Articles de revues sur le sujet « Durotaxie »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Durotaxie.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Durotaxie ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Sunyer, Raimon, et Xavier Trepat. « Durotaxis ». Current Biology 30, no 9 (mai 2020) : R383—R387. http://dx.doi.org/10.1016/j.cub.2020.03.051.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Huang, Yuxing, Jing Su, Jiayong Liu, Xin Yi, Fang Zhou, Jiaran Zhang, Jiaxiang Wang, Xuan Meng, Lu Si et Congying Wu. « YAP Activation in Promoting Negative Durotaxis and Acral Melanoma Progression ». Cells 11, no 22 (9 novembre 2022) : 3543. http://dx.doi.org/10.3390/cells11223543.

Texte intégral
Résumé :
Directed cell migration towards a softer environment is called negative durotaxis. The mechanism and pathological relevance of negative durotaxis in tumor progression still requires in-depth investigation. Here, we report that YAP promotes the negative durotaxis of melanoma. We uncovered that the RhoA-myosin II pathway may underlie the YAP enhanced negative durotaxis of melanoma cells. Acral melanoma is the most common subtype of melanoma in non-Caucasians and tends to develop in a stress-bearing area. We report that acral melanoma patients exhibit YAP amplification and increased YAP activity. We detected a decreasing stiffness gradient from the tumor to the surrounding area in the acral melanoma microenvironment. We further identified that this stiffness gradient could facilitate the negative durotaxis of melanoma cells. Our study advanced the understanding of mechanical force and YAP in acral melanoma and we proposed negative durotaxis as a new mechanism for melanoma dissemination.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Puleo, Julieann I., Sara S. Parker, Mackenzie R. Roman, Adam W. Watson, Kiarash Rahmani Eliato, Leilei Peng, Kathylynn Saboda et al. « Mechanosensing during directed cell migration requires dynamic actin polymerization at focal adhesions ». Journal of Cell Biology 218, no 12 (8 octobre 2019) : 4215–35. http://dx.doi.org/10.1083/jcb.201902101.

Texte intégral
Résumé :
The mechanical properties of a cell’s microenvironment influence many aspects of cellular behavior, including cell migration. Durotaxis, the migration toward increasing matrix stiffness, has been implicated in processes ranging from development to cancer. During durotaxis, mechanical stimulation by matrix rigidity leads to directed migration. Studies suggest that cells sense mechanical stimuli, or mechanosense, through the acto-myosin cytoskeleton at focal adhesions (FAs); however, FA actin cytoskeletal remodeling and its role in mechanosensing are not fully understood. Here, we show that the Ena/VASP family member, Ena/VASP-like (EVL), polymerizes actin at FAs, which promotes cell-matrix adhesion and mechanosensing. Importantly, we show that EVL regulates mechanically directed motility, and that suppression of EVL expression impedes 3D durotactic invasion. We propose a model in which EVL-mediated actin polymerization at FAs promotes mechanosensing and durotaxis by maturing, and thus reinforcing, FAs. These findings establish dynamic FA actin polymerization as a central aspect of mechanosensing and identify EVL as a crucial regulator of this process.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Style, R. W., Y. Che, S. J. Park, B. M. Weon, J. H. Je, C. Hyland, G. K. German et al. « Patterning droplets with durotaxis ». Proceedings of the National Academy of Sciences 110, no 31 (24 juin 2013) : 12541–44. http://dx.doi.org/10.1073/pnas.1307122110.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hartman, Christopher D., Brett C. Isenberg, Samantha G. Chua et Joyce Y. Wong. « Vascular smooth muscle cell durotaxis depends on extracellular matrix composition ». Proceedings of the National Academy of Sciences 113, no 40 (19 septembre 2016) : 11190–95. http://dx.doi.org/10.1073/pnas.1611324113.

