Littérature scientifique sur le sujet « Duchenne, animal models, DMD »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Duchenne, animal models, DMD ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Duchenne, animal models, DMD"

1

Lim, Kenji Rowel Q., Quynh Nguyen, Kasia Dzierlega, Yiqing Huang et Toshifumi Yokota. « CRISPR-Generated Animal Models of Duchenne Muscular Dystrophy ». Genes 11, no 3 (24 mars 2020) : 342. http://dx.doi.org/10.3390/genes11030342.

Texte intégral
Résumé :
Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive neuromuscular disorder most commonly caused by mutations disrupting the reading frame of the dystrophin (DMD) gene. DMD codes for dystrophin, which is critical for maintaining the integrity of muscle cell membranes. Without dystrophin, muscle cells receive heightened mechanical stress, becoming more susceptible to damage. An active body of research continues to explore therapeutic treatments for DMD as well as to further our understanding of the disease. These efforts rely on having reliable animal models that accurately recapitulate disease presentation in humans. While current animal models of DMD have served this purpose well to some extent, each has its own limitations. To help overcome this, clustered regularly interspaced short palindromic repeat (CRISPR)-based technology has been extremely useful in creating novel animal models for DMD. This review focuses on animal models developed for DMD that have been created using CRISPR, their advantages and disadvantages as well as their applications in the DMD field.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Nakamura, Akinori, et Shin'ichi Takeda. « Mammalian Models of Duchenne Muscular Dystrophy : Pathological Characteristics and Therapeutic Applications ». Journal of Biomedicine and Biotechnology 2011 (2011) : 1–8. http://dx.doi.org/10.1155/2011/184393.

Texte intégral
Résumé :
Duchenne muscular dystrophy (DMD) is a devastating X-linked muscle disorder characterized by muscle wasting which is caused by mutations in theDMDgene. TheDMDgene encodes the sarcolemmal protein dystrophin, and loss of dystrophin causes muscle degeneration and necrosis. Thus far, therapies for this disorder are unavailable. However, various therapeutic trials based on gene therapy, exon skipping, cell therapy, read through therapy, or pharmaceutical agents have been conducted extensively. In the development of therapy as well as elucidation of pathogenesis in DMD, appropriate animal models are needed. Various animal models of DMD have been identified, and mammalian (murine, canine, and feline) models are indispensable for the examination of the mechanisms of pathogenesis and the development of therapies. Here, we review the pathological features of DMD and therapeutic applications, especially of exon skipping using antisense oligonucleotides and gene therapies using viral vectors in murine and canine models of DMD.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Donandt, Tina, Stefan Hintze, Sabine Krause, Eckhard Wolf, Benedikt Schoser, Maggie C. Walter et Peter Meinke. « Isolation and Characterization of Primary DMD Pig Muscle Cells as an In Vitro Model for Preclinical Research on Duchenne Muscular Dystrophy ». Life 12, no 10 (21 octobre 2022) : 1668. http://dx.doi.org/10.3390/life12101668.

Texte intégral
Résumé :
Duchenne muscular dystrophy (DMD) is the most frequent genetic myopathy in childhood and leads to progressive muscle atrophy, weakness, and premature death. So far, there is no curative treatment available. Therapeutic development from bench to bedside takes time, and promising therapies need to be tested in suitable preclinical animal models prior to clinical trials in DMD patients. Existing mouse and dog models are limited with regard to the comparability of the clinical phenotype and the underlying mutation. Therefore, our group established a tailored large animal model of DMD, the DMD pig, mirroring the human size, anatomy, and physiology. For testing novel approaches, we developed a corresponding in vitro model, facilitating preclinical testing for toxicity, dosing, and efficacy, which we describe here. We first extracted primary muscle cells from wild-type and DMD pigs of different age groups and characterized those cells, then improved their differentiation process for identification of dystrophin and utrophin in myotubes. Our porcine in vitro model represents an important step for the development of novel therapeutic approaches, which should be validated further to minimize the need for living animals for bioassays, and thereby support the ‘3R’ (replace, reduce, refine) principle, as fewer animals have to be raised and treated for preclinical trials.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wilson, Kristin, Crystal Faelan, Janet C. Patterson-Kane, Daniel G. Rudmann, Steven A. Moore, Diane Frank, Jay Charleston, Jon Tinsley, G. David Young et Anthony J. Milici. « Duchenne and Becker Muscular Dystrophies : A Review of Animal Models, Clinical End Points, and Biomarker Quantification ». Toxicologic Pathology 45, no 7 (octobre 2017) : 961–76. http://dx.doi.org/10.1177/0192623317734823.

Texte intégral
Résumé :
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are neuromuscular disorders that primarily affect boys due to an X-linked mutation in the DMD gene, resulting in reduced to near absence of dystrophin or expression of truncated forms of dystrophin. Some newer therapeutic interventions aim to increase sarcolemmal dystrophin expression, and accurate dystrophin quantification is critical for demonstrating pharmacodynamic relationships in preclinical studies and clinical trials. Current challenges with measuring dystrophin include the variation in protein expression within individual muscle fibers and across whole muscle samples, the presence of preexisting dystrophin-positive revertant fibers, and trace amounts of residual dystrophin. Immunofluorescence quantification of dystrophin can overcome many of these challenges, but manual quantification of protein expression may be complicated by variations in the collection of images, reproducible scoring of fluorescent intensity, and bias introduced by manual scoring of typically only a few high-power fields. This review highlights the pathology of DMD and BMD, discusses animal models of DMD and BMD, and describes dystrophin biomarker quantitation in DMD and BMD, with several image analysis approaches, including a new automated method that evaluates protein expression of individual muscle fibers.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sayers, Stephen P. « The Role of Exercise as a Therapy for Children with Duchenne Muscular Dystrophy ». Pediatric Exercise Science 12, no 1 (février 2000) : 23–33. http://dx.doi.org/10.1123/pes.12.1.23.

Texte intégral
Résumé :
Duchenne muscular dystrophy (DMD) is a disease affecting muscle fiber integrity in boys that leads to progressive weakness in skeletal muscle and premature death. Currently, there is no known cure for the disease. Different interventions have been explored to delay the progression of the disease and improve the quality of life for the DMD patient. Physical activity is one treatment that has generated controversy due to the increased mechanical stress placed on the muscle during contraction. This review explores the literature in animal models and human DMD patients and evaluates the known theoretical risks and benefits of increased physical activity in DMD patients.
Styles APA, Harvard, Vancouver, ISO, etc.
6

English, Katherine G., Andrea L. Reid, Adrienne Samani, Gerald J. F. Coulis, S. Armando Villalta, Christopher J. Walker, Sharon Tamir et Matthew S. Alexander. « Next-Generation SINE Compound KPT−8602 Ameliorates Dystrophic Pathology in Zebrafish and Mouse Models of DMD ». Biomedicines 10, no 10 (26 septembre 2022) : 2400. http://dx.doi.org/10.3390/biomedicines10102400.

Texte intégral
Résumé :
Duchenne muscular dystrophy (DMD) is a progressive, X-linked childhood neuromuscular disorder that results from loss-of-function mutations in the DYSTROPHIN gene. DMD patients exhibit muscle necrosis, cardiomyopathy, respiratory failure, and loss of ambulation. One of the major driving forces of DMD disease pathology is chronic inflammation. The current DMD standard of care is corticosteroids; however, there are serious side effects with long-term use, thus identifying novel anti-inflammatory and anti-fibrotic treatments for DMD is of high priority. We investigated the next-generation SINE compound, KPT−8602 (eltanexor) as an oral therapeutic to alleviate dystrophic symptoms. We performed pre-clinical evaluation of the effects of KPT−8602 in DMD zebrafish (sapje) and mouse (D2-mdx) models. KPT−8602 improved dystrophic skeletal muscle pathologies, muscle architecture and integrity, and overall outcomes in both animal models. KPT−8602 treatment ameliorated DMD pathology in D2-mdx mice, with increased locomotor behavior and improved muscle histology. KPT−8602 altered the immunological profile of the dystrophic mice, and reduced circulating osteopontin serum levels. These findings demonstrate KPT−8602 as an effective therapeutic in DMD through by promotion of an anti-inflammatory environment and overall improvement of DMD pathological outcomes.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wong, Tatianna Wai Ying, Abdalla Ahmed, Grace Yang, Eleonora Maino, Sydney Steiman, Elzbieta Hyatt, Parry Chan et al. « A novel mouse model of Duchenne muscular dystrophy carrying a multi-exonic Dmd deletion exhibits progressive muscular dystrophy and early-onset cardiomyopathy ». Disease Models & ; Mechanisms 13, no 9 (1 septembre 2020) : dmm045369. http://dx.doi.org/10.1242/dmm.045369.

Texte intégral
Résumé :
ABSTRACTDuchenne muscular dystrophy (DMD) is a life-threatening neuromuscular disease caused by the lack of dystrophin, resulting in progressive muscle wasting and locomotor dysfunctions. By adulthood, almost all patients also develop cardiomyopathy, which is the primary cause of death in DMD. Although there has been extensive effort in creating animal models to study treatment strategies for DMD, most fail to recapitulate the complete skeletal and cardiac disease manifestations that are presented in affected patients. Here, we generated a mouse model mirroring a patient deletion mutation of exons 52-54 (Dmd Δ52-54). The Dmd Δ52-54 mutation led to the absence of dystrophin, resulting in progressive muscle deterioration with weakened muscle strength. Moreover, Dmd Δ52-54 mice present with early-onset hypertrophic cardiomyopathy, which is absent in current pre-clinical dystrophin-deficient mouse models. Therefore, Dmd Δ52-54 presents itself as an excellent pre-clinical model to evaluate the impact on skeletal and cardiac muscles for both mutation-dependent and -independent approaches.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wells, Dominic J. « Tracking progress : an update on animal models for Duchenne muscular dystrophy ». Disease Models & ; Mechanisms 11, no 6 (1 juin 2018) : dmm035774. http://dx.doi.org/10.1242/dmm.035774.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Echigoya, Yusuke, Nhu Trieu, William Duddy, Hong M. Moulton, HaiFang Yin, Terence A. Partridge, Eric P. Hoffman et al. « A Dystrophin Exon-52 Deleted Miniature Pig Model of Duchenne Muscular Dystrophy and Evaluation of Exon Skipping ». International Journal of Molecular Sciences 22, no 23 (2 décembre 2021) : 13065. http://dx.doi.org/10.3390/ijms222313065.

Texte intégral
Résumé :
Duchenne muscular dystrophy (DMD) is a lethal X-linked recessive disorder caused by mutations in the DMD gene and the subsequent lack of dystrophin protein. Recently, phosphorodiamidate morpholino oligomer (PMO)-antisense oligonucleotides (ASOs) targeting exon 51 or 53 to reestablish the DMD reading frame have received regulatory approval as commercially available drugs. However, their applicability and efficacy remain limited to particular patients. Large animal models and exon skipping evaluation are essential to facilitate ASO development together with a deeper understanding of dystrophinopathies. Using recombinant adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer, we generated a Yucatan miniature pig model of DMD with an exon 52 deletion mutation equivalent to one of the most common mutations seen in patients. Exon 52-deleted mRNA expression and dystrophin deficiency were confirmed in the skeletal and cardiac muscles of DMD pigs. Accordingly, dystrophin-associated proteins failed to be recruited to the sarcolemma. The DMD pigs manifested early disease onset with severe bodywide skeletal muscle degeneration and with poor growth accompanied by a physical abnormality, but with no obvious cardiac phenotype. We also demonstrated that in primary DMD pig skeletal muscle cells, the genetically engineered exon-52 deleted pig DMD gene enables the evaluation of exon 51 or 53 skipping with PMO and its advanced technology, peptide-conjugated PMO. The results show that the DMD pigs developed here can be an appropriate large animal model for evaluating in vivo exon skipping efficacy.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hughes, K. J., A. Rodriguez, K. M. Flatt, S. Ray, A. Schuler, B. Rodemoyer, V. Veerappan et al. « Physical exertion exacerbates decline in the musculature of an animal model of Duchenne muscular dystrophy ». Proceedings of the National Academy of Sciences 116, no 9 (12 février 2019) : 3508–17. http://dx.doi.org/10.1073/pnas.1811379116.

Texte intégral
Résumé :
Duchenne muscular dystrophy (DMD) is a genetic disorder caused by loss of the protein dystrophin. In humans, DMD has early onset, causes developmental delays, muscle necrosis, loss of ambulation, and death. Current animal models have been challenged by their inability to model the early onset and severity of the disease. It remains unresolved whether increased sarcoplasmic calcium observed in dystrophic muscles follows or leads the mechanical insults caused by the muscle’s disrupted contractile machinery. This knowledge has important implications for patients, as potential physiotherapeutic treatments may either help or exacerbate symptoms, depending on how dystrophic muscles differ from healthy ones. Recently we showed how burrowing dystrophic (dys-1) C. elegans recapitulate many salient phenotypes of DMD, including loss of mobility and muscle necrosis. Here, we report that dys-1 worms display early pathogenesis, including dysregulated sarcoplasmic calcium and increased lethality. Sarcoplasmic calcium dysregulation in dys-1 worms precedes overt structural phenotypes (e.g., mitochondrial, and contractile machinery damage) and can be mitigated by reducing calmodulin expression. To learn how dystrophic musculature responds to altered physical activity, we cultivated dys-1 animals in environments requiring high intensity or high frequency of muscle exertion during locomotion. We find that several muscular parameters (e.g., size) improve with increased activity. However, longevity in dystrophic animals was negatively associated with muscular exertion, regardless of effort duration. The high degree of phenotypic conservation between dystrophic worms and humans provides a unique opportunity to gain insight into the pathology of the disease as well as the initial assessment of potential treatment strategies.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Duchenne, animal models, DMD"

1

Barthélémy, Inès. « Développement d'outils d'évaluation d'un modèle pré-clinique de dystrophie musculaire de Duchenne, le chien GRMD ». Phd thesis, Université Paris-Est, 2010. http://tel.archives-ouvertes.fr/tel-00630718.

Texte intégral
Résumé :
La dystrophie musculaire de Duchenne (DMD) touche un garçon sur 3500, contraint à l'usage du fauteuil roulant à l'âge de 10 ans, et entraîne le décès à une vingtaine d'années. Cette maladie demeure incurable, et les pistes thérapeutiques envisagées nécessitent d'être validées en amont, dans les modèles murins, puis au stade pré-clinique, dans les modèles canins.L'un d'eux, le chien GRMD (Golden Retriever Muscular Dystrophy), est le plus largement utilisé, et présente l'intérêt de partager, avec le patient qu'il modélise, de nombreuses similitudes génotypiques et phénotypiques. Les différentes fonctions touchées doivent donc pouvoir faire l'objet de mesures objectives et quantitatives, à l'aide d'outils dédiés. Par ailleurs, une problématique inhérente à l'utilisation de ce modèle est sa grande variabilité sur le plan phénotypique.L'objectif du travail mené ici a été de développer des outils d'évaluation du chien GRMD, afin de mieux connaître et maîtriser cette hétérogénéité clinique.La mesure de force de flexion du tarse a permis de démontrer que la force tétanique maximale pouvait être utilisée comme indice d'évaluation à différents stades de la maladie, sans que le déficit de force musculaire puisse être relié à l'atteinte motrice globale. De plus, la relaxation s'est avérée altérée chez les chiens GRMD, en corrélation avec leur atteinte motrice.La locomotion, évaluée par accélérométrie tri-dimensionnelle, a pu montrer des altérations multiples, mesurées par différentes variables. Certaines variables sont altérées de manière précoce, tandis que d'autres anomalies s'installent durant les premiers mois, traduisant l'aggravation de la fonction locomotrice.La dysfonction respiratoire, évaluée par spirométrie en respiration de Tidal, et cinématique diaphragmatique sur images radioscopiques, a également pu être objectivée par différents indices. Une moindre mobilité diaphragmatique, une rétraction caudale du diaphragme, et un effondrement du débit expiratoire en fin d'expiration, s'installent au cours des premiers mois.Afin de contrôler l'hétérogénéité clinique ainsi mesurée, une recherche de marqueurs prédictifs de l'évolution clinique a été menée. Différents indices histologiques et cliniques ont été évalués sur leur valeur pronostique à un stade précoce. La fréquence des cycles locomoteurs à 2 mois et le défaut de relaxation à 4 mois se sont avérés prédictifs de formes accélérées.Enfin, les différents outils mis en place ont été évalués dans le cadre du suivi d'animaux au cours d'un essai thérapeutique, qui a, de plus, permis de disposer d'une population de référence sous traitement immunosuppresseur. Une amélioration fonctionnelle des animaux traités a pu être démontrée par nombre des indices mesurés.Ces résultats démontrent que les outils développés sont utilisables au cours d'essais pré-cliniques, et permettent, malgré l'hétérogénéité clinique qu'ils mesurent, de démontrer un bénéfice fonctionnel. Plus largement, ces données permettent d'optimiser l'utilisation pré-clinique du modèle GRMD.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zatti, Susi. « Micro-engineered skeletal and cardiac muscle for Duchenne muscular dystrophy in vitro models ». Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422953.

Texte intégral
Résumé :
Duchenne muscular dystrophy (DMD) is the most common and severe genetic neuromuscular disorder affecting both skeletal and cardiac muscle functionality. More than twenty years have passed since the identification of the dystrophin gene, which mutations cause the disease. Many progresses have been made in understanding the pathogenesis and different experimental strategies has been tested both in vitro, on bench-top cell cultures, and in vivo, on different animal models. So far, despite some promising outcomes coming from recent clinical trials, this has not resulted in an effective and definitive cure significantly altering the relentless progression of this disease, which has still a 100% mortality rate. In this context, the aim of this PhD thesis is the development of micro-engineered human skeletal and cardiac muscles representing in vitro models of DMD patient tissues useful for testing therapeutic approaches aimed at restoring a proper dystrophin expression. The strategy applied for the obtainment of such human in vitro models rely on the application of micro-scale technologies for reproducing in vitro the main physiological cues that guide differentiation and allow functionality of skeletal and cardiac muscles in vivo. In particular, the mechanical properties of the cell micro-environment and the topologic organization over the cell culture were optimized for both skeletal and cardiac muscle. Such micro-scale technologies were coupled with an appropriate human cell source. Human primary myoblasts from biopsies of DMD patient were used for skeletal muscle engineering, while DMD patient-specific cardiomyocytes were differentiated from human pluripotent stem (hiPS) cells for modeling the cardiac muscle. Both the obtained DMD in vitro models were validated for testing the ability of different therapeutic approaches in restoring dystrophin expression. In particular, three different myogenic cell types were tested on the engineered DMD skeletal muscle, while dystrophin expression restoration by a human artificial chromosome carrying the full-length genomic dystrophin sequence was tested on hiPS cells-derived cardiomyocytes. In these perspectives, the developed human in vitro models can represent a useful platform for performing preliminary or pre-clinical tests of different therapeutic strategy for DMD. In addition, they can be used as complementary tool in a clinical trial, for test different batches of cells before using them on patients.
La distrofia muscolare di Duchenne è una delle più frequenti e severe patologie genetiche neuromuscolari che affliggono la funzionalità del muscolo scheletrico e cardiaco. Il gene codificante la distrofina, proteina la cui mutazione è alla base della patologia, è stato scoperto più di vent’anni fa. Da allora, notevoli progressi sono stati compiuti nella comprensione della patogenesi di questa malattia e diverse strategie sperimentali volte al suo trattamento sono state testate, sia in vitro su convenzionali colture cellulari che in vivo su diversi animali modello. Tuttavia, eccezione fatta per alcuni promettenti risultati recentemente ottenuti in trials clinici, ad oggi non vi è ancora una cura efficace e definitiva in grado di alterare o rallentare la progressione di questa patologia, il cui tasso di mortalità è pari al 100%. In tale contesto, lo scopo di questa tesi di dottorato è quello di sviluppare dei modelli in vitro micro-ingegnerizzati di muscolo scheletrico e cardiaco umano, che siano rappresentativi dei tessuti distrofici e dunque utili per testare approcci terapeutici volti al ripristino dell’espressione di distrofina. La strategia applicata per l’ottenimento di tali modelli si basa sull’applicazione di tecnologie su microscala per riprodurre in vitro i principali stimoli che guidano il differenziamento e consentono la funzionalità del muscolo scheletrico e cardiaco in vivo. In particolare, le proprietà meccaniche del micro-ambiente e l’organizzazione topologica della coltura cellulare sono stati ottimizzati sia per il muscolo scheletrico che cardiaco. Tali tecnologie su micro-scala sono state accoppiate con un’appropriata fonte cellulare umana. Per l’ingegnerizzazione del muscolo scheletrico sono stati utilizzati mioblasti umani primari derivanti da biopsie di pazienti DMD mentre, per la modellazione del muscolo cardiaco, cellule umane pluripotenti indotte (iPS) sono state differenziate in cardiomiociti paziente-specifici. Entrambi i modelli in vitro di muscolo distrofico ottenuti sono stati validati testando l’abilità di diversi approcci terapeutici nel ripristinarne l’espressione di distrofina. In particolare, tre diversi tipi cellulari miogenici sono stati testati nel muscolo scheletrico distrofico ingegnerizzato. Inoltre, nei cardiomiociti distrofici derivanti da cellule iPS è stato testato il ripristino dell’espressione di distrofina per mezzo di un cromosoma artificiale portante la sua completa sequenza genomica. Da tali risultati emerge come i modelli umani in vitro sviluppati in questo lavoro possano rappresentare un’utile piattaforma su cui effettuare test pre-clinici preliminari di diverse strategie terapeutiche. Inoltre, essi posso potenzialmente essere utilizzati come strumento complementare durante i trials clinici, per testare, ad esempio, diverse preparazioni di cellule destinate al paziente.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Childers, Martin K. « Contraction-induced muscle damage in dogs with golden retriever muscular dystrophy ». free to MU campus, others may purchase free online, 2002. http://wwwlib.umi.com/cr/mo/preview?3074385.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Cardone, Nastasia. « Myopathologic readouts identification in dystrophinopathies trough comparative analyses of human and animal models muscles ». Doctoral thesis, 2022. http://hdl.handle.net/2158/1279908.

Texte intégral
Résumé :
Duchenne muscular dystrophy (DMD) is a X-linked neuromuscular disorder characterised by progressive muscle degeneration leading to cardiorespiratory failure linked to the loss of dystrophin. We performed a comprehensive comparative myopathologic analysis between 21 DMD boys muscle biopsies divided by age classes,1-2 n= 5, 3-4 n=4, 5-6 n=4, 7-8 n=3 and >8 n=5 years old, aged matched control biopsies, mdx4cv mice, and R-DMDdel52 rats (Taglietti et al., in preparation) analysed at 3, 6, 12 and 17 months. Histopathologic markers including nuclear internalization, fibro-fatty substitution, necrosis, inflammation, and morphometry were assessed in human biopsies and rodents. Muscle stem cells number, regeneration, and senescence markers were evaluated with Pax7, eMyHC, p16, p21 and yH2AXimmunohistochemistry. We identified progressive reduced regenerative capacities in DMD boys as well as in animal models over the time. More importantly DMD patients and rat DMD preclinical model, showed a progressive functional exhaustion of the muscle stem cells pool with an early acquisition of senescence traits. In contrast, mdx4cv mice, muscle stem cells did not acquire senescence markers, possibly explaining the milder phenotype of this model. This work discloses the presence of a senescence phenotype in DMD muscle stem cells and stresses the importance of comparative myopathologic analyses for both pathophysiologic dissection and identification of precise histopathologic readouts/outcome measures in view of novel therapeutic approaches.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Duchenne, animal models, DMD"

1

1932-, Kakulas Byron A., Howell J. McC et Roses Allen D, dir. Duchenne muscular dystrophy : Animal models and genetic manipulation. New York : Raven Press, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

McChowell, John. Duchenne Muscular Dystrophy : Animal Models and Genetic Manipulation. Raven Press Ltd, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Duchenne, animal models, DMD"

1

Lu-Nguyen, Ngoc, Alberto Malerba et Linda Popplewell. « Use of Small Animal Models for Duchenne and Parameters to Assess Efficiency upon Antisense Treatment ». Dans Methods in Molecular Biology, 301–13. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2010-6_20.

Texte intégral
Résumé :
AbstractDuchenne muscular dystrophy (DMD) is a rare genetic disease affecting 1 in 5000 newborn boys. It is caused by mutations in the DMD gene with a consequent lack of dystrophin protein that leads to deterioration of myofibers and their replacement with fibro-adipogenic tissue. Using antisense oligonucleotides (AONs) to modify out-of-frame mutations in the DMD gene, named exon skipping, is currently considered among the most promising treatments for DMD patients. The development of this strategy is rapidly moving forward, and AONs designed to skip exons 51 and 53 have received accelerated approval in the USA. In preclinical setting, the mdx mouse model, carrying a point mutation in exon 23 of the murine Dmd gene that prevents production of dystrophin protein, has emerged as a valuable tool, and it is widely used to study in vivo therapeutic approaches for DMD. Here we describe the methodology for intravenous delivery of AONs targeting dystrophin through tail vein of mdx mice. Furthermore, the most relevant functional analyses to be performed in living mice, and the most informative histopathological and molecular assays to evaluate the effect of this treatment are detailed.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Srivastava, Niraj Kumar, Ramakant Yadav et Deepak Sharma. « Aging : Influence on Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD) ». Dans Models, Molecules and Mechanisms in Biogerontology, 149–76. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3585-3_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

López-Martínez, Andrea, Patricia Soblechero-Martín et Virginia Arechavala-Gomeza. « Evaluation of Exon Skipping and Dystrophin Restoration in In Vitro Models of Duchenne Muscular Dystrophy ». Dans Methods in Molecular Biology, 217–33. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2010-6_14.

Texte intégral
Résumé :
AbstractSeveral exon skipping antisense oligonucleotides (eteplirsen, golodirsen, viltolarsen, and casimersen) have been approved for the treatment of Duchenne muscular dystrophy, but many more are in development targeting an array of different DMD exons. Preclinical screening of the new oligonucleotide sequences is routinely performed using patient-derived cell cultures, and evaluation of their efficacy may be performed at RNA and/or protein level. While several methods to assess exon skipping and dystrophin expression in cell culture have been developed, the choice of methodology often depends on the availability of specific research equipment.In this chapter, we describe and indicate the relevant bibliography of all the methods that may be used in this evaluation and describe in detail the protocols routinely followed at our institution, one to evaluate the efficacy of skipping at RNA level (nested PCR) and the other the restoration of protein expression (myoblot), which provide good results using equipment largely available to most research laboratories.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Yin, HaiFang, Hong Moulton, Corinne Betts et Matthew Wood. « CPP-Directed Oligonucleotide Exon Skipping in Animal Models of Duchenne Muscular Dystrophy ». Dans Methods in Molecular Biology, 321–38. Totowa, NJ : Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-919-2_23.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lu, Qi Long, et Bo Wu. « Systemic Delivery of Antisense Oligomer in Animal Models and Its Implications for Treating DMD ». Dans Methods in Molecular Biology, 393–405. Totowa, NJ : Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-767-5_25.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

V. Egorova, Tatiana, Ivan I. Galkin, Yulia V. Ivanova et Anna V. Polikarpova. « Duchenne Muscular Dystrophy Animal Models ». Dans Animal Models in Medicine and Biology [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96738.

Texte intégral
Résumé :
Duchenne muscular dystrophy is a complex and severe orphan disease. It develops when the organism lacks the expression of dystrophin - a large structural protein. Dystrophin is transcribed from the largest gene in the human genome. At the moment, there is no cure available. Dozens of groups all over the world search for cure. Animal models are an important component of both the fundamental research and therapy development. Many animal models reproducing the features of disease were created and actively used since the late 80’s until present. The species diversity spans from invertebrates to primates and the genetic diversity of these models spans from single mutations to full gene deletions. The models are often non-interchangeable; while one model may be used for particular drug design it may be useless for another. Here we describe existing models, discuss their advantages and disadvantages and potential applications for research and therapy development.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Hoffman, Eric P., et Jose Rafael M. Gorospe. « Chapter 8 The Animal Models of Duchenne Muscular Dystrophy : Windows on the Pathophysiological Consequences of Dystrophin Deficiency ». Dans Ordering the Membrane-Cytoskeleton Trilayer, 113–54. Elsevier, 1991. http://dx.doi.org/10.1016/s0070-2161(08)60785-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Elhussieny, Ahmed, Ken’ichiro Nogami, Fusako Sakai-Takemura, Yusuke Maruyama, AbdElraouf Omar Abdelbakey, Wael Abou El-kheir, Shin’ichi Takeda et Yuko Miyagoe-Suzuki. « Mesenchymal Stem Cells for Regenerative Medicine for Duchenne Muscular Dystrophy ». Dans Muscular Dystrophy - Research Updates and Therapeutic Strategies. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92824.

Texte intégral
Résumé :
Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated from both foetal and adult tissues. Several groups demonstrated that transplantation of MSCs promoted the regeneration of skeletal muscle and ameliorated muscular dystrophy in animal models. Mesenchymal stem cells in skeletal muscle, also known as fibro-adipogenic progenitors (FAPs), are essential for the maintenance of skeletal muscle. Importantly, they contribute to fibrosis and fat accumulation in dystrophic muscle. Therefore, MSCs in muscle are a pharmacological target for the treatment of muscular dystrophies. In this chapter, we briefly update the knowledge on mesenchymal stem/progenitor cells and discuss their therapeutic potential as a regenerative medicine treatment of Duchenne muscular dystrophy.
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Duchenne, animal models, DMD"

1

Andersen, Bret, et Nathan Angerhofer. « An Improved and Adjustable Vest System for the Support of Gravity-Counterbalancing Exoskeleton Arms ». Dans 2017 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dmd2017-3361.

Texte intégral
Résumé :
Upper-limb motor impairment is caused by a wide variety of diseases, including Duchenne muscular dystrophy (DMD), stroke, and arthrogryposis multiplex congenita [1,2]. The resultant arm dysfunction can cause the patient to be incapable of many daily tasks, and therefore increasingly reliant on others for their care. Since many of the underlying diseases are either chronic or incurable, some current therapeutics take the form of orthotic devices that assist upper limb function, thereby improving patient quality of life [1]. One such example is the Wilmington Robotic Exoskeleton (WREX), consisting of a set of gravity-counterbalancing exoskeleton arms attached to either a full upper-body brace, or in previous models, a wheelchair [1]. This device and its successors have proven to be significant aids in allowing patients to perform everyday tasks such as eating and writing [1]. However, according to both patients and physicians, this device and others, while effective, are often underutilized due to factors including brace size and weight, low device comfort, unappealing brace aesthetics, low range of motion, and lack of brace adjustability. In order to increase patient utilization of exoskeleton arm systems, we thus propose the replacement of the current brace system with a novel vest device, designed specifically for increased patient comfort, device adjustability, aesthetics, and range of motion, while preserving the existing strength and durability of current solutions.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Rizzuto, E., A. Musarò, A. Catizone et Z. Del Prete. « Morpho-Functional Interaction Between Muscle and Tendon in Hypertrophic MLC/mIGF-1 Mice ». Dans ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19332.

Texte intégral
Résumé :
Tendons and ligaments are uniaxial viscoelastic connective tissues and, during normal activity, tendons transmit forces from muscles to bones, while ligaments stabilize the joints. Many experiments have been carried out to study ligaments and tendons mechanical properties [1], and the effects of training protocols [2] or specific pathologies. Recently, different transgenic mice models have been proposed as a new way to study in depth tendons’ function and development [3]. Within this context, we made use of pathological and transgenic animal models to investigate the morpho-functional interaction between muscles with an altered functionality and their tendons. In a previous work, by using the animal model of human Duchenne dystrophy, mdx, we found out that tendons connected to muscles with functional defects present reduced mechanical properties and an altered balance between alive and dead cells [4]. Here, we evaluated whether hypertrophic muscles would also involve alterations in tendon biomechanical properties. To do this, we used the transgenic animal model MLC/mIgf-1, were the local form of Igf-1 is over-expressed under a muscle specific promoter [5] inducing an increase in skeletal muscle mass and a proportional increment of force. To determine tendons’ elastic and viscous response separately, complex compliance has been computed with a new experimental method [6] which uses a pseudorandom Gaussian noise (PGN) to stimulate all the frequencies of interest within its bandwidth. Elasticity determines the tissue response to loading while viscous dissipation affects the likelihood of injuries to tendons. Indeed, knowing tendinous tissue viscoelasticity is central to better understand the mechanism between energy dissipation and tissue injuries. Finally, the hypothesis that changes in tendons’ mechanical properties could be correlated with alterations in the balance between alive and dead cells has been tested with an in situ cellular analysis.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie