Articles de revues sur le sujet « Dye-Sensitized Photoelectrosynthetic Cell »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Dye-Sensitized Photoelectrosynthetic Cell.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 24 meilleurs articles de revues pour votre recherche sur le sujet « Dye-Sensitized Photoelectrosynthetic Cell ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Coppo, Rodolfo L., Byron H. Farnum, Benjamin D. Sherman, Neyde Y. Murakami Iha et Thomas J. Meyer. « The role of layer-by-layer, compact TiO2 films in dye-sensitized photoelectrosynthesis cells ». Sustainable Energy & ; Fuels 1, no 1 (2017) : 112–18. http://dx.doi.org/10.1039/c6se00022c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Farràs, P., C. Di Giovanni, J. N. Clifford, P. Garrido-Barros, E. Palomares et A. Llobet. « Light driven styrene epoxidation and hydrogen generation using H2O as an oxygen source in a photoelectrosynthesis cell ». Green Chemistry 18, no 1 (2016) : 255–60. http://dx.doi.org/10.1039/c5gc01589h.

Texte intégral
Résumé :
This proof-of-concept dye-sensitized photoelectrosynthesis cell is able to produce a high-value chemical by the epoxidation of an alkene in water using sunlight and, at the same time, produce a solar fuel such as hydrogen.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Orbelli Biroli, Alessio, Francesca Tessore, Gabriele Di Carlo, Maddalena Pizzotti, Elisabetta Benazzi, Francesca Gentile, Serena Berardi et al. « Fluorinated ZnII Porphyrins for Dye-Sensitized Aqueous Photoelectrosynthetic Cells ». ACS Applied Materials & ; Interfaces 11, no 36 (20 août 2019) : 32895–908. http://dx.doi.org/10.1021/acsami.9b08042.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Luo, Hanlin, Wenjing Song, Paul G. Hoertz, Kenneth Hanson, Rudresh Ghosh, Sylvie Rangan, M. Kyle Brennaman et al. « A Sensitized Nb2O5 Photoanode for Hydrogen Production in a Dye-Sensitized Photoelectrosynthesis Cell ». Chemistry of Materials 25, no 2 (28 décembre 2012) : 122–31. http://dx.doi.org/10.1021/cm3027972.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wang, Degao, Qing Huang, Weiqun Shi, Wei You et Thomas J. Meyer. « Application of Atomic Layer Deposition in Dye-Sensitized Photoelectrosynthesis Cells ». Trends in Chemistry 3, no 1 (janvier 2021) : 59–71. http://dx.doi.org/10.1016/j.trechm.2020.11.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wang, Degao, Byron H. Farnum, Matthew V. Sheridan, Seth L. Marquard, Benjamin D. Sherman et Thomas J. Meyer. « Inner Layer Control of Performance in a Dye-Sensitized Photoelectrosynthesis Cell ». ACS Applied Materials & ; Interfaces 9, no 39 (2 mars 2017) : 33533–38. http://dx.doi.org/10.1021/acsami.7b00225.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Brennaman, M. Kyle, Robert J. Dillon, Leila Alibabaei, Melissa K. Gish, Christopher J. Dares, Dennis L. Ashford, Ralph L. House, Gerald J. Meyer, John M. Papanikolas et Thomas J. Meyer. « Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells ». Journal of the American Chemical Society 138, no 40 (3 octobre 2016) : 13085–102. http://dx.doi.org/10.1021/jacs.6b06466.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Song, Wenjing, Zuofeng Chen, Christopher R. K. Glasson, Kenneth Hanson, Hanlin Luo, Michael R. Norris, Dennis L. Ashford, Javier J. Concepcion, M. Kyle Brennaman et Thomas J. Meyer. « Interfacial Dynamics and Solar Fuel Formation in Dye-Sensitized Photoelectrosynthesis Cells ». ChemPhysChem 13, no 12 (19 juin 2012) : 2882–90. http://dx.doi.org/10.1002/cphc.201200100.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Song, Wenjing, Aaron K. Vannucci, Byron H. Farnum, Alexander M. Lapides, M. Kyle Brennaman, Berç Kalanyan, Leila Alibabaei et al. « Visible Light Driven Benzyl Alcohol Dehydrogenation in a Dye-Sensitized Photoelectrosynthesis Cell ». Journal of the American Chemical Society 136, no 27 (30 juin 2014) : 9773–79. http://dx.doi.org/10.1021/ja505022f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Xu, Bo, Lei Tian, Ahmed S. Etman, Junliang Sun et Haining Tian. « Solution-processed nanoporous NiO-dye-ZnO photocathodes : Toward efficient and stable solid-state p-type dye-sensitized solar cells and dye-sensitized photoelectrosynthesis cells ». Nano Energy 55 (janvier 2019) : 59–64. http://dx.doi.org/10.1016/j.nanoen.2018.10.054.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Wang, Degao, Fujun Niu, Michael J. Mortelliti, Matthew V. Sheridan, Benjamin D. Sherman, Yong Zhu, James R. McBride et al. « A stable dye-sensitized photoelectrosynthesis cell mediated by a NiO overlayer for water oxidation ». Proceedings of the National Academy of Sciences 117, no 23 (5 septembre 2019) : 12564–71. http://dx.doi.org/10.1073/pnas.1821687116.

Texte intégral
Résumé :
In the development of photoelectrochemical cells for water splitting or CO2reduction, a major challenge is O2evolution at photoelectrodes that, in behavior, mimic photosystem II. At an appropriate semiconductor electrode, a water oxidation catalyst must be integrated with a visible light absorber in a stable half-cell configuration. Here, we describe an electrode consisting of a light absorber, an intermediate electron donor layer, and a water oxidation catalyst for sustained light driven water oxidation catalysis. In assembling the electrode on nanoparticle SnO2/TiO2electrodes, a Ru(II) polypyridyl complex was used as the light absorber, NiO was deposited as an overlayer, and a Ru(II) 2,2′-bipyridine-6,6′-dicarboxylate complex as the water oxidation catalyst. In the final electrode, addition of the NiO overlayer enhanced performance toward water oxidation with the final electrode operating with a 1.1 mA/cm2photocurrent density for 2 h without decomposition under one sun illumination in a pH 4.65 solution. We attribute the enhanced performance to the role of NiO as an electron transfer mediator between the light absorber and the catalyst.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Call, Robert W., Leila Alibabaei, Robert J. Dillon, Robin R. Knauf, Animesh Nayak, Jillian L. Dempsey, John M. Papanikolas et Rene Lopez. « Growth and Post-Deposition Treatments of SrTiO3 Films for Dye-Sensitized Photoelectrosynthesis Cell Applications ». ACS Applied Materials & ; Interfaces 8, no 19 (9 mai 2016) : 12282–90. http://dx.doi.org/10.1021/acsami.6b01289.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Wang, Degao, Lei Wang, Matthew D. Brady, Christopher J. Dares, Gerald J. Meyer, Thomas J. Meyer et Javier J. Concepcion. « Self-Assembled Chromophore–Catalyst Bilayer for Water Oxidation in a Dye-Sensitized Photoelectrosynthesis Cell ». Journal of Physical Chemistry C 123, no 50 (16 octobre 2019) : 30039–45. http://dx.doi.org/10.1021/acs.jpcc.9b07125.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Alibabaei, Leila, Benjamin D. Sherman, Michael R. Norris, M. Kyle Brennaman et Thomas J. Meyer. « Visible photoelectrochemical water splitting into H2 and O2 in a dye-sensitized photoelectrosynthesis cell ». Proceedings of the National Academy of Sciences 112, no 19 (27 avril 2015) : 5899–902. http://dx.doi.org/10.1073/pnas.1506111112.

Texte intégral
Résumé :
A hybrid strategy for solar water splitting is exploited here based on a dye-sensitized photoelectrosynthesis cell (DSPEC) with a mesoporous SnO2/TiO2 core/shell nanostructured electrode derivatized with a surface-bound Ru(II) polypyridyl-based chromophore–catalyst assembly. The assembly, [(4,4’-(PO3H2)2bpy)2Ru(4-Mebpy-4’-bimpy)Ru(tpy)(OH2)]4+ ([RuaII-RubII-OH2]4+, combines both a light absorber and a water oxidation catalyst in a single molecule. It was attached to the TiO2 shell by phosphonate-surface oxide binding. The oxide-bound assembly was further stabilized on the surface by atomic layer deposition (ALD) of either Al2O3 or TiO2 overlayers. Illumination of the resulting fluorine-doped tin oxide (FTO)|SnO2/TiO2|-[RuaII-RubII-OH2]4+(Al2O3 or TiO2) photoanodes in photoelectrochemical cells with a Pt cathode and a small applied bias resulted in visible-light water splitting as shown by direct measurements of both evolved H2 and O2. The performance of the resulting DSPECs varies with shell thickness and the nature and extent of the oxide overlayer. Use of the SnO2/TiO2 core/shell compared with nanoITO/TiO2 with the same assembly results in photocurrent enhancements of ∼5. Systematic variations in shell thickness and ALD overlayer lead to photocurrent densities as high as 1.97 mA/cm2 with 445-nm, ∼90-mW/cm2 illumination in a phosphate buffer at pH 7.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Wang, Degao, Jun Hu, Benjamin D. Sherman, Matthew V. Sheridan, Liang Yan, Christopher J. Dares, Yong Zhu et al. « A molecular tandem cell for efficient solar water splitting ». Proceedings of the National Academy of Sciences 117, no 24 (1 juin 2020) : 13256–60. http://dx.doi.org/10.1073/pnas.2001753117.

Texte intégral
Résumé :
Artificial photosynthesis provides a way to store solar energy in chemical bonds. Achieving water splitting without an applied external potential bias provides the key to artificial photosynthetic devices. We describe here a tandem photoelectrochemical cell design that combines a dye-sensitized photoelectrosynthesis cell (DSPEC) and an organic solar cell (OSC) in a photoanode for water oxidation. When combined with a Pt electrode for H2evolution, the electrode becomes part of a combined electrochemical cell for water splitting, 2H2O → O2+ 2H2, by increasing the voltage of the photoanode sufficiently to drive bias-free reduction of H+to H2. The combined electrode gave a 1.5% solar conversion efficiency for water splitting with no external applied bias, providing a mimic for the tandem cell configuration of PSII in natural photosynthesis. The electrode provided sustained water splitting in the molecular photoelectrode with sustained photocurrent densities of 1.24 mA/cm2for 1 h under 1-sun illumination with no applied bias.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Song, Wenjing, Hanlin Luo, Kenneth Hanson, Javier J. Concepcion, M. Kyle Brennaman et Thomas J. Meyer. « Visualization of cation diffusion at the TiO2 interface in dye sensitized photoelectrosynthesis cells (DSPEC) ». Energy & ; Environmental Science 6, no 4 (2013) : 1240. http://dx.doi.org/10.1039/c3ee24184j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Wang, Degao, Matthew V. Sheridan, Bing Shan, Byron H. Farnum, Seth L. Marquard, Benjamin D. Sherman, Michael S. Eberhart et al. « Layer-by-Layer Molecular Assemblies for Dye-Sensitized Photoelectrosynthesis Cells Prepared by Atomic Layer Deposition ». Journal of the American Chemical Society 139, no 41 (30 août 2017) : 14518–25. http://dx.doi.org/10.1021/jacs.7b07216.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Song, Wenjing, Zuofeng Chen, M. Kyle Brennaman, Javier J. Concepcion, Antonio Otávio T. Patrocinio, Neyde Y. Murakami Iha et Thomas J. Meyer. « Making solar fuels by artificial photosynthesis ». Pure and Applied Chemistry 83, no 4 (14 mars 2011) : 749–68. http://dx.doi.org/10.1351/pac-con-10-11-09.

Texte intégral
Résumé :
In order for solar energy to serve as a primary energy source, it must be paired with energy storage on a massive scale. At this scale, solar fuels and energy storage in chemical bonds is the only practical approach. Solar fuels are produced in massive amounts by photosynthesis with the reduction of CO2 by water to give carbohydrates but efficiencies are low. In photosystem II (PSII), the oxygen-producing site for photosynthesis, light absorption and sensitization trigger a cascade of coupled electron-proton transfer events with time scales ranging from picoseconds to microseconds. Oxidative equivalents are built up at the oxygen evolving complex (OEC) for water oxidation by the Kok cycle. A systematic approach to artificial photo-synthesis is available based on a “modular approach” in which the separate functions of a final device are studied separately, maximized for rates and stability, and used as modules in constructing integrated devices based on molecular assemblies, nanoscale arrays, self-assembled monolayers, etc. Considerable simplification is available by adopting a “dye-sensitized photoelectrosynthesis cell” (DSPEC) approach inspired by dye-sensitized solar cells (DSSCs). Water oxidation catalysis is a key feature, and significant progress has been made in developing a single-site solution and surface catalysts based on polypyridyl complexes of Ru. In this series, ligand variations can be used to tune redox potentials and reactivity over a wide range. Water oxidation electrocatalysis has been extended to chromophore-catalyst assemblies for both water oxidation and DSPEC applications.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Shan, Bing, Animesh Nayak, M. Kyle Brennaman, Meichuan Liu, Seth L. Marquard, Michael S. Eberhart et Thomas J. Meyer. « Controlling Vertical and Lateral Electron Migration Using a Bifunctional Chromophore Assembly in Dye-Sensitized Photoelectrosynthesis Cells ». Journal of the American Chemical Society 140, no 20 (27 avril 2018) : 6493–500. http://dx.doi.org/10.1021/jacs.8b03453.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Zhang, Xiaodan, Lei Lei, Xinpeng Wang et Degao Wang. « Ultrathin TiO2 Blocking Layers via Atomic Layer Deposition toward High-Performance Dye-Sensitized Photo-Electrosynthesis Cells ». Sustainability 15, no 9 (23 avril 2023) : 7092. http://dx.doi.org/10.3390/su15097092.

Texte intégral
Résumé :
The collection of solar energy in chemical bonds via dye-sensitized photoelectrosynthesis cells (DSPECs) is a reliable solution. Herein, atomic layer deposition (ALD) introduced ultrathin blocking layers (BLs) between a mesoporous TiO2 membrane and fluorine-doped tin oxide (FTO), and much improved photoelectrochemical water oxidation performance was well documented. Samples with different BL thicknesses deposited on FTO were obtained by ALD. In the photoanode, polypyridyl Ru(II) complexes were used as photosensitizers, and Ru(bda)-type was used as a catalyst during water oxidation. Under one sun irradiation, the BL (i) increased the photocurrent density; (ii) slowed down the open-circuit voltage decay (OCVD) by electrochemical measurement; (iii) increased the photo-generated electron lifetime roughly from 1 s to more than 100 s; and (iv) enhanced the water oxidation efficiency from 25% to 85% with 0.4 V of applied voltage bias. All this pointed out that the ALD technique-prepared layers could greatly hinder the photogenerated electron–hole pair recombination in the TiO2-based photoanode. This study offers critical backing for the building of molecular films by the ALD technique to split water effectively.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Song, Wenjing, M. Kyle Brennaman, Javier J. Concepcion, Jonah W. Jurss, Paul G. Hoertz, Hanlin Luo, Chuncheng Chen, Kenneth Hanson et Thomas J. Meyer. « Interfacial Electron Transfer Dynamics for [Ru(bpy)2((4,4′-PO3H2)2bpy)]2+ Sensitized TiO2 in a Dye-Sensitized Photoelectrosynthesis Cell : Factors Influencing Efficiency and Dynamics ». Journal of Physical Chemistry C 115, no 14 (16 mars 2011) : 7081–91. http://dx.doi.org/10.1021/jp200124k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Alibabaei, Leila, Hanlin Luo, Ralph L. House, Paul G. Hoertz, Rene Lopez et Thomas J. Meyer. « Applications of metal oxide materials in dye sensitized photoelectrosynthesis cells for making solar fuels : let the molecules do the work ». Journal of Materials Chemistry A 1, no 13 (2013) : 4133. http://dx.doi.org/10.1039/c2ta00935h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Brennaman, M. Kyle, Robert J. Dillon, Leila Alibabaei, Melissa K. Gish, Christopher J. Dares, Dennis L. Ashford, Ralph L. House, Gerald J. Meyer, John M. Papanikolas et Thomas J. Meyer. « ChemInform Abstract : Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells ». ChemInform 47, no 51 (décembre 2016). http://dx.doi.org/10.1002/chin.201651286.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Nikoloudakis, Emmanouil, Palas Baran Pati, Georgios Charalambidis, Darya S. Budkina, Stéphane Diring, Aurélien Planchat, Denis Jacquemin, Eric Vauthey, Athanassios G. Coutsolelos et Fabrice Odobel. « Dye-Sensitized Photoelectrosynthesis Cells for Benzyl Alcohol Oxidation Using a Zinc Porphyrin Sensitizer and TEMPO Catalyst ». ACS Catalysis, 15 septembre 2021, 12075–86. http://dx.doi.org/10.1021/acscatal.1c02609.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie