Articles de revues sur le sujet « DNA extracellulare »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : DNA extracellulare.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « DNA extracellulare ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Šuláková, Martina, Jarmila Pazlarová, Rikke Louise Meyer et Kateřina Demnerová. « Distribution of extracellular DNA in Listeria monocytogenes biofilm ». Czech Journal of Food Sciences 37, No. 6 (31 décembre 2019) : 409–16. http://dx.doi.org/10.17221/9/2019-cjfs.

Texte intégral
Résumé :
Extracellular DNA (eDNA) is an abundant matrix component that protects biofilm from environmental stress, facilitate horizontal gene transfer, and serve as a source of nutrients. eDNA is also found in Listeria monocytogenes biofilm, but it is unknown to which extent its importance as a matrix component varies in terms of phylogenetic relatedness. This study aims to determine if these variations exist. Biofilm forming capacity of ten L. monocytogenes strains of different phylogenetic lineages and serotypes was examined using crystal violet assay at 37°C and 22°C. eDNA content was evaluated fluorometrically at 37°C and at 22°C, then the 3D structure of biofilm was studied by confocal laser scanning microscopy (CLSM). Biofilm forming capacity differed significantly between the culturing conditions and was higher at 37°C than at ambient temperature. eDNA signal distribution was found to be influenced by strain and lineage. CLSM images revealed information about spatial distribution in the biofilm. The information about the eDNA spatial organisation in the biofilm contributes to the understanding of the role of eDNA in a biofilm formation.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Masola, V., S. Granata, M. Proglio, G. Gambaro, A. Lupo et G. Zaza. « Eparanasi : un nuovo biomarker di fibrosi e un potenziale target farmacologico per ridurre la progressione del danno renale cronico ». Giornale di Clinica Nefrologica e Dialisi 24, no 2 (26 janvier 2018) : 10–15. http://dx.doi.org/10.33393/gcnd.2012.1131.

Texte intégral
Résumé :
Il trattamento poli-farmacologico ha determinato, nel corso degli anni, un significativo rallentamento della progressione della malattia renale cronica verso lo stadio di uremia terminale, ma siamo ancora distanti dallo sviluppo di interventi terapeutici in grado di bloccare questo inesorabile e irreversibile processo. Studi clinico-patologici hanno chiaramente dimostrato che il principale elemento coinvolto nel danno renale è la fibrosi tubulo-interstiziale e che il meccanismo patogenetico alla base di questa condizione ha inizio in larga parte nel compartimento tubulare. In particolare, il processo di transizione epitelio-mesenchimale gioca un ruolo importante nella genesi del danno cronico. Durante questo processo, le cellule epiteliali tubulari subiscono un incremento significativo di markers di superficie di natura mesenchimale e, grazie al rimodellamento del citoscheletro e alla degradazione della membrana basale, sono in grado di migrare nell'interstizio dove svolgono un ruolo chiave nel processo patogenetico. In questo contesto, sembra avere un ruolo chiave l'enzima eparanasi, una endo-β-D-glucuronidasi che taglia le catene dell'eparan-solfato a livello di siti specifici intracatena, e partecipa attivamente alla degradazione e al rimodellamento della matrice extracellulare. La degradazione dei vari costituenti dell'ECM, inclusi i proteoglicani eparan-solfato fa-vorisce il rilascio di fattori trofici quali il FGF-2 che induce l'espressione dei marcatori mesenchimali alfa-SMA, VIM e FN, porta alla degradazione della membrana basale mediante la secrezione di metalloproteinasi della matrice ed aumenta la motilità cellulare. L'epressione dell'eparanasi è regolata da fattori di trascrizione, dalla metilazione del DNA e da varie molecole endogene. L'importanza di questo enzima è stata confermata clinicamente dal riscontro di una sua iperespressione in preparati istologici di biopsie effettuate in soggetti affetti da nefropatie croniche (per esempio, nefropatia diabetica). Pertanto visto l'importante ruolo dell'eparanasi sono in fase di standardizzazione numerose strategie per inibire la sua espressione genica e/o la sua attività enzimatica. Infine, è stato proposto il suo possibile utilizzo come biomarker di progressione del danno tubulo-interstiziale da utilizzare routinariamente in ambito nefrologico.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Weitzman, Jonathan B. « Extracellular DNA ». Genome Biology 3 (2002) : spotlight—20020227–01. http://dx.doi.org/10.1186/gb-spotlight-20020227-01.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Xu, Yu, Yanhua Yu, Bowen Yang, Jingjiao Hui, Cai Zhang, Hua Fang, Xiaoyun Bian, Min Tao, Yipeng Lu et Zhenglu Shang. « Extracellular Mitochondrial Components and Effects on Cardiovascular Disease ». DNA and Cell Biology 40, no 9 (1 septembre 2021) : 1131–43. http://dx.doi.org/10.1089/dna.2021.0087.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Silver, Lee, et Gianluca Gallo. « Extracellular Muscle Myosin II Promotes Sensory Axon Formation ». DNA and Cell Biology 24, no 7 (juillet 2005) : 438–45. http://dx.doi.org/10.1089/dna.2005.24.438.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Chang, Xiulin, Liaoqiong Fang, Jin Bai et Zhibiao Wang. « Characteristics and Changes of DNA in Extracellular Vesicles ». DNA and Cell Biology 39, no 9 (1 septembre 2020) : 1486–93. http://dx.doi.org/10.1089/dna.2019.5005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ermakov, Aleksei V., Svetlana V. Kostyuk, Marina S. Konkova, Natalya A. Egolina, Elena M. Malinovskaya et Natalya N. Veiko. « Extracellular DNA Fragments ». Annals of the New York Academy of Sciences 1137, no 1 (août 2008) : 41–46. http://dx.doi.org/10.1196/annals.1448.024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ni, Jia-Hao, et Wan-Xi Yang. « Extracellular and Intracellular Skeletons : How Do They Involve in Apoptosis ». DNA and Cell Biology 41, no 2 (1 février 2022) : 80–90. http://dx.doi.org/10.1089/dna.2021.0613.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Hua, Yanqiu, Xiulin Chang, Liaoqiong Fang et Zhibiao Wang. « Subgroups of Extracellular Vesicles : Can They Be Defined by “Labels?” ». DNA and Cell Biology 41, no 3 (1 mars 2022) : 249–56. http://dx.doi.org/10.1089/dna.2021.0488.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

MUKHERJEE, ANIL B., ELEONORA CORDELLA-MIELE et LUCIO MIELE. « Regulation of Extracellular Phospholipase A2 Activity : Implications for Inflammatory Diseases ». DNA and Cell Biology 11, no 3 (avril 1992) : 233–43. http://dx.doi.org/10.1089/dna.1992.11.233.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Wang, Suiquan, Dongyin Liu, Rong Jin, Yiping Zhu et Aie Xu. « Differential Responses of Normal Human Melanocytes to Intra- and Extracellular dsRNA ». DNA and Cell Biology 34, no 6 (juin 2015) : 391–99. http://dx.doi.org/10.1089/dna.2014.2711.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

ELIAS, KATHLEEN A., RICHARD I. WEINER et SYNTHIA H. MELLON. « Effect of Extracellular Matrix on Prolactin Secretion and mRNA Accumulation in GH3Cells ». DNA and Cell Biology 9, no 5 (juin 1990) : 369–75. http://dx.doi.org/10.1089/dna.1990.9.369.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Hromadnikova, Ilona. « Extracellular Nucleic Acids in Maternal Circulation as Potential Biomarkers for Placental Insufficiency ». DNA and Cell Biology 31, no 7 (juillet 2012) : 1221–32. http://dx.doi.org/10.1089/dna.2011.1530.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Pedrioli, Giona, Marialuisa Barberis, Claudia Magrin, Diego Morone, Ester Piovesana, Giorgia Senesi, Martina Sola, Stéphanie Papin et Paolo Paganetti. « Tau Seeds in Extracellular Vesicles Induce Tau Accumulation in Degradative Organelles of Cells ». DNA and Cell Biology 40, no 9 (1 septembre 2021) : 1185–99. http://dx.doi.org/10.1089/dna.2021.0485.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Tetz, Victor V., et George V. Tetz. « Effect of Extracellular DNA Destruction by DNase I on Characteristics of Forming Biofilms ». DNA and Cell Biology 29, no 8 (août 2010) : 399–405. http://dx.doi.org/10.1089/dna.2009.1011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Lee, Sae Kyung, et Jeak Ling Ding. « A Perspective on the Role of Extracellular Hemoglobin on the Innate Immune System ». DNA and Cell Biology 32, no 2 (février 2013) : 36–40. http://dx.doi.org/10.1089/dna.2012.1897.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Yang, Xiaobo, Weiping Chen, Xiang Zhao, Linwei Chen, Wanli Li, Jisheng Ran et Lidong Wu. « Pyruvate Kinase M2 Modulates the Glycolysis of Chondrocyte and Extracellular Matrix in Osteoarthritis ». DNA and Cell Biology 37, no 3 (mars 2018) : 271–77. http://dx.doi.org/10.1089/dna.2017.4048.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Montanaro, Lucio, Alessandro Poggi, Livia Visai, Stefano Ravaioli, Davide Campoccia, Pietro Speziale et Carla Renata Arciola. « Extracellular DNA in Biofilms ». International Journal of Artificial Organs 34, no 9 (septembre 2011) : 824–31. http://dx.doi.org/10.5301/ijao.5000051.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Hromadnikova, Ilona, Martina Benesova, Lenka Zejskova, Jana Stehnova, Jindrich Doucha, Petr Sedlacek, Klara Dlouha et Ladislav Krofta. « The Effect ofDYS-14Copy Number Variations on Extracellular Fetal DNA Quantification in Maternal Circulation ». DNA and Cell Biology 28, no 7 (juillet 2009) : 351–58. http://dx.doi.org/10.1089/dna.2009.0855.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Ma, Xishan, Zhonglin Tang, Ning Wang, Shuanping Zhao, Ruiqi Wang, Lin Tan, Yulian Mu et Kui Li. « Identification of Extracellular Matrix and Cell Adhesion Molecule Genes Associated with Muscle Development in Pigs ». DNA and Cell Biology 30, no 7 (juillet 2011) : 469–79. http://dx.doi.org/10.1089/dna.2011.1218.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Meijer, Mariska, Michał Przemysław Pruchniak, Magdalena Arazna et Urszula Demkow. « Experimental immunology Extracellular Traps : How to isolate and quantify extracellular DNA (ET-DNA) ». Central European Journal of Immunology 4 (2012) : 321–25. http://dx.doi.org/10.5114/ceji.2012.32719.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Hromadnikova, Ilona, Lenka Zejskova, Katerina Kotlabova, Tereza Jancuskova, Jindrich Doucha, Klara Dlouha, Ladislav Krofta, Jan E. Jirasek et Radovan Vlk. « Quantification of Extracellular DNA Using HypermethylatedRASSF1A,SRY, andGLOSequences—Evaluation of Diagnostic Possibilities for Predicting Placental Insufficiency ». DNA and Cell Biology 29, no 6 (juin 2010) : 295–301. http://dx.doi.org/10.1089/dna.2009.0971.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Zhang, Xiang, Bo Qiao, Zhenming Hu, Weidong Ni, Shuquan Guo, Gang Luo, Hanxiang Zhang et al. « BMP9 Promotes the Extracellular Matrix of Nucleus Pulposus Cells via Inhibition of the Notch Signaling Pathway ». DNA and Cell Biology 38, no 4 (avril 2019) : 358–66. http://dx.doi.org/10.1089/dna.2018.4478.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Fuchs, T. A., A. Brill, D. Duerschmied, D. Schatzberg, M. Monestier, D. D. Myers, S. K. Wrobleski, T. W. Wakefield, J. H. Hartwig et D. D. Wagner. « Extracellular DNA traps promote thrombosis ». Proceedings of the National Academy of Sciences 107, no 36 (23 août 2010) : 15880–85. http://dx.doi.org/10.1073/pnas.1005743107.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Lou, Hantao, et Matthew C. Pickering. « Extracellular DNA and autoimmune diseases ». Cellular & ; Molecular Immunology 15, no 8 (19 mars 2018) : 746–55. http://dx.doi.org/10.1038/cmi.2017.136.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Zhang, Jinling, et Yong Wang. « Altered Expression of Extracellular Vesicles miRNAs from Primary Human Trabecular Meshwork Cells Induced by Transforming Growth Factor-β2 ». DNA and Cell Biology 40, no 7 (1 juillet 2021) : 988–97. http://dx.doi.org/10.1089/dna.2020.6298.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Weng, Yingzheng, Tingting Chen, Jianfei Ren, Difan Lu, Xiaowei Liu, Senna Lin, Chenkai Xu, Jiangjie Lou, Xiaofeng Chen et Lijiang Tang. « The Association Between Extracellular Matrix Metalloproteinase Inducer Polymorphisms and Coronary Heart Disease : A Potential Way to Predict Disease ». DNA and Cell Biology 39, no 2 (1 février 2020) : 244–54. http://dx.doi.org/10.1089/dna.2019.5015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Yoneda, Tsutomu, Toru Kumagai, Izumi Nagatomo, Mitsugi Furukawa, Hiroyuki Yamane, Shigenori Hoshino, Masahide Mori et al. « The Extracellular Domain of p185c-neuInduces Density-Dependent Inhibition of Cell Growth in Malignant Mesothelioma Cells and Reduces Growth of MesotheliomaIn Vivo ». DNA and Cell Biology 25, no 9 (septembre 2006) : 530–40. http://dx.doi.org/10.1089/dna.2006.25.530.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Diao, Dechang, Lei Wang, Jun-Xiao Zhang, Dianke Chen, Huanliang Liu, Yisheng Wei, Jiachun Lu, Junsheng Peng et Jianping Wang. « Mitogen/Extracellular Signal-Regulated Kinase Kinase-5 Promoter Region Polymorphisms Affect the Risk of Sporadic Colorectal Cancer in a Southern Chinese Population ». DNA and Cell Biology 31, no 3 (mars 2012) : 342–49. http://dx.doi.org/10.1089/dna.2011.1232.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Tan, Yanmei, Hai Zhang, Dongming Guo, Jiangbo Wang, Xu Yuan et Zhonghua Yuan. « Adipophilin Involved in Lipopolysaccharide-Induced Inflammation in RAW264.7 Cell via Extracellular Signal-Regulated Kinase 1/2-Peroxisome Proliferator-Activated Receptor Gamma Pathway ». DNA and Cell Biology 36, no 12 (décembre 2017) : 1159–67. http://dx.doi.org/10.1089/dna.2017.3706.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Hawes, Martha C., Fushi Wen et Emad Elquza. « Extracellular DNA : A Bridge to Cancer ». Cancer Research 75, no 20 (21 septembre 2015) : 4260–64. http://dx.doi.org/10.1158/0008-5472.can-15-1546.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Jakubovics, Nicholas S., et J. Grant Burgess. « Extracellular DNA in oral microbial biofilms ». Microbes and Infection 17, no 7 (juillet 2015) : 531–37. http://dx.doi.org/10.1016/j.micinf.2015.03.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Cai, Jin, Gengze Wu, Pedro A. Jose et Chunyu Zeng. « Functional transferred DNA within extracellular vesicles ». Experimental Cell Research 349, no 1 (novembre 2016) : 179–83. http://dx.doi.org/10.1016/j.yexcr.2016.10.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Thompson-Souza, Glaucia A., Claudia Regina Isaías Vasconcelos et Josiane S. Neves. « Eosinophils : Focus on DNA extracellular traps ». Life Sciences 311 (décembre 2022) : 121191. http://dx.doi.org/10.1016/j.lfs.2022.121191.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Vappala, Sreeparna, Suzana Straus, Edward L. Pryzdial, Edward Conway et Jayachandran Kizhakkedathu. « DNA Mediated Blood Coagulation : Extracellular DNA Accelerates Fibrinogen Polymerization By Thrombin Independent of Contact Pathway ». Blood 138, Supplement 1 (5 novembre 2021) : 2101. http://dx.doi.org/10.1182/blood-2021-154494.

Texte intégral
Résumé :
Abstract Introduction- Several in vivo studies and clinical studies have demonstrated extracellular DNA as a mediator of coagulation and this effect was reversed by the administration of DNA degrading enzyme DNase I. However, there is no clear understanding of the mechanism by which extracellular DNA activates coagulation in vitro. Conventionally, it was thought to be the activator of the contact pathway. But recent studies have shown that extracellular DNA isolated without contaminants like silica particles is a weak activator of the contact pathway. In this study, we have investigated the mechanism by which extracellular DNA is contributing to coagulation. Corroborating with recent results, we show that extracellular genomic DNA is a weak activator contact pathway. We determined that extracellular DNA accelerate fibrinogen polymerization by thrombin via a possible template mechanism. Our biophysical studies corroborate the interaction of DNA, thrombin, and fibrinogen. Understanding the mechanism of DNA induced blood coagulation will help address the gaps in the literature as well as develop inhibitors against DNA- mediated thrombosis. Methods- Silica-free extracellular DNA was purified with the PAXgene™ Blood DNA Kit. Contact activation in plasma was measured by monitoring the cleavage of the substrate S2302. To study the contact independent activation of plasma clotting by extracellular DNA, 1.5 µM Corn Trypsin Inhibitor (CTI) was applied to the plasma. Next, acceleration of fibrinogen polymerization by thrombin in presence of extracellular DNA was measured by monitoring the absorbance of 350 nm. Interaction of DNA with fibrinogen and thrombin in phosphate buffer was determined by CD spectroscopy. Results- Our results show that silica-free extracellular genomic DNA is a weak activator of the contact pathway of coagulation [Fig-A]. Moreover, genomic DNA accelerated the plasma clotting even when the contact pathway was inhibited with CTI indicating a contact independent mechanism of the procoagulant activity of extracellular DNA. Interestingly, the presence of extracellular DNA accelerated the polymerization of fibrinogen in presence of thrombin [Fig-B]. A bell-shaped dose-response curve for extracellular DNA indicates a likely template mechanism in which both thrombin and fibrinogen could assemble on the DNA molecule. These results are supported by the results from the CD spectroscopy studies where an alteration of the structure of fibrinogen and thrombin can be noticed in presence of extracellular DNA. Confocal studies further corroborate this observation. Our results also show different nucleic acids activate coagulation via different pathways. Significance- Procoagulant activity of extracellular DNA is demonstrated in several mouse models. However, a clear understanding of the mechanism of procoagulant activity of DNA in vitro has been challenging due to the caveats in the isolation of extracellular DNA where it is often contaminated with silica particles. Here we show a novel procoagulant mechanism of cell- free DNA where it augments the polymerization of fibrinogen by thrombin. These results provide insights into the mechanism of procoagulant activity of DNA which is key to develop therapeutics against procoagulant DNA. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Wnorowska, Urszula, Marzena Wątek, Bonita Durnaś, Katarzyna Głuszek, Ewelina Piktel, Katarzyna Niemirowicz et Robert Bucki. « Extracellular DNA as an essential component and therapeutic target of microbial biofilm ». Medical Studies 2 (2015) : 132–38. http://dx.doi.org/10.5114/ms.2015.52912.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Lachowicz-Scroggins, Marrah E., Eleanor M. Dunican, Annabelle R. Charbit, Wilfred Raymond, Mark R. Looney, Michael C. Peters, Erin D. Gordon et al. « Extracellular DNA, Neutrophil Extracellular Traps, and Inflammasome Activation in Severe Asthma ». American Journal of Respiratory and Critical Care Medicine 199, no 9 (mai 2019) : 1076–85. http://dx.doi.org/10.1164/rccm.201810-1869oc.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Srivastava, Pragya, Harsh Vardhan, Apurb Rashmi Bhengraj, Rajneesh Jha, Laishram Chandreshwor Singh, Sudha Salhan et Aruna Mittal. « Azithromycin Treatment Modulates the Extracellular Signal-Regulated Kinase Mediated Pathway and Inhibits Inflammatory Cytokines and Chemokines in Epithelial Cells from Infertile Women with RecurrentChlamydia trachomatisInfection ». DNA and Cell Biology 30, no 8 (août 2011) : 545–54. http://dx.doi.org/10.1089/dna.2010.1167.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Tetz, George, et Victor Tetz. « Bacterial Extracellular DNA Promotes β-Amyloid Aggregation ». Microorganisms 9, no 6 (15 juin 2021) : 1301. http://dx.doi.org/10.3390/microorganisms9061301.

Texte intégral
Résumé :
Alzheimer’s disease is associated with prion-like aggregation of the amyloid β (Aβ) peptide and the subsequent accumulation of misfolded neurotoxic aggregates in the brain. Therefore, it is critical to clearly identify the factors that trigger the cascade of Aβ misfolding and aggregation. Numerous studies have pointed out the association between microorganisms and their virulence factors and Alzheimer’s disease; however, their exact mechanisms of action remain unclear. Recently, we discovered a new pathogenic role of bacterial extracellular DNA, triggering the formation of misfolded Tau aggregates. In this study, we investigated the possible role of DNA extracted from different bacterial and eukaryotic cells in triggering Aβ aggregation in vitro. Interestingly, we found that the extracellular DNA of some, but not all, bacteria is an effective trigger of Aβ aggregation. Furthermore, the acceleration of Aβ nucleation and elongation can vary based on the concentration of the bacterial DNA and the bacterial strain from which this DNA had originated. Our findings suggest that bacterial extracellular DNA might play a previously overlooked role in the Aβ protein misfolding associated with Alzheimer’s disease pathogenesis. Moreover, it highlights a new mechanism of how distantly localized bacteria can remotely contribute to protein misfolding and diseases associated with this process. These findings might lead to the use of bacterial DNA as a novel therapeutic target for the prevention and treatment of Alzheimer’s disease.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Aldaye, Faisal A., William T. Senapedis, Pamela A. Silver et Jeffrey C. Way. « A Structurally Tunable DNA-Based Extracellular Matrix ». Journal of the American Chemical Society 132, no 42 (27 octobre 2010) : 14727–29. http://dx.doi.org/10.1021/ja105431h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Muto, Yumiko, et Sachiko Goto. « Transformation by Extracellular DNA Produced byPseudomonas aeruginosa ». Microbiology and Immunology 30, no 7 (juillet 1986) : 621–28. http://dx.doi.org/10.1111/j.1348-0421.1986.tb02989.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Schlafer, Sebastian, Rikke L. Meyer, Irene Dige et Viduthalai R. Regina. « Extracellular DNA Contributes to Dental Biofilm Stability ». Caries Research 51, no 4 (2017) : 436–42. http://dx.doi.org/10.1159/000477447.

Texte intégral
Résumé :
Extracellular DNA (eDNA) is a major matrix component of many bacterial biofilms. While the presence of eDNA and its role in biofilm stability have been demonstrated for several laboratory biofilms of oral bacteria, there is no data available on the presence and function of eDNA in in vivo grown dental biofilms. This study aimed to determine whether eDNA was part of the matrix in biofilms grown in situ in the absence of sucrose and whether treatment with DNase dispersed biofilms grown for 2.5, 5, 7.5, 16.5, or 24 h. Three hundred biofilms from 10 study participants were collected and treated with either DNase or heat-inactivated DNase for 1 h. The bacterial biovolume was determined with digital image analysis. Staining with TOTO®-1 allowed visualization of eDNA both on bacterial cell surfaces and, with a cloud-like appearance, in the intercellular space. DNase treatment strongly reduced the amount of biofilm in very early stages of growth (up to 7.5 h), but the treatment effect decreased with increasing biofilm age. This study proves the involvement of eDNA in dental biofilm formation and its importance for biofilm stability in the earliest stages. Further research is required to uncover the interplay of eDNA and other matrix components and to explore the therapeutic potential of DNase treatment for biofilm control.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Bhat, Abhayprasad, et Choong-Min Ryu. « Plant Perceptions of Extracellular DNA and RNA ». Molecular Plant 9, no 7 (juillet 2016) : 956–58. http://dx.doi.org/10.1016/j.molp.2016.05.014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Hawes, Martha C., Gilberto Curlango-Rivera, Fushi Wen, Gerard J. White, Hans D. VanEtten et Zhongguo Xiong. « Extracellular DNA : The tip of root defenses ? » Plant Science 180, no 6 (juin 2011) : 741–45. http://dx.doi.org/10.1016/j.plantsci.2011.02.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Hurtado, E., J. Nitschke, P. Hurtado et C. A. Peh. « DNA from neutrophil extracellular traps is hypomethylated ». La Presse Médicale 42, no 4 (avril 2013) : 759. http://dx.doi.org/10.1016/j.lpm.2013.02.255.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Simon, Dagmar, Susanne Hoesli, Nina Roth, Simon Staedler, Shida Yousefi et Hans-Uwe Simon. « Eosinophil extracellular DNA traps in skin diseases ». Journal of Allergy and Clinical Immunology 127, no 1 (janvier 2011) : 194–99. http://dx.doi.org/10.1016/j.jaci.2010.11.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Bryzgunova, O. E., et P. P. Laktionov. « Current methods of extracellular DNA methylation analysis ». Molecular Biology 51, no 2 (mars 2017) : 167–83. http://dx.doi.org/10.1134/s0026893317010071.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Whitchurch, C. B. « Extracellular DNA Required for Bacterial Biofilm Formation ». Science 295, no 5559 (22 février 2002) : 1487. http://dx.doi.org/10.1126/science.295.5559.1487.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Engelmann, Bernd. « Extracellular DNA and histones as thrombus stabiliser ». Thrombosis and Haemostasis 113, no 06 (novembre 2015) : 1164. http://dx.doi.org/10.1160/th15-05-0375.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Simon, D., S. Hoesli, N. Roth, S. Staedler, S. Yousefi et H. U. Simon. « Eosinophil Extracellular DNA Traps In Skin Diseases ». Journal of Allergy and Clinical Immunology 127, no 2 (février 2011) : AB205. http://dx.doi.org/10.1016/j.jaci.2010.12.814.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie