineate the dynamics of a contrast gain control in human vision.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Padhani, A. R. « Dynamic contrast-enhanced MR imaging ». Cancer Imaging 1, no 1 (2000) : 52–63. http://dx.doi.org/10.1102/1470-7330/00/010052+12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kelemen, Zsolt, Ruikang Zhang, Lionel Gissot, Raja Chouket, Yannick Bellec, Vincent Croquette, Ludovic Jullien, Jean-Denis Faure et Thomas Le Saux. « Dynamic Contrast for Plant Phenotyping ». ACS Omega 5, no 25 (16 juin 2020) : 15105–14. http://dx.doi.org/10.1021/acsomega.0c00957.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Lenkinski, Robert E. « Dynamic contrast-enhanced MR studies ». Academic Radiology 10, no 9 (septembre 2003) : 961–62. http://dx.doi.org/10.1016/s1076-6332(03)00296-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Buxton, Richard B. « Dynamic models of BOLD contrast ». NeuroImage 62, no 2 (août 2012) : 953–61. http://dx.doi.org/10.1016/j.neuroimage.2012.01.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Brix, Gunnar, Ursula Lechel, Markus Petersheim, Radko Krissak et Christian Fink. « Dynamic Contrast-Enhanced CT Studies ». Investigative Radiology 46, no 1 (janvier 2011) : 64–70. http://dx.doi.org/10.1097/rli.0b013e3181f33b35.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Shah, Gaurang V., Nancy J. Fischbein, Dheeraj Gandhi et Suresh K. Mukherji. « Dynamic Contrast-Enhanced MR Imaging ». Topics in Magnetic Resonance Imaging 15, no 2 (avril 2004) : 71–77. http://dx.doi.org/10.1097/01.ftd.0000136399.78067.dd.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Demi, Libertario, Ruud van Sloun, Hessel Wijkstra et Massimo Mischi. « Dynamic contrast specific ultrasound tomography ». Journal of the Acoustical Society of America 140, no 4 (octobre 2016) : 3420. http://dx.doi.org/10.1121/1.4970998.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Braunagel, Margarita, Andreas Helck, Anne Wagner, Nina Schupp, Verena Bröcker, Maximilian Reiser, Mike Notohamiprodjo, Bruno Meiser et Antje Habicht. « Dynamic Contrast-Enhanced Computed Tomography ». Investigative Radiology 51, no 5 (mai 2016) : 316–22. http://dx.doi.org/10.1097/rli.0000000000000245.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Yan, Yuling, Xilin Sun et Baozhong Shen. « Contrast agents in dynamic contrast-enhanced magnetic resonance imaging ». Oncotarget 8, no 26 (22 mars 2017) : 43491–505. http://dx.doi.org/10.18632/oncotarget.16482.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Anzalone, Nicoletta, Antonella Castellano, Marcello Cadioli, Gian Marco Conte, Valeria Cuccarini, Alberto Bizzi, Marco Grimaldi et al. « Brain Gliomas : Multicenter Standardized Assessment of Dynamic Contrast-enhanced and Dynamic Susceptibility Contrast MR Images ». Radiology 287, no 3 (juin 2018) : 933–43. http://dx.doi.org/10.1148/radiol.2017170362.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Naish, J. H., D. M. McGrath, L. J. Bains, K. Passera, C. Roberts, Y. Watson, S. Cheung et al. « Comparison of dynamic contrast-enhanced MRI and dynamic contrast-enhanced CT biomarkers in bladder cancer ». Magnetic Resonance in Medicine 66, no 1 (24 mars 2011) : 219–26. http://dx.doi.org/10.1002/mrm.22774.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Gilbert, Fiona J., et Trevor S. Ahearn. « Dynamic contrast-enhanced MRI in cancer ». Imaging in Medicine 1, no 2 (décembre 2009) : 173–86. http://dx.doi.org/10.2217/iim.09.17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Huang, P. C., et R. Hess. « Dynamic dichoptic masking : luminance vs. contrast ». Journal of Vision 12, no 9 (10 août 2012) : 524. http://dx.doi.org/10.1167/12.9.524.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Miyati, Toshiaki, Harumasa Kasai, Tatsuo Banno, Kazuya Ohhashi, Takahiro Sakurai, Hirosi Kunitomo, Katuhiro Itikawa et al. « Dual Dynamic Contrast-enhanced MR Imaging ». Japanese Journal of Radiological Technology 52, no 9 (1996) : 1188. http://dx.doi.org/10.6009/jjrt.kj00001354930.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Lim, Bo, Rae-hong Park et Sunghee Kim. « High dynamic range for contrast enhancement ». IEEE Transactions on Consumer Electronics 52, no 4 (novembre 2006) : 1454–62. http://dx.doi.org/10.1109/tce.2006.273170.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Aronen, Hannu J., et Jussi Perkiö. « Dynamic susceptibility contrast MRI of gliomas ». Neuroimaging Clinics of North America 12, no 4 (novembre 2002) : 501–23. http://dx.doi.org/10.1016/s1052-5149(02)00026-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Moon, Marianne, Daniel Cornfeld et Jeffrey Weinreb. « Dynamic Contrast-Enhanced Breast MR Imaging ». Magnetic Resonance Imaging Clinics of North America 17, no 2 (mai 2009) : 351–62. http://dx.doi.org/10.1016/j.mric.2009.01.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Scialfa, C. T., P. M. Garvey, R. A. Tyrrell et H. W. Leibowitz. « Age Differences in Dynamic Contrast Thresholds ». Journal of Gerontology 47, no 3 (1 mai 1992) : P172—P175. http://dx.doi.org/10.1093/geronj/47.3.p172.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Jackson, A. « Analysis of dynamic contrast enhanced MRI ». British Journal of Radiology 77, suppl_2 (décembre 2004) : S154—S166. http://dx.doi.org/10.1259/bjr/16652509.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Münter, Michael, Malte vom Endt, Mario Pieper, Malte Casper, Martin Ahrens, Tabea Kohlfaerber, Ramtin Rahmanzadeh, Peter König, Gereon Hüttmann et Hinnerk Schulz-Hildebrandt. « Dynamic contrast in scanning microscopic OCT ». Optics Letters 45, no 17 (24 août 2020) : 4766. http://dx.doi.org/10.1364/ol.396134.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Engelhorn, Tobias, Marc A. Schwarz, Ilker Y. Eyupoglu, Stephan P. Kloska, Tobias Struffert et Arnd Doerfler. « Dynamic Contrast Enhancement of Experimental Glioma ». Academic Radiology 17, no 2 (février 2010) : 188–93. http://dx.doi.org/10.1016/j.acra.2009.08.014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Wei, Qingshan, et Alexander Wei. « Optical Imaging with Dynamic Contrast Agents ». Chemistry - A European Journal 17, no 4 (5 janvier 2011) : 1080–91. http://dx.doi.org/10.1002/chem.201002521.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Miyati, Tosiaki, Tatsuo Banno, Mitsuhito Mase, Harumasa Kasai, Hideo Shundo, Masayoshi Imazawa et Satoru Ohba. « Dual dynamic contrast-enhanced MR imaging ». Journal of Magnetic Resonance Imaging 7, no 1 (janvier 1997) : 230–35. http://dx.doi.org/10.1002/jmri.1880070136.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Lebel, Robert Marc, Jesse Jones, Jean-Christophe Ferre, Meng Law et Krishna S. Nayak. « Highly accelerated dynamic contrast enhanced imaging ». Magnetic Resonance in Medicine 71, no 2 (15 mars 2013) : 635–44. http://dx.doi.org/10.1002/mrm.24710.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Artzi, Moran, Gilad Liberman, Guy Nadav, Faina Vitinshtein, Deborah T. Blumenthal, Felix Bokstein, Orna Aizenstein et Dafna Ben Bashat. « Human cerebral blood volume measurements using dynamic contrast enhancement in comparison to dynamic susceptibility contrast MRI ». Neuroradiology 57, no 7 (7 avril 2015) : 671–78. http://dx.doi.org/10.1007/s00234-015-1518-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Kim, Hee Soo, Se Lee Kwon, Seung Hong Choi, Inpyeong Hwang, Tae Min Kim, Chul-Kee Park, Sung-Hye Park, Jae-Kyung Won, Il Han Kim et Soon Tae Lee. « Prognostication of anaplastic astrocytoma patients : application of contrast leakage information of dynamic susceptibility contrast-enhanced MRI and dynamic contrast-enhanced MRI ». European Radiology 30, no 4 (17 janvier 2020) : 2171–81. http://dx.doi.org/10.1007/s00330-019-06598-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Li, Xin, Wei Huang, Elizabeth A. Morris, Luminita A. Tudorica, Venkatraman E. Seshan, William D. Rooney, Ian Tagge, Ya Wang, Jingang Xu et Charles S. Springer. « Dynamic NMR effects in breast cancer dynamic-contrast-enhanced MRI ». Proceedings of the National Academy of Sciences 105, no 46 (13 novembre 2008) : 17937–42. http://dx.doi.org/10.1073/pnas.0804224105.

Texte intégral
Résumé :
The passage of a vascular-injected paramagnetic contrast reagent (CR) bolus through a region-of-interest affects tissue 1H2O relaxation and thus MR image intensity. For longitudinal relaxation [R1 ≡ (T1)−1], the CR must have transient molecular interactions with water. Because the CR and water molecules are never uniformly distributed in the histological-scale tissue compartments, the kinetics of equilibrium water compartmental interchange are competitive. In particular, the condition of the equilibrium trans cytolemmal water exchange NMR system sorties through different domains as the interstitial CR concentration, [CRo], waxes and wanes. Before CR, the system is in the fast-exchange-limit (FXL). Very soon after CRo arrival, it enters the fast-exchange-regime (FXR). Near maximal [CRo], the system could enter even the slow-exchange-regime (SXR). These conditions are defined herein, and a comprehensive description of how they affect quantitative pharmacokinetic analyses is presented. Data are analyzed from a population of 22 patients initially screened suspicious for breast cancer. After participating in our study, the subjects underwent biopsy/pathology procedures and only 7 (32%) were found to have malignancies. The transient departure from FXL to FXR (and apparently not SXR) is significant in only the malignant tumors, presumably because of angiogenic capillary leakiness. Thus, if accepted, this analysis would have prevented the 68% of the biopsies that proved benign.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Shen, Xiong, Peng Wang, Jingxin Zhu, Zhe Si, Yuxia Zhao, Jun Liu et Ruxin Li. « Temporal contrast reduction techniques for high dynamic-range temporal contrast measurement ». Optics Express 27, no 8 (1 avril 2019) : 10586. http://dx.doi.org/10.1364/oe.27.010586.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Fischer, Christian, Eva-Maria Preuss, Michael Tanner, Thomas Bruckner, Martin Krix, Erick Amarteifio, Matthias Miska, Arash Moghaddam-Alvandi, Gerhard Schmidmaier et Marc-André Weber. « Dynamic Contrast-Enhanced Sonography and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Preoperative Diagnosis of Infected Nonunions ». Journal of Ultrasound in Medicine 35, no 5 (1 avril 2016) : 933–42. http://dx.doi.org/10.7863/ultra.15.06107.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Quarles, C. Chad, Laura C. Bell et Ashley M. Stokes. « Imaging vascular and hemodynamic features of the brain using dynamic susceptibility contrast and dynamic contrast enhanced MRI ». NeuroImage 187 (février 2019) : 32–55. http://dx.doi.org/10.1016/j.neuroimage.2018.04.069.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Hung, Chou P., Chloe Callahan-Flintoft, Paul D. Fedele, Kim F. Fluitt, Barry D. Vaughan, Anthony J. Walker et Min Wei. « Low-contrast Acuity Under Strong Luminance Dynamics and Potential Benefits of Divisive Display Augmented Reality ». Journal of Perceptual Imaging 4, no 1 (1 mai 2021) : 10501–1. http://dx.doi.org/10.2352/j.percept.imaging.2021.4.1.010501.

Texte intégral
Résumé :
Abstract Understanding and predicting outdoor visual performance in augmented reality (AR) requires characterizing and modeling vision under strong luminance dynamics, including luminance differences of 10000-to-1 in a single image (high dynamic range, HDR). Classic models of vision, based on displays with 100-to-1 luminance contrast, have limited ability to generalize to HDR environments. An important question is whether low-contrast visibility, potentially useful for titrating saliency for AR applications, is resilient to saccade-induced strong luminance dynamics. The authors developed an HDR display system with up to 100,000-to-1 contrast and assessed how strong luminance dynamics affect low-contrast visual acuity. They show that, immediately following flashes of 25× or 100× luminance, visual acuity is unaffected at 90% letter Weber contrast and only minimally affected at lower letter contrasts (up to +0.20 LogMAR for 10% contrast). The resilience of low-contrast acuity across luminance changes opens up research on divisive display AR (ddAR) to effectively titrate salience under naturalistic HDR luminance.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Nechipay, E. A., M. B. Dolgushin, A. I. Pronin, E. A. Kobyakova et L. M. Fadeeva. « Dynamic Contrast Enhanced MRI in Glioma Diagnosis ». Medical Visualization, no 4 (28 août 2017) : 88–96. http://dx.doi.org/10.24835/1607-0763-2017-4-88-96.

Texte intégral
Résumé :
The aim: to examine the possibility of using dynamic contrast enhanced magnetic resonance imaging (DCE MRI) in clarifying the diagnosis of glial brain tumors and the differentiation between them on the basis of the malignancy degree. In this regard, the authors evaluated the effectiveness of perfusion parameters (Ktrans, Kep, Ve and iAUC).Materials and methods.The study included examination of 54 patients with an established presence of brain glial tumors. Glioma Grade I–II diagnosed in 13 (24.1%) and glioma Grade III–IV in 41 (75.9%) cases. Morphological verification of the diagnosis obtained as a result of either surgical removal of the tumor or stereotactic biopsy was achieved in 31 (57.4%) patients: glial tumors Grade I–II identified in 6 (19.4%), and glioma Grade III–IV – 25 (80.6%) cases. Results. According to DCE increasing of the malignancy degree of glial tumors is followed by increasing of all perfusion parameters: thus, the lowest values of Ktrans, Kep, Ve and iAUC were identified in low grade gliomas (0.026 min−1, 0.845 min−1, 0.024 and 1.757, respectively), the highest in gliomas Grade III–IV (0.052 min−1 1.083 min−1, 0.06 and 2.694, respectively). The most informative parameters with sensi tivity 90% and specificity 100% in the differential diagnosis of gliomas Grade I-II and Grade III-IV are Ktrans (cut-off = 0.16 min−1) and Ve (cut-off = 0.13).Conclusion.DCE MRI can be used in differential diagnosis of glial brain tumors of different malignancy grade.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Bowen, R. W., et H. de Ridder. « Dynamic Contrast Perception Assessed by Pattern Masking ». Perception 25, no 1_suppl (août 1996) : 19. http://dx.doi.org/10.1068/v96l0605.

Texte intégral
Résumé :
The perceived contrast of a pulsed grating of about 100 ms duration can exceed that of shorter or longer exposures. We investigated this contrast enhancement effect with pattern masking. The pulsed mask patterns were extended cosines (5 deg square, 35 cd m−2 mean luminance, 0.3 contrast) of 50 to 500 ms duration. Mask spatial frequency was 1 or 6 cycles deg−1. The test patterns (of equivalent spatial frequency) were sixth derivative Gaussians, either positive (ON pathway mediation) or negative (OFF pathway mediation) and of 30 ms duration. The test pattern could be centred on a light bar of the cosine (positive contrast) or a dark bar (negative contrast). Test and mask had simultaneous onset. For a 1 cycle deg−1 test and mask of the same polarity, the test threshold/mask duration function is nonmonotonic (peak at 83 – 100 ms). The function was similar for either positive or negative stimuli. Thus, we measured an analogue to the contrast enhancement effect, and found enhancement for negative as well as positive contrast components. For same-polarity 6 cycles deg−1 test and mask, threshold increased monotonically to 500 ms (no enhancement). For both 1 and 6 cycles deg−1 stimuli of opposite polarity, the threshold/mask duration function is sharply elevated and constant for masks of 83 ms or more. The same-polarity masking functions imply activation of either transient (1 cycle deg−1 stimuli) or sustained (6 cycles deg−1 stimuli) ON or OFF pathways. The opposite-polarity functions suggest that the time course of ON — OFF pathway interaction is similar for sustained and transient pathways.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Jiang, Xuyuan, Patrick Asbach, Gregor Willerding, Miriam Dulce, Ke Xu, Matthias Taupitz, Bernd Hamm et Katharina Erb-Eigner. « Dynamic contrast-enhanced MRI of ocular melanoma ». Melanoma Research 25, no 2 (avril 2015) : 149–56. http://dx.doi.org/10.1097/cmr.0000000000000142.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Thomassin-Naggara, Isabelle, Charles-André Cuenod et Daniel Balvay. « Reproducibility of Dynamic Contrast-enhanced MR Imaging ». Radiology 269, no 2 (novembre 2013) : 620–21. http://dx.doi.org/10.1148/radiol.13130902.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Chi-Chia Sun, Shanq-Jang Ruan, Mon-Chau Shie et Tun-Wen Pai. « Dynamic contrast enhancement based on histogram specification ». IEEE Transactions on Consumer Electronics 51, no 4 (novembre 2005) : 1300–1305. http://dx.doi.org/10.1109/tce.2005.1561859.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Ooi, Chen, et Nor Mat Isa. « Quadrants dynamic histogram equalization for contrast enhancement ». IEEE Transactions on Consumer Electronics 56, no 4 (novembre 2010) : 2552–59. http://dx.doi.org/10.1109/tce.2010.5681140.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Bowen, Richard W., et Huib de Ridder. « Dynamic contrast perception assessed by pattern masking ». Journal of the Optical Society of America A 15, no 3 (1 mars 1998) : 570. http://dx.doi.org/10.1364/josaa.15.000570.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Kovar, David A., Martin J. Lipton, Marta Z. Lewis, Jon N. River, Leslie Lubich et Gregory S. Karczmar. « Dynamic contrast measurements in rodent model tumors ». Academic Radiology 3 (août 1996) : S384—S386. http://dx.doi.org/10.1016/s1076-6332(96)80591-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

O'Connor, James P. B., Yvonne Watson et Alan Jackson. « Dynamic contrast-enhanced MR imaging in cancer ». Radiography 13 (décembre 2007) : e45-e53. http://dx.doi.org/10.1016/j.radi.2006.10.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Stuhrmann, Heinrich B. « Neutron contrast variation and dynamic nuclear polarisation ». Physica B : Condensed Matter 267-268 (juin 1999) : 92–96. http://dx.doi.org/10.1016/s0921-4526(99)00034-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Kelemen, Zsolt, Ruikang Zhang, Lionel Gissot, Raja Chouket, Yannick Bellec, Vincent Croquette, Ludovic Jullien, Jean-Denis Faure et Thomas Le Saux. « Correction to “Dynamic Contrast for Plant Phenotyping” ». ACS Omega 5, no 30 (21 juillet 2020) : 19312–13. http://dx.doi.org/10.1021/acsomega.0c03120.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Boxerman, Jerrold L., Mark S. Shiroishi, Benjamin M. Ellingson et Whitney B. Pope. « Dynamic Susceptibility Contrast MR Imaging in Glioma ». Magnetic Resonance Imaging Clinics of North America 24, no 4 (novembre 2016) : 649–70. http://dx.doi.org/10.1016/j.mric.2016.06.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Zhang, Hong, Yuecheng Li, Hao Chen, Ding Yuan et Mingui Sun. « Perceptual contrast enhancement with dynamic range adjustment ». Optik 124, no 23 (décembre 2013) : 5906–13. http://dx.doi.org/10.1016/j.ijleo.2013.04.046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Calamante, Fernando. « Perfusion MRI Using Dynamic-Susceptibility Contrast MRI ». Topics in Magnetic Resonance Imaging 21, no 2 (avril 2010) : 75–85. http://dx.doi.org/10.1097/rmr.0b013e31821e53f5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie