Littérature scientifique sur le sujet « Doped Nanocrystals »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Doped Nanocrystals ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Doped Nanocrystals"
Della Gaspera, Enrico, Noel W. Duffy, Joel van Embden, Lynne Waddington, Laure Bourgeois, Jacek J. Jasieniak et Anthony S. R. Chesman. « Plasmonic Ge-doped ZnO nanocrystals ». Chemical Communications 51, no 62 (2015) : 12369–72. http://dx.doi.org/10.1039/c5cc02429c.
Texte intégralZhang, Xinhai, Qiuling Chen et Shouhua Zhang. « Ta2O5 Nanocrystals Strengthened Mechanical, Magnetic, and Radiation Shielding Properties of Heavy Metal Oxide Glass ». Molecules 26, no 15 (26 juillet 2021) : 4494. http://dx.doi.org/10.3390/molecules26154494.
Texte intégralChen, Yi Chuan, Yue Hui Hu, Xiao Hua Zhang, Feng Yang, Hai Jun Xu, Xin Hua Chen et Jun Chen. « Structure and Properties of Doped ZnO Nanopowders Synthesized by Methanol Alcoholysis Method ». Advanced Materials Research 287-290 (juillet 2011) : 1406–11. http://dx.doi.org/10.4028/www.scientific.net/amr.287-290.1406.
Texte intégralIshigaki, Takamasa, Ji Guang Li et Yusuke Moriyoshi. « Thermal Plasma Processing of Functional Ceramic Materials ». Advances in Science and Technology 45 (octobre 2006) : 281–84. http://dx.doi.org/10.4028/www.scientific.net/ast.45.281.
Texte intégralDong, Hehe, Yinggang Chen, Yan Jiao, Qinling Zhou, Yue Cheng, Hui Zhang, Yujie Lu, Shikai Wang, Chunlei Yu et Lili Hu. « Nanocrystalline Yb:YAG-Doped Silica Glass with Good Transmittance and Significant Spectral Performance Enhancements ». Nanomaterials 12, no 8 (8 avril 2022) : 1263. http://dx.doi.org/10.3390/nano12081263.
Texte intégralKang, Myung Jong, Na Hyeon An et Young Soo Kang. « Magnetic and Photochemical Properties of Cu Doped Hematite Nanocrystal ». Materials Science Forum 893 (mars 2017) : 136–43. http://dx.doi.org/10.4028/www.scientific.net/msf.893.136.
Texte intégralJACOBY, MITCH. « DOPED NANOCRYSTALS ». Chemical & ; Engineering News 83, no 28 (11 juillet 2005) : 9. http://dx.doi.org/10.1021/cen-v083n028.p009.
Texte intégralNorris, D. J., A. L. Efros et S. C. Erwin. « Doped Nanocrystals ». Science 319, no 5871 (28 mars 2008) : 1776–79. http://dx.doi.org/10.1126/science.1143802.
Texte intégralJAVAN, MASOUD BEZI. « ELECTRONIC AND OPTICAL PROPERTIES OF NITROGEN DOPED SiC NANOCRYSTALS : FIRST PRINCIPLES STUDY ». International Journal of Modern Physics B 27, no 13 (15 mai 2013) : 1350053. http://dx.doi.org/10.1142/s0217979213500537.
Texte intégralSung, Yun-Mo, Woo-Chul Kwak, Woong Kim et Tae Geun Kim. « Enhanced ripening behavior of Mg-doped CdSe quantum dots ». Journal of Materials Research 23, no 7 (juillet 2008) : 1916–21. http://dx.doi.org/10.1557/jmr.2008.0238.
Texte intégralThèses sur le sujet "Doped Nanocrystals"
Sutton, Rebecca Suzanne. « Dual-emitting Cu-doped ZnSe/CdSe nanocrystals ». Thesis, Kansas State University, 2015. http://hdl.handle.net/2097/19047.
Texte intégralDepartment of Chemistry
Emily McLaurin
Cu-doped ZnSe/CdSe core/shell nanocrystals were synthesized using the growth doping method. Upon shell growth, the nanocrystals exhibit dual emission. The green luminescence peak is assigned as band edge emission and the broad, lower energy red peak is due to Cu dopant. Although, the oxidation state of Cu in the nanocrystals is debated, the emission is explained as recombination of a hole related to Cu²⁺ with an electron from the conduction band. The emission changed in the presence of dodecanethiol. Generally, the band edge emission intensity decreases and the Cu emission intensity increases. One explanation is the thiol acts as a hole trap, preventing hole transfer to the conduction band. Samples were obtained with varying amounts of Cd²⁺. In the presence of larger amounts of Cd²⁺, the nanocrystals had “thicker shells”, and both the band edge and Cu emission were less sensitive to thiol. The sensitivity likely decreased because the shelled, larger nanocrystals have fewer surface defects resulting in more available electrons.
PINCHETTI, VALERIO. « Advanced Spectroscopy of Interface Engineered, Doped and “Electronically” Doped Colloidal Semiconductor Nanocrystals ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2018. http://hdl.handle.net/10281/199097.
Texte intégralSemiconductor colloidal nanocrystals (NCs) are solution-processable materials that have focused scientific and technological attention thanks to their tunable optical and electrical properties. Colloidal NCs have indeed wide applicative perspectives that span from light-emitting diodes, to lasers, from solar cells to luminescent solar concentrators, from bioimaging to quantum information. Such a large range of potential NCs technologies is warranted by the unique knowledge and control that has been achieved over the years about their electronic properties. Specifically, the optical and electric properties of these nanomaterials have been tuned by either controlling their size, composition and shape, or producing multicomponent heterostructures and introducing few atoms of a different chemical element, i.e. doping the NCs. Because of the vast gamut of possibilities that colloidal NCs offer, many questions on the elusive charge carrier dynamics underlying the macroscopic observations are still unanswered. In this picture, my work points toward three different sub-classes of NCs: i) interface engineered NCs; ii) doped NCs and iii) ‘electronic’ doped NCs. After a brief review about the ‘state of the art’ of the colloidal NC science (Chap. 1), in Chap. 2 I show a detailed investigation on the interaction between the photoexcited charge carriers and the engineered interface of Dot-in-Bulk core/shell NC, which are featured by radiative recombination from both the core and shell states. I demonstrate that their uncommon dual emission is due to the peculiar interface structure between the compositional domains and that a fine tuning of the optical properties can be also achieved by modifying the interfacial potential profile. In Chap. 3, I propose a novel synthetic approach to overcome the intrinsic Poisson distribution characteristic of the up-to-date NC doping strategies that are based on stochastic distribution of impurity ions in the NC ensemble. To this aim, I use monodispersed metal cluster as seeds for the NC nucleation in the synthesis reaction flask. By mean of combined optical and elemental analysis, I show that the copper clusters composed of exactly four atoms are indeed embedded in the semiconductor matrix, giving monodispersed doped NCs. Semiconductor doping can be further distinguished in ‘isovalent’ doping, in which the impurity has the same oxidation state of the host compound, and ‘electronic’ doping, given by ions which introduce a net charge in the surrounding matrix. The most known ‘isovalent’ dopant for II-VI NCs is Mn2+. Its d5 configuration is featured by unique magnetic properties that, in quantum confined nanomaterials lead to the formation of magnetic polarons. In Chap. 4, I reveal how polaron formation affects the exciton energy by mean of resonant PL measurements, offering a precise estimation of the intensity of the internal magnetic field generated by the Mn2+ spins. In Chap. 5, I report how the magnetic response typical of Mn2+ is reproduced by introducing silver, which is an electronic dopant for II-VI semiconductors, since it can only assume the +1 oxidation state. However, it introduces an electronic level in the forbidden energy gap of the host semiconductor that participates to the radiative recombination and therefore transiently switches to the paramagnetic +2 state. By mean of magnetic circular dichroism experiments I demonstrate that in NCs doped with nonmagnetic silver dopants, the paramagnetic response is completely optically activated. Finally, in Chap. 6 I focused the attention on non toxic, ternary CuInS2 colloidal NCs. The photophysical processes underlying their emission mechanism are, however, still under debate. To address this gap, I carried out temperature-controlled photoluminescence and spectro-electrochemical experiments to unravel the intrinsic and extrinsic charge carrier dynamics of this last-generation class of colloidal N
Kriegel, Ilka. « Near-infrared plasmonics with vacancy doped semiconductor nanocrystals ». Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-164558.
Texte intégralNordin, Muhammad N. « Magneto optical study of undoped and doped PbS nanocrystals ». Thesis, University of Surrey, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.606691.
Texte intégralLounis, Sebastien Dahmane. « The influence of dopant distribution on the optoelectronic properties of tin-doped indium oxide nanocrystals and nanocrystal films ». Thesis, University of California, Berkeley, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3686398.
Texte intégralColloidally prepared nanocrystals of transparent conducting oxide (TCO) semiconductors have emerged in the past decade as an exciting new class of plasmonic materials. In recent years, there has been tremendous progress in developing synthetic methods for the growth of these nanocrystals, basic characterization of their properties, and their successful integration into optoelectronic and electrochemical devices. However, many fundamental questions remain about the physics of localized surface plasmon resonance (LSPR) in these materials, and how their optoelectronic properties derive from their underlying structural properties. In particular, the influence of the concentration and distribution of dopant ions and compensating defects on the optoelectronic properties of TCO nanocrystals has seen little investigation.
Indium tin oxide (ITO) is the most widely studied and commercially deployed TCO. Herein we investigate the role of the distribution of tin dopants on the optoelectronic properties of colloidally prepared ITO nanocrystals. Owing to a high free electron density, ITO nanocrystals display strong LSPR absorption in the near infrared. Depending on the particular organic ligands used, they are soluble in various solvents and can readily be integrated into densely packed nanocrystal films with high conductivities. Using a combination of spectroscopic techniques, modeling and simulation of the optical properties of the nanocrystals using the Drude model, and transport measurements, it is demonstrated herein that the radial distribution of tin dopants has a strong effect on the optoelectronic properties of ITO nanocrystals.
ITO nanocrystals were synthesized in both surface-segregated and uniformly distributed dopant profiles. Temperature dependent measurements of optical absorbance were first combined with Drude modeling to extract the internal electrical properties of the ITO nanocrystals, demonstrating that they are well-behaved degenerately doped semiconductors displaying finite conductivity at low temperature and room temperature conductivity reduced by one order of magnitude from that of high-quality thin film ITO.
Synchrotron based x-ray photoelectron spectroscopy (XPS) was then employed to perform detailed depth profiling of the elemental composition of ITO nanocrystals, confirming the degree of dopant surface-segregation. Based on free carrier concentrations extracted from Drude fitting of LSPR absorbance, an inverse correlation was found between surface segregation of tin and overall dopant activation. Furthermore, radial distribution of dopants was found to significantly affect the lineshape and quality factor of the LSPR absorbance. ITO nanocrystals with highly surface segregated dopants displayed symmetric LSPRs with high quality factors, while uniformly doped ITO nanocrystals displayed asymmetric LSPRs with reduced quality factors. These effects are attributed to damping of the plasmon by Coulombic scattering off ionized dopant impurities.
Finally, the distribution of dopants is also found to influence the conductivity of ITO nanocrystal films. Films made from nanocrystals with a high degree of surface segregation demonstrated one order of magnitude higher conductivity than those based on uniformly doped crystals. However, no evidence was found for differences in the surface electronic structure from one type of crystal to the other based on XPS and the exact mechanism for this difference is still not understood.
Several future studies to further illuminate the influence of dopant distribution on ITO nanocrystals are suggested. Using synchrotron radiation, detailed photoelectron spectroscopy on clean ITO nanocrystal surfaces, single-nanoparticle optical measurements, and hard x-ray structural studies will all be instructive in elucidating the interaction between oscillating free electrons and defect scattering centers when a plasmon is excited. In addition, measurements of temperature and surface treatment-dependent conductivity with carefully controlled atmosphere and surface chemistry will be needed in order to better understand the transport properties of ITO nanocrystal films. Each of these studies will enable better fundamental knowledge of the plasmonic properties of nanostructures and improve the development of nanocrystal based plasmonic devices.
Clark, Maurice Tzeng Y. « Growth and characterization of nitrogen doped nanocrystalline diamond films ». Auburn, Ala., 2006. http://hdl.handle.net/10415/1313.
Texte intégralKriegel, Ilka [Verfasser], et Jochen [Akademischer Betreuer] Feldmann. « Near-infrared plasmonics with vacancy doped semiconductor nanocrystals / Ilka Kriegel. Betreuer : Jochen Feldmann ». München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2013. http://d-nb.info/1046503316/34.
Texte intégralChen, Xiaobo. « Synthesis and Investigation of Novel Nanomaterials for Improved Photocatalysis ». Case Western Reserve University School of Graduate Studies / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=case1117575871.
Texte intégralROSINA, IRENE. « Exploiting Cation Exchange Reactions in Doped Colloidal NIR Semiconductor Nanocrystals : from synthesis to applications ». Doctoral thesis, Università degli studi di Genova, 2020. http://hdl.handle.net/11567/1019427.
Texte intégralArcher, Paul I. « Building on the hot-injection architecture : giving worth to alternative nanocrystal syntheses / ». Thesis, Connect to this title online ; UW restricted, 2007. http://hdl.handle.net/1773/8520.
Texte intégralLivres sur le sujet "Doped Nanocrystals"
Yang, Heesun. Syntheses and applications of Mn-doped II-VI semiconductor nanocrystals. 2003.
Trouver le texte intégralYu, Lixin. Development of Luminescence Properties of Eu3+-doped Nanosized Materials. Nova Science Publishers, Incorporated, 2011.
Trouver le texte intégralChapitres de livres sur le sujet "Doped Nanocrystals"
Borrelli, N. F. « Photonic Applications of Semiconductor-Doped Glasses ». Dans Semiconductor Nanocrystals, 1–51. Boston, MA : Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-3677-9_1.
Texte intégralRoschuk, Tyler, Jing Li, Jacek Wojcik, Peter Mascher et Iain D. Calder. « Lighting Applications of Rare Earth-Doped Silicon Oxides ». Dans Silicon Nanocrystals, 487–506. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527629954.ch17.
Texte intégralFujii, Minoru. « Optical Properties of Intrinsic and Shallow Impurity-Doped Silicon Nanocrystals ». Dans Silicon Nanocrystals, 43–68. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527629954.ch3.
Texte intégralKumar, J., S. Ramasubramanian, R. Thangavel et M. Rajagopalan. « On the Optical and Magnetic Properties of Doped-ZnO ». Dans ZnO Nanocrystals and Allied Materials, 309–29. New Delhi : Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-1160-0_15.
Texte intégralPanse, Christian, Roman Leitsmann et Friedhelm Bechstedt. « Nanomagnetism in Transition Metal Doped Si Nanocrystals ». Dans High Performance Computing in Science and Engineering, Garching/Munich 2009, 541–52. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13872-0_45.
Texte intégralZhou, Shu, Xiaodong Pi, Yi Ding, Firman Bagja Juangsa et Tomohiro Nozaki. « Silicon nanocrystals doped with boron and phosphorous ». Dans Silicon Nanomaterials Sourcebook, 341–66. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017] | Series : Series in materials science and engineering : CRC Press, 2017. http://dx.doi.org/10.4324/9781315153544-17.
Texte intégralZhang, Fan. « Upconversion Luminescence of Lanthanide Ion-Doped Nanocrystals ». Dans Photon Upconversion Nanomaterials, 73–119. Berlin, Heidelberg : Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45597-5_3.
Texte intégralMatsuda, Yoshinobu, Akinori Hirashima, Kenji Mine, Takuhiro Hashimoto, Daichi Matsuoka, Masanori Shinohara et Tatsuo Okada. « Deposition of Aluminum-Doped ZnO Films by ICP-Assisted Sputtering ». Dans ZnO Nanocrystals and Allied Materials, 125–48. New Delhi : Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-1160-0_6.
Texte intégralBryan, J. Daniel, et Daniel R. Gamelin. « Doped Semiconductor Nanocrystals : Synthesis, Characterization, Physical Properties, and Applications ». Dans Progress in Inorganic Chemistry, 47–126. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471725560.ch2.
Texte intégralPeng, W. Q., S. C. Qu, G. W. Cong et Z. G. Wang. « Structural and Optical Investigation of Mn-Doped ZnS Nanocrystals ». Dans Materials Science Forum, 1795–98. Stafa : Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.1795.
Texte intégralActes de conférences sur le sujet "Doped Nanocrystals"
Mei, Guang, Scott Carpenter, L. E. Felton et P. D. Persans. « Size dependence of quantum Stark effect in CdSxSe1-x nanocrystals ». Dans OSA Annual Meeting. Washington, D.C. : Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.wt5.
Texte intégralChoi, Dongsun, Juhee Son, Mihyeon Park, Joonhyung Lim, Yun Chang Choi et Kwang Seob Jeong. « Intraband Energy State Study in Self-Doped Quantum Dots ». Dans Internet NanoGe Conference on Nanocrystals. València : Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.incnc.2021.042.
Texte intégralNataraj, Latha, Aaron Jackson, Lily Giri, Clifford Hubbard et Mark Bundy. « Doped group-IV semiconductor nanocrystals ». Dans 2013 IEEE International Nanoelectronics Conference (INEC). IEEE, 2013. http://dx.doi.org/10.1109/inec.2013.6466028.
Texte intégralChen, Jiabao, Gengfeng Wu, Jing Tang, Bing Xu et Xiaowei Sun. « Eu-doped CsPbBr3 perovskite nanocrystals ». Dans 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). IEEE, 2021. http://dx.doi.org/10.1109/aemcse51986.2021.00050.
Texte intégralThantu, N., J. S. Melinger, D. McMorrow et B. L. Justus. « Femtosecond Nonlinear Optical Response of CuBr and CuCI Nanocrystals in Glass in the Optically Transparent Region ». Dans Nonlinear Optics : Materials, Fundamentals and Applications. Washington, D.C. : Optica Publishing Group, 1996. http://dx.doi.org/10.1364/nlo.1996.nthe.18.
Texte intégralKawazoe, Tadashi, Tetsuya Yamamoto, Lev G. Zimin et Yasuaki Masumoto. « Persistent spectral hole-burning in CuBr nanocrystals ». Dans Spectral Hole-Burning and Related Spectroscopies : Science and Applications. Washington, D.C. : Optica Publishing Group, 1994. http://dx.doi.org/10.1364/shbs.1994.wd51.
Texte intégralBacher, Gerd. « Magnetically doped nanocrystals : from functionality to devices ». Dans Spintronics XIII, sous la direction de Henri-Jean M. Drouhin, Jean-Eric Wegrowe et Manijeh Razeghi. SPIE, 2020. http://dx.doi.org/10.1117/12.2568478.
Texte intégralKalachev, Alexey A., et Daria D. Vlasova. « Long-lived photon echo in doped nanocrystals ». Dans SPIE Proceedings, sous la direction de Vitaly V. Samartsev. SPIE, 2008. http://dx.doi.org/10.1117/12.801683.
Texte intégralJayadevan, K. P., et Shubhada S. Kerkar. « Microstructural characteristics of boron doped TiO2 nanocrystals ». Dans PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS : ICAM 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5130221.
Texte intégralZou, Shou-Jyun, et Shun-Jen Cheng. « Magnetism of magnetic ion doped semiconductor nanocrystals ». Dans SPIE NanoScience + Engineering, sous la direction de Henri-Jean Drouhin, Jean-Eric Wegrowe et Manijeh Razeghi. SPIE, 2013. http://dx.doi.org/10.1117/12.2023623.
Texte intégralRapports d'organisations sur le sujet "Doped Nanocrystals"
Kelley, DAVID. Ligand-Controlled Energetics and Charge Transfer in Pure and Doped Nanocrystals. Office of Scientific and Technical Information (OSTI), février 2021. http://dx.doi.org/10.2172/1766125.
Texte intégral