Texte intégral
Résumé :
Mechanical compliance has been demonstrated to be a key determinant of cell behavior, directing processes such as spreading, migration, and differentiation. Durotaxis, directional migration from softer to more stiff regions of a substrate, has been observed for a variety of cell types. Recent stiffness mapping experiments have shown that local changes in tissue stiffness in disease are often accompanied by an altered ECM composition in vivo. However, the importance of ECM composition in durotaxis has not yet been explored. To address this question, we have developed and characterized a polyacrylamide hydrogel culture platform featuring highly tunable gradients in mechanical stiffness. This feature, together with the ability to control ECM composition, allows us to isolate the effects of mechanical and biological signals on cell migratory behavior. Using this system, we have tracked vascular smooth muscle cell migration in vitro and quantitatively analyzed differences in cell migration as a function of ECM composition. Our results show that vascular smooth muscle cells undergo durotaxis on mechanical gradients coated with fibronectin but not on those coated with laminin. These findings indicate that the composition of the adhesion ligand is a critical determinant of a cell’s migratory response to mechanical gradients.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yuehua, YANG, et JIANG Hongyuan. « Research Advances in Cell Durotaxis ». 应用数学和力学 42, no 10 (2021) : 999–1007. http://dx.doi.org/10.21656/1000-0887.420265.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Bueno, Jesus, Yuri Bazilevs, Ruben Juanes et Hector Gomez. « Wettability control of droplet durotaxis ». Soft Matter 14, no 8 (2018) : 1417–26. http://dx.doi.org/10.1039/c7sm01917c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Doering, Charles R., Xiaoming Mao et Leonard M. Sander. « Random walker models for durotaxis ». Physical Biology 15, no 6 (11 septembre 2018) : 066009. http://dx.doi.org/10.1088/1478-3975/aadc37.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Stefanoni, Filippo, Maurizio Ventre, Francesco Mollica et Paolo A. Netti. « A numerical model for durotaxis ». Journal of Theoretical Biology 280, no 1 (juillet 2011) : 150–58. http://dx.doi.org/10.1016/j.jtbi.2011.04.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Parida, Lipika, et Venkat Padmanabhan. « Durotaxis in Nematode Caenorhabditis elegans ». Biophysical Journal 111, no 3 (août 2016) : 666–74. http://dx.doi.org/10.1016/j.bpj.2016.06.030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

DuChez, Brian J., Andrew D. Doyle, Emilios K. Dimitriadis et Kenneth M. Yamada. « Durotaxis by Human Cancer Cells ». Biophysical Journal 116, no 4 (février 2019) : 670–83. http://dx.doi.org/10.1016/j.bpj.2019.01.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Moriyama, Kousuke, et Satoru Kidoaki. « Cellular Durotaxis Revisited : Initial-Position-Dependent Determination of the Threshold Stiffness Gradient to Induce Durotaxis ». Langmuir 35, no 23 (19 septembre 2018) : 7478–86. http://dx.doi.org/10.1021/acs.langmuir.8b02529.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Feng, Jingchen, Herbert Levine, Xiaoming Mao et Leonard M. Sander. « Cell motility, contact guidance, and durotaxis ». Soft Matter 15, no 24 (2019) : 4856–64. http://dx.doi.org/10.1039/c8sm02564a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Novikova, Elizaveta A., Matthew Raab, Dennis E. Discher et Cornelis Storm. « Cellular Durotaxis from Differentially Persistent Motility ». Biophysical Journal 112, no 3 (février 2017) : 436a. http://dx.doi.org/10.1016/j.bpj.2016.11.2327.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Lazopoulos, Konstantinos A., et Dimitrije Stamenović. « Durotaxis as an elastic stability phenomenon ». Journal of Biomechanics 41, no 6 (2008) : 1289–94. http://dx.doi.org/10.1016/j.jbiomech.2008.01.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Gomez, Hector, et Mirian Velay-Lizancos. « Thin-film model of droplet durotaxis ». European Physical Journal Special Topics 229, no 2-3 (février 2020) : 265–73. http://dx.doi.org/10.1140/epjst/e2019-900127-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Wei, Jie, Xiaofeng Chen et Bin Chen. « Harnessing structural instability for cell durotaxis ». Acta Mechanica Sinica 35, no 2 (21 mars 2019) : 355–64. http://dx.doi.org/10.1007/s10409-019-00853-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Raab, Matthew, Joe Swift, P. C. Dave P. Dingal, Palak Shah, Jae-Won Shin et Dennis E. Discher. « Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain ». Journal of Cell Biology 199, no 4 (5 novembre 2012) : 669–83. http://dx.doi.org/10.1083/jcb.201205056.

Texte intégral
Résumé :
On rigid surfaces, the cytoskeleton of migrating cells is polarized, but tissue matrix is normally soft. We show that nonmuscle MIIB (myosin-IIB) is unpolarized in cells on soft matrix in 2D and also within soft 3D collagen, with rearward polarization of MIIB emerging only as cells migrate from soft to stiff matrix. Durotaxis is the tendency of cells to crawl from soft to stiff matrix, and durotaxis of primary mesenchymal stem cells (MSCs) proved more sensitive to MIIB than to the more abundant and persistently unpolarized nonmuscle MIIA (myosin-IIA). However, MIIA has a key upstream role: in cells on soft matrix, MIIA appeared diffuse and mobile, whereas on stiff matrix, MIIA was strongly assembled in oriented stress fibers that MIIB then polarized. The difference was caused in part by elevated phospho-S1943–MIIA in MSCs on soft matrix, with site-specific mutants revealing the importance of phosphomoderated assembly of MIIA. Polarization is thus shown to be a highly regulated compass for mechanosensitive migration.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Liu, Yang, Jiwen Cheng, Hui Yang et Guang-Kui Xu. « Rotational constraint contributes to collective cell durotaxis ». Applied Physics Letters 117, no 21 (23 novembre 2020) : 213702. http://dx.doi.org/10.1063/5.0031846.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Harland, Ben, Sam Walcott et Sean X. Sun. « Adhesion dynamics and durotaxis in migrating cells ». Physical Biology 8, no 1 (1 février 2011) : 015011. http://dx.doi.org/10.1088/1478-3975/8/1/015011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Harland, Ben, Sam Walcott et Sean X. Sun. « Adhesion Dynamics and Durotaxis in Migrating Cells ». Biophysical Journal 100, no 3 (février 2011) : 303a. http://dx.doi.org/10.1016/j.bpj.2010.12.1855.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Jain, Gaurav, Andrew J. Ford et Padmavathy Rajagopalan. « Opposing Rigidity-Protein Gradients Reverse Fibroblast Durotaxis ». ACS Biomaterials Science & ; Engineering 1, no 8 (30 juillet 2015) : 621–31. http://dx.doi.org/10.1021/acsbiomaterials.5b00229.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

McKenzie, Andrew J., Kathryn V. Svec, Tamara F. Williams et Alan K. Howe. « Protein kinase A activity is regulated by actomyosin contractility during cell migration and is required for durotaxis ». Molecular Biology of the Cell 31, no 1 (1 janvier 2020) : 45–58. http://dx.doi.org/10.1091/mbc.e19-03-0131.

Texte intégral
Résumé :
Here, we show that localized PKA activity in migrating cells is regulated by cell–matrix tension, correlates with cellular traction forces, is enhanced by acute mechanical stimulation, and is required for durotaxis. This establishes PKA as an effector of cellular mechanotransduction and as a regulator of mechanically guided cell migration.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Riaz, Maryam, Marie Versaevel et Sylvain Gabriele. « On the Mechanism of Durotaxis in Motile Cells ». Biophysical Journal 106, no 2 (janvier 2014) : 571a. http://dx.doi.org/10.1016/j.bpj.2013.11.3167.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Escribano, Jorge, Raimon Sunyer, María Teresa Sánchez, Xavier Trepat, Pere Roca-Cusachs et José Manuel García-Aznar. « A hybrid computational model for collective cell durotaxis ». Biomechanics and Modeling in Mechanobiology 17, no 4 (2 mars 2018) : 1037–52. http://dx.doi.org/10.1007/s10237-018-1010-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Wieland, Annalena, Pamela L. Strissel, Hannah Schorle, Ezgi Bakirci, Dieter Janzen, Matthias W. Beckmann, Markus Eckstein, Paul D. Dalton et Reiner Strick. « Brain and Breast Cancer Cells with PTEN Loss of Function Reveal Enhanced Durotaxis and RHOB Dependent Amoeboid Migration Utilizing 3D Scaffolds and Aligned Microfiber Tracts ». Cancers 13, no 20 (14 octobre 2021) : 5144. http://dx.doi.org/10.3390/cancers13205144.

Texte intégral
Résumé :
Background: Glioblastoma multiforme (GBM) and metastatic triple-negative breast cancer (TNBC) with PTEN mutations often lead to brain dissemination with poor patient outcome, thus new therapeutic targets are needed. To understand signaling, controlling the dynamics and mechanics of brain tumor cell migration, we implemented GBM and TNBC cell lines and designed 3D aligned microfibers and scaffolds mimicking brain structures. Methods: 3D microfibers and scaffolds were printed using melt electrowriting. GBM and TNBC cell lines with opposing PTEN genotypes were analyzed with RHO-ROCK-PTEN inhibitors and PTEN rescue using live-cell imaging. RNA-sequencing and qPCR of tumor cells in 3D with microfibers were performed, while scanning electron microscopy and confocal microscopy addressed cell morphology. Results: In contrast to the PTEN wildtype, GBM and TNBC cells with PTEN loss of function yielded enhanced durotaxis, topotaxis, adhesion, amoeboid migration on 3D microfibers and significant high RHOB expression. Functional studies concerning RHOB-ROCK-PTEN signaling confirmed the essential role for the above cellular processes. Conclusions: This study demonstrates a significant role of the PTEN genotype and RHOB expression for durotaxis, adhesion and migration dependent on 3D. GBM and TNBC cells with PTEN loss of function have an affinity for stiff brain structures promoting metastasis. 3D microfibers represent an important tool to model brain metastasizing tumor cells, where RHO-inhibitors could play an essential role for improved therapy.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Wieland, Annalena, Pamela L. Strissel, Hannah Schorle, Ezgi Bakirci, Dieter Janzen, Matthias W. Beckmann, Markus Eckstein, Paul D. Dalton et Reiner Strick. « Brain and Breast Cancer Cells with PTEN Loss of Function Reveal Enhanced Durotaxis and RHOB Dependent Amoeboid Migration Utilizing 3D Scaffolds and Aligned Microfiber Tracts ». Cancers 13, no 20 (14 octobre 2021) : 5144. http://dx.doi.org/10.3390/cancers13205144.

Texte intégral
Résumé :
Background: Glioblastoma multiforme (GBM) and metastatic triple-negative breast cancer (TNBC) with PTEN mutations often lead to brain dissemination with poor patient outcome, thus new therapeutic targets are needed. To understand signaling, controlling the dynamics and mechanics of brain tumor cell migration, we implemented GBM and TNBC cell lines and designed 3D aligned microfibers and scaffolds mimicking brain structures. Methods: 3D microfibers and scaffolds were printed using melt electrowriting. GBM and TNBC cell lines with opposing PTEN genotypes were analyzed with RHO-ROCK-PTEN inhibitors and PTEN rescue using live-cell imaging. RNA-sequencing and qPCR of tumor cells in 3D with microfibers were performed, while scanning electron microscopy and confocal microscopy addressed cell morphology. Results: In contrast to the PTEN wildtype, GBM and TNBC cells with PTEN loss of function yielded enhanced durotaxis, topotaxis, adhesion, amoeboid migration on 3D microfibers and significant high RHOB expression. Functional studies concerning RHOB-ROCK-PTEN signaling confirmed the essential role for the above cellular processes. Conclusions: This study demonstrates a significant role of the PTEN genotype and RHOB expression for durotaxis, adhesion and migration dependent on 3D. GBM and TNBC cells with PTEN loss of function have an affinity for stiff brain structures promoting metastasis. 3D microfibers represent an important tool to model brain metastasizing tumor cells, where RHO-inhibitors could play an essential role for improved therapy.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Vicente-Manzanares, Miguel. « Cell Migration : Cooperation between Myosin II Isoforms in Durotaxis ». Current Biology 23, no 1 (janvier 2013) : R28—R29. http://dx.doi.org/10.1016/j.cub.2012.11.024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Vicente-Manzanares, Miguel. « Cell Migration : Cooperation between Myosin II Isoforms in Durotaxis ». Current Biology 23, no 5 (mars 2013) : 441. http://dx.doi.org/10.1016/j.cub.2013.02.014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Shellard, Adam, et Roberto Mayor. « Collective durotaxis along a self-generated stiffness gradient in vivo ». Nature 600, no 7890 (8 décembre 2021) : 690–94. http://dx.doi.org/10.1038/s41586-021-04210-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Sunyer, R., V. Conte, J. Escribano, A. Elosegui-Artola, A. Labernadie, L. Valon, D. Navajas et al. « Collective cell durotaxis emerges from long-range intercellular force transmission ». Science 353, no 6304 (8 septembre 2016) : 1157–61. http://dx.doi.org/10.1126/science.aaf7119.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Martinez, Jessica S., Ali M. Lehaf, Joseph B. Schlenoff et Thomas C. S. Keller. « Cell Durotaxis on Polyelectrolyte Multilayers with Photogenerated Gradients of Modulus ». Biomacromolecules 14, no 5 (2 avril 2013) : 1311–20. http://dx.doi.org/10.1021/bm301863a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Vincent, Ludovic G., Yu Suk Choi, Baldomero Alonso-Latorre, Juan C. del Álamo et Adam J. Engler. « Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength ». Biotechnology Journal 8, no 4 (28 février 2013) : 472–84. http://dx.doi.org/10.1002/biot.201200205.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Pamonag, Michael, Abigail Hinson, Elisha J. Burton, Nojan Jafari, Dominic Sales, Sarah Babcock, Rozlan Basha, Xiaofeng Hu et Kristopher E. Kubow. « Individual cells generate their own self-reinforcing contact guidance cues through local matrix fiber remodeling ». PLOS ONE 17, no 3 (25 mars 2022) : e0265403. http://dx.doi.org/10.1371/journal.pone.0265403.

Texte intégral
Résumé :
Directed cell migration arises from cells following a microenvironmental gradient (e.g. of a chemokine) or polarizing feature (e.g. a linear structure). However cells not only follow, but in many cases, also generate directionality cues by modifying their microenvironment. This bi-directional relationship is seen in the alignment of extracellular matrix (ECM) fibers ahead of invading cell masses. The forces generated by many migrating cells cause fiber alignment, which in turn promotes further migration in the direction of fiber alignment via contact guidance and durotaxis. While this positive-feedback relationship has been widely described for cells invading en masse, single cells are also able to align ECM fibers, as well as respond to contact guidance and durotaxis cues, and should therefore exhibit the same relationship. In this study, we directly tested this hypothesis by studying the migration persistence of individual HT-1080 fibrosarcoma cells migrating in photocrosslinked collagen matrices with limited remodeling potential. Our results demonstrate that this positive-feedback relationship is indeed a fundamental aspect of cell migration in fibrillar environments. We observed that the cells’ inability to align and condense fibers resulted in a decrease in persistence relative to cells in native collagen matrices and even relative to isotropic (glass) substrates. Further experiments involving 2D collagen and electrospun polymer scaffolds suggest that substrates composed of rigid, randomly oriented fibers reduce cells’ ability to follow another directionality cue by forcing them to meander to follow the available adhesive area (i.e. fibers). Finally, our results demonstrate that the bi-directional relationship between cell remodeling and migration is not a “dimensionality” effect, but a fundamental effect of fibrous substrate structure.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Aubry, D., M. Gupta, B. Ladoux et R. Allena. « Mechanical link between durotaxis, cell polarity and anisotropy during cell migration ». Physical Biology 12, no 2 (17 avril 2015) : 026008. http://dx.doi.org/10.1088/1478-3975/12/2/026008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Isenberg, Brett C., Paul A. DiMilla, Matthew Walker, Sooyoung Kim et Joyce Y. Wong. « Vascular Smooth Muscle Cell Durotaxis Depends on Substrate Stiffness Gradient Strength ». Biophysical Journal 97, no 5 (septembre 2009) : 1313–22. http://dx.doi.org/10.1016/j.bpj.2009.06.021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Kuntanawat, P., C. Wilkinson et M. Riehle. « Observation of durotaxis on a well-defined continuous gradient of stiffness ». Comparative Biochemistry and Physiology Part A : Molecular & ; Integrative Physiology 146, no 4 (avril 2007) : S192. http://dx.doi.org/10.1016/j.cbpa.2007.01.421.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Wormer, Duncan B., Kevin A. Davis, James H. Henderson et Christopher E. Turner. « The Focal Adhesion-Localized CdGAP Regulates Matrix Rigidity Sensing and Durotaxis ». PLoS ONE 9, no 3 (14 mars 2014) : e91815. http://dx.doi.org/10.1371/journal.pone.0091815.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Ebata, Hiroyuki, Kousuke Moriyama, Thasaneeya Kuboki et Satoru Kidoaki. « General cellular durotaxis induced with cell-scale heterogeneity of matrix-elasticity ». Biomaterials 230 (février 2020) : 119647. http://dx.doi.org/10.1016/j.biomaterials.2019.119647.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Shellard, Adam, et Roberto Mayor. « Publisher Correction : Collective durotaxis along a self-generated stiffness gradient in vivo ». Nature 601, no 7894 (12 janvier 2022) : E33. http://dx.doi.org/10.1038/s41586-021-04367-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Budde, Ilka, David Ing, Albrecht Schwab et Zoltan Denes Petho. « Mechanosensitive ion channels are essential for the durotaxis of pancreatic stellate cells ». Biophysical Journal 121, no 3 (février 2022) : 314a. http://dx.doi.org/10.1016/j.bpj.2021.11.1181.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Alert, Ricard, et Jaume Casademunt. « Role of Substrate Stiffness in Tissue Spreading : Wetting Transition and Tissue Durotaxis ». Langmuir 35, no 23 (3 octobre 2018) : 7571–77. http://dx.doi.org/10.1021/acs.langmuir.8b02037.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Allena, R., M. Scianna et L. Preziosi. « A Cellular Potts Model of single cell migration in presence of durotaxis ». Mathematical Biosciences 275 (mai 2016) : 57–70. http://dx.doi.org/10.1016/j.mbs.2016.02.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Malik, Adam A., et Philip Gerlee. « Mathematical modelling of cell migration : stiffness dependent jump rates result in durotaxis ». Journal of Mathematical Biology 78, no 7 (10 avril 2019) : 2289–315. http://dx.doi.org/10.1007/s00285-019-01344-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Whang, Minji, et Jungwook Kim. « Synthetic hydrogels with stiffness gradients for durotaxis study and tissue engineering scaffolds ». Tissue Engineering and Regenerative Medicine 13, no 2 (avril 2016) : 126–39. http://dx.doi.org/10.1007/s13770-016-0026-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Marzban, Bahador, Xin Yi et Hongyan Yuan. « A minimal mechanics model for mechanosensing of substrate rigidity gradient in durotaxis ». Biomechanics and Modeling in Mechanobiology 17, no 3 (22 janvier 2018) : 915–22. http://dx.doi.org/10.1007/s10237-018-1001-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Zhang, Zhiwen, Phoebus Rosakis, Thomas Y. Hou et Guruswami Ravichandran. « A minimal mechanosensing model predicts keratocyte evolution on flexible substrates ». Journal of The Royal Society Interface 17, no 166 (mai 2020) : 20200175. http://dx.doi.org/10.1098/rsif.2020.0175.

Texte intégral
Résumé :
A mathematical model is proposed for shape evolution and locomotion of fish epidermal keratocytes on elastic substrates. The model is based on mechanosensing concepts: cells apply contractile forces onto the elastic substrate, while cell shape evolution depends locally on the substrate stress generated by themselves or external mechanical stimuli acting on the substrate. We use the level set method to study the behaviour of the model numerically, and predict a number of distinct phenomena observed in experiments, such as (i) symmetry breaking from the stationary centrosymmetric to the well-known steadily propagating crescent shape, (ii) asymmetric bipedal oscillations and travelling waves in the lamellipodium leading edge, (iii) response to remote mechanical stress externally applied to the substrate (tensotaxis) and (iv) changing direction of motion towards an interface with a rigid substrate (durotaxis).
Styles APA, Harvard, Vancouver, ISO, etc.
48

Lachowski, Dariusz, Ernesto Cortes, Benjamin Robinson, Alistair Rice, Krista Rombouts et Armando E. Del Río Hernández. « FAK controls the mechanical activation of YAP, a transcriptional regulator required for durotaxis ». FASEB Journal 32, no 2 (3 janvier 2018) : 1099–107. http://dx.doi.org/10.1096/fj.201700721r.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Walker, Matthew L., David House, Margrit Betke et Joyce Y. Wong. « Using Automated Cell Tracking Software to Quantifying Durokinesis and Durotaxis in Real Time ». Biophysical Journal 96, no 3 (février 2009) : 633a. http://dx.doi.org/10.1016/j.bpj.2008.12.3347.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Sunyer, Raimon, Albert J. Jin, Ralph Nossal et Dan L. Sackett. « Fabrication of Hydrogels with Gradient of Compliance : Application to Cell Mechanotaxis and Durotaxis ». Biophysical Journal 102, no 3 (janvier 2012) : 565a. http://dx.doi.org/10.1016/j.bpj.2011.11.3077.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie