Articles de revues sur le sujet « DISTRIBUTED GENERATION PLANNING »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : DISTRIBUTED GENERATION PLANNING.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « DISTRIBUTED GENERATION PLANNING ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Dugan, R. C., T. E. McDermott et G. J. Ball. « Planning for distributed generation ». IEEE Industry Applications Magazine 7, no 2 (2001) : 80–88. http://dx.doi.org/10.1109/2943.911193.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Bazrafshan, Mohammadhafez, Likhitha Yalamanchili, Nikolaos Gatsis et Juan Gomez. « Stochastic Planning of Distributed PV Generation ». Energies 12, no 3 (31 janvier 2019) : 459. http://dx.doi.org/10.3390/en12030459.

Texte intégral
Résumé :
Recent studies by electric utility companies indicate that maximum benefits of distributed solar photovoltaic (PV) units can be reaped when siting and sizing of PV systems is optimized. This paper develops a two-stage stochastic program that serves as a tool for optimally determining the placing and sizing of PV units in distribution systems. The PV model incorporates the mapping from solar irradiance to AC power injection. By modeling the uncertainty of solar irradiance and loads by a finite set of scenarios, the goal is to achieve minimum installation and network operation costs while satisfying necessary operational constraints. First-stage decisions are scenario-independent and include binary variables that represent the existence of PV units, the area of the PV panel, and the apparent power capability of the inverter. Second-stage decisions are scenario-dependent and entail reactive power support from PV inverters, real and reactive power flows, and nodal voltages. Optimization constraints account for inverter’s capacity, PV module area limits, the power flow equations, as well as voltage regulation. A comparison between two designs, one where the DC:AC ratio is pre-specified, and the other where the maximum DC:AC ratio is specified based on historical data, is carried out. It turns out that the latter design reduces costs and allows further reduction of the panel area. The applicability and efficiency of the proposed formulation are numerically demonstrated on the IEEE 34-node feeder, while the output power of PV systems is modeled using the publicly available PVWatts software developed by the National Renewable Energy Laboratory. The overall framework developed in this paper can guide electric utility companies in identifying optimal locations for PV placement and sizing, assist with targeting customers with appropriate incentives, and encourage solar adoption.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Liu, Zi Fa, Gang Liu et Wei Zhang. « Substation Optimization Planning Considering Distributed Generation ». Advanced Materials Research 732-733 (août 2013) : 1314–19. http://dx.doi.org/10.4028/www.scientific.net/amr.732-733.1314.

Texte intégral
Résumé :
This paper established a transformer substation comprehensive optimal planning model considering distribution generation (DG) and different block geographic information factors (GIF), set form, volume, location of existing DG in planning area and transformer substation load-bearing capacity as constraint condition, taking construction cost of distribution transform substation and feeder and operation cost including current supply loss into account, in the meantime, regarding the influence of GIF such as land properties and so on to location and cost of construction with load demand satisfied. Furthermore, influence factors of different block information factor to construction cost were work out by means of interval analytical hierarchy process. On the basis of the established objective function, an particle swarm optimization (PSO) algorithm is proposed to solve the problem in this paper. By empirical study of certain planning area, the proposed model and algorithm are proved to be scientific and effective.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Singh, Bindeshwar, et Janmejay Sharma. « A review on distributed generation planning ». Renewable and Sustainable Energy Reviews 76 (septembre 2017) : 529–44. http://dx.doi.org/10.1016/j.rser.2017.03.034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Rouhani, Ahmad, Seyyed Hadi Hosseini et Mahdi Raoofat. « Composite generation and transmission expansion planning considering distributed generation ». International Journal of Electrical Power & ; Energy Systems 62 (novembre 2014) : 792–805. http://dx.doi.org/10.1016/j.ijepes.2014.05.041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Keane, A., Q. Zhou, J. W. Bialek et Mark O'Malley. « Planning and operating non-firm distributed generation ». IET Renewable Power Generation 3, no 4 (2009) : 455. http://dx.doi.org/10.1049/iet-rpg.2008.0058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Dzamarija, Mario, et Andrew Keane. « Autonomous Curtailment Control in Distributed Generation Planning ». IEEE Transactions on Smart Grid 7, no 3 (mai 2016) : 1337–45. http://dx.doi.org/10.1109/tsg.2015.2427378.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kochukov, O., et A. Mutule. « Network-Oriented Approach to Distributed Generation Planning ». Latvian Journal of Physics and Technical Sciences 54, no 3 (27 juin 2017) : 3–12. http://dx.doi.org/10.1515/lpts-2017-0015.

Texte intégral
Résumé :
AbstractThe main objective of the paper is to present an innovative complex approach to distributed generation planning and show the advantages over existing methods. The approach will be most suitable for DNOs and authorities and has specific calculation targets to support the decision-making process. The method can be used for complex distribution networks with different arrangement and legal base.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wu, Lei, Hai Zhang, Zhaojie Hu, Yinghua Wang, Hairong Wang, Hua Yang, Bin Fan et Hao Chang. « Multi-objective distribution network planning method with distributed generation based on non dominated sorting differential evolution algorithm ». Journal of Physics : Conference Series 2247, no 1 (1 avril 2022) : 012019. http://dx.doi.org/10.1088/1742-6596/2247/1/012019.

Texte intégral
Résumé :
Abstract Combined with the specific problems of distribution network planning with distributed generation, this paper constructs a multi-objective optimization model of distribution network planning with distributed generation. According to the distributed generation distribution network layout planning with distributed generation, under the condition of uncertain load prediction value of distributed generation distribution network, taking the minimum voltage stability index, minimum network loss and minimum investment cost of distributed generation as sub objectives, a multi-objective programming model is established, and the model is solved by non dominated sorting differential evolution (NSDE) algorithm.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Contreras, Javier, et Gregorio Muñoz-Delgado. « Distributed Power Generation Scheduling, Modeling, and Expansion Planning ». Energies 14, no 22 (19 novembre 2021) : 7757. http://dx.doi.org/10.3390/en14227757.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Fathabad, Abolhassan Mohammadi, Jianqiang Cheng, Kai Pan et Feng Qiu. « Data-Driven Planning for Renewable Distributed Generation Integration ». IEEE Transactions on Power Systems 35, no 6 (novembre 2020) : 4357–68. http://dx.doi.org/10.1109/tpwrs.2020.3001235.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Singh, Devender, R. K. Misra et Deependra Singh. « Effect of Load Models in Distributed Generation Planning ». IEEE Transactions on Power Systems 22, no 4 (novembre 2007) : 2204–12. http://dx.doi.org/10.1109/tpwrs.2007.907582.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Zhao, Jun Hua, John Foster, Zhao Yang Dong et Kit Po Wong. « Flexible Transmission Network Planning Considering Distributed Generation Impacts ». IEEE Transactions on Power Systems 26, no 3 (août 2011) : 1434–43. http://dx.doi.org/10.1109/tpwrs.2010.2089994.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Trebolle, David, Tomás Gómez, Rafael Cossent et Pablo Frías. « Distribution planning with reliability options for distributed generation ». Electric Power Systems Research 80, no 2 (février 2010) : 222–29. http://dx.doi.org/10.1016/j.epsr.2009.09.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Mendoza, Jorge E., Miguel E. López, Sebastián C. Fingerhuth, Héctor E. Peña et Claudio A. Salinas. « Low voltage distribution planning considering micro distributed generation ». Electric Power Systems Research 103 (octobre 2013) : 233–40. http://dx.doi.org/10.1016/j.epsr.2013.05.020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Alvarez, Manuel, Sarah K. Rönnberg, Math H. J. Bollen, Rafael Cossent et Jin Zhong. « Regulatory matters affecting distribution planning with distributed generation ». CIRED - Open Access Proceedings Journal 2017, no 1 (1 octobre 2017) : 2869–73. http://dx.doi.org/10.1049/oap-cired.2017.0358.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Xiang, Yue, Yong Liu, Junyong Liu, Yilu Liu et Kunyu Zuo. « An Economic Criterion for Distributed Renewable Generation Planning ». Electric Power Components and Systems 45, no 12 (21 juillet 2017) : 1298–304. http://dx.doi.org/10.1080/15325008.2017.1346727.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Trebolle, David, et Tomas Gomez. « Reliability Options in Distribution Planning Using Distributed Generation ». IEEE Latin America Transactions 8, no 5 (septembre 2010) : 557–64. http://dx.doi.org/10.1109/tla.2010.5623509.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Shea, J. J. « Distributed power generation planning and evaluation [Book Review] ». IEEE Electrical Insulation Magazine 17, no 2 (mars 2001) : 67–68. http://dx.doi.org/10.1109/mei.2001.917549.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Barati, Fatemeh, Shahram Jadid et Ali Zangeneh. « Private investor-based distributed generation expansion planning considering uncertainties of renewable generations ». Energy 173 (avril 2019) : 1078–91. http://dx.doi.org/10.1016/j.energy.2019.02.086.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Kumar, Sandeep, Vikas Manjrekar, Vivek Singh et Bhupesh Kumar Lad. « Integrated yet distributed operations planning approach : A next generation manufacturing planning system ». Journal of Manufacturing Systems 54 (janvier 2020) : 103–22. http://dx.doi.org/10.1016/j.jmsy.2019.12.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

KAUR, S., et G. B. KUMBHAR. « Incentive Driven Distributed Generation Planning with Renewable Energy Resources ». Advances in Electrical and Computer Engineering 14, no 4 (2014) : 21–28. http://dx.doi.org/10.4316/aece.2014.04004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Jin, Tongdan, Yu Tian, Cai Wen Zhang et David W. Coit. « Multicriteria Planning for Distributed Wind Generation Under Strategic Maintenance ». IEEE Transactions on Power Delivery 28, no 1 (janvier 2013) : 357–67. http://dx.doi.org/10.1109/tpwrd.2012.2222936.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Ho, W. S., H. Y. Chin, K. C. Wong, Z. A. Muis et H. Hashim. « Grid-connected distributed energy generation system planning and scheduling ». Desalination and Water Treatment 52, no 4-6 (14 août 2013) : 1202–13. http://dx.doi.org/10.1080/19443994.2013.826785.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Wu, Xiaomeng, Zheng Shi, Guo Feng et Qianyu Wang. « Overview of distributed generation planning in electric distribution networks ». Journal of Physics : Conference Series 1634 (septembre 2020) : 012114. http://dx.doi.org/10.1088/1742-6596/1634/1/012114.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Su, Sheng-Yi, Chan-Nan Lu, Rung-Fang Chang et Guillermo Gutierrez-Alcaraz. « Distributed Generation Interconnection Planning : A Wind Power Case Study ». IEEE Transactions on Smart Grid 2, no 1 (mars 2011) : 181–89. http://dx.doi.org/10.1109/tsg.2011.2105895.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Martinez Cesena, Eduardo A., Tomislav Capuder et Pierluigi Mancarella. « Flexible Distributed Multienergy Generation System Expansion Planning Under Uncertainty ». IEEE Transactions on Smart Grid 7, no 1 (janvier 2016) : 348–57. http://dx.doi.org/10.1109/tsg.2015.2411392.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Niu, Getu. « Reliability - Based Distributed Generation Optimization in Demand Response Planning ». Journal of Physics : Conference Series 1345 (novembre 2019) : 052050. http://dx.doi.org/10.1088/1742-6596/1345/5/052050.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Kools, L., et F. Phillipson. « Data granularity and the optimal planning of distributed generation ». Energy 112 (octobre 2016) : 342–52. http://dx.doi.org/10.1016/j.energy.2016.06.089.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Vinothkumar, K., et M. P. Selvan. « Fuzzy Embedded Genetic Algorithm Method for Distributed Generation Planning ». Electric Power Components and Systems 39, no 4 (18 février 2011) : 346–66. http://dx.doi.org/10.1080/15325008.2010.528533.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Cao, Xiaoyu, Jianxue Wang et Bo Zeng. « Distributed Generation Planning Guidance Through Feasibility and Profit Analysis ». IEEE Transactions on Smart Grid 9, no 5 (septembre 2018) : 5473–75. http://dx.doi.org/10.1109/tsg.2018.2849852.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Munoz-Delgado, Gregorio, Javier Contreras et Jose M. Arroyo. « Joint Expansion Planning of Distributed Generation and Distribution Networks ». IEEE Transactions on Power Systems 30, no 5 (septembre 2015) : 2579–90. http://dx.doi.org/10.1109/tpwrs.2014.2364960.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Zangeneh, Ali, Shahram Jadid et Ashkan Rahimi-Kian. « Uncertainty based distributed generation expansion planning in electricity markets ». Electrical Engineering 91, no 7 (23 janvier 2010) : 369–82. http://dx.doi.org/10.1007/s00202-010-0146-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Zhang, Jietan, Hong Fan, Wenting Tang, Maochun Wang, Haozhong Cheng et Liangzhong Yao. « Planning for distributed wind generation under active management mode ». International Journal of Electrical Power & ; Energy Systems 47 (mai 2013) : 140–46. http://dx.doi.org/10.1016/j.ijepes.2012.10.024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Vinothkumar, K., et M. P. Selvan. « Hierarchical Agglomerative Clustering Algorithm method for distributed generation planning ». International Journal of Electrical Power & ; Energy Systems 56 (mars 2014) : 259–69. http://dx.doi.org/10.1016/j.ijepes.2013.11.021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

AlMuhaini, Mohammad, Abass Yahaya et Ahmed AlAhmed. « Distributed Generation and Load Modeling in Microgrids ». Sustainability 15, no 6 (8 mars 2023) : 4831. http://dx.doi.org/10.3390/su15064831.

Texte intégral
Résumé :
Solar PV and wind energy are the most important renewable energy sources after hydroelectric energy with regard to installed capacity, research spending and attaining grid parity. These sources, including battery energy storage systems, and well-established load modeling have been pivotal to the success of the planning and operation of electric microgrids. One of the major challenges in modeling renewable-based DGs, battery storage, and loads in microgrids is the uncertainty of modeling their stochastic nature, as the accuracy of these models is significant in the planning and operation of microgrids. There are several models in the literature that model DG and battery storage resources for microgrid applications, and selecting the appropriate model is a challenging task. Hence, this paper examines the most common models of the aforementioned distributed energy resources and loads and delineates the mathematical rigor required for characterizing the models. Several simulations are conducted to demonstrate model performance using manufacturers’ datasheets and actual atmospheric data as inputs.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Alarcón Villamil, Jorge Alexander, Sergio Raúl Rivera Rodríguez et Francisco Santamaria Piedrahita. « Planning of power distribution networks in densely populated cities. Through distributed generation and capacitive compensators ». Revista vínculos 16, no 2 (20 novembre 2019) : 209–18. http://dx.doi.org/10.14483/2322939x.15585.

Texte intégral
Résumé :
This paper analyses different options that can be used to solve the problem of the planning of power distribution networks by including capacitive compensation and distributed generation. The methodology for planning aims to determine the size of the units, the bus where the units have to be located, and the year in which investments should be made, in order to minimize the total energy losses on the network during the planning period. The work analyses four different cases: planning using neither capacitive compensation (SC) nor distributed generation (DG), planning using only SC, planning using only DG, and planning using reactive compensation and distributed generation simultaneously. Results show that simultaneous use of SC and DG reduce the total energy losses and improve the voltage profiles on the network, so good results for the planning are obtained.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Saberi, Reza, Hamid Falaghi et Mostafa Esmaeeli. « Resilience-Based Framework for Distributed Generation Planning in Distribution Networks ». Iranian Electric Industry Journal of Quality and Productivity 9, no 4 (1 novembre 2020) : 35–49. http://dx.doi.org/10.29252/ieijqp.9.4.35.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Song, Wen, et Qi Qiang Li. « Optimal Planning of Distributed Generation Using Self-Organizing Optimization Algorithm ». Advanced Materials Research 852 (janvier 2014) : 720–24. http://dx.doi.org/10.4028/www.scientific.net/amr.852.720.

Texte intégral
Résumé :
Recently, distributed generation (DG) has gained lots of attention due to a variety of benefits it can bring to the traditional power produce and distribution system. Identify the optimal location and size of DG in the distribution network is one of the crucial problems of DG integration, because a non-optimal planning might cause some adverse effects. In this paper, an optimization model with the consideration of minimizing energy losses is formulated first, and then an optimization methodology based on the Self-organizing Optimization Algorithm (SOA) is proposed. Finally, a case study is carried out to demonstrate the effectiveness of the proposed procedure.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Daud, Sa’adah, Aida Fazliana Abdul Kadir, Musa Yusup Lada et Chin Kim Gan. « A Review : Optimal Distributed Generation Planning and Power Quality Issues ». International Review of Electrical Engineering (IREE) 11, no 2 (30 avril 2016) : 208. http://dx.doi.org/10.15866/iree.v11i2.5806.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

陈, 昡姿. « Siting and Sizing of Distributed Generation in Distribution Network Planning ». Smart Grid 03, no 06 (2013) : 153–58. http://dx.doi.org/10.12677/sg.2013.36028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Muraoka, Yukari, et Tsutomu Oyama. « Generation Planning including Distributed Generator under Uncertainty of Demand Growth. » IEEJ Transactions on Power and Energy 123, no 2 (2003) : 162–68. http://dx.doi.org/10.1541/ieejpes.123.162.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Naderi, Ehsan, Hossein Seifi et Mohammad Sadegh Sepasian. « A Dynamic Approach for Distribution System Planning Considering Distributed Generation ». IEEE Transactions on Power Delivery 27, no 3 (juillet 2012) : 1313–22. http://dx.doi.org/10.1109/tpwrd.2012.2194744.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Chandel, A., D. S. Chauhan et D. Singh. « Distributed generation planning in deregulated power market - a bibliographical survey ». International Journal of Energy Technology and Policy 8, no 3/4/5/6 (2012) : 267. http://dx.doi.org/10.1504/ijetp.2012.052121.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Zangeneh, Ali, Shahram Jadid et Ashkan Rahimi-Kian. « Promotion strategy of clean technologies in distributed generation expansion planning ». Renewable Energy 34, no 12 (décembre 2009) : 2765–73. http://dx.doi.org/10.1016/j.renene.2009.06.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Tan, Wen-Shan, Mohammad Yusri Hassan, Md Shah Majid et Hasimah Abdul Rahman. « Optimal distributed renewable generation planning : A review of different approaches ». Renewable and Sustainable Energy Reviews 18 (février 2013) : 626–45. http://dx.doi.org/10.1016/j.rser.2012.10.039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Zangeneh, Ali, Shahram Jadid et Ashkan Rahimi-Kian. « A fuzzy environmental-technical-economic model for distributed generation planning ». Energy 36, no 5 (mai 2011) : 3437–45. http://dx.doi.org/10.1016/j.energy.2011.03.048.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Novoa, Clara, et Tongdan Jin. « Reliability centered planning for distributed generation considering wind power volatility ». Electric Power Systems Research 81, no 8 (août 2011) : 1654–61. http://dx.doi.org/10.1016/j.epsr.2011.04.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Wang, HongHao, Libao Shi et Yixin Ni. « Distribution system planning incorporating distributed generation and cyber system vulnerability ». Journal of Engineering 2017, no 13 (1 janvier 2017) : 2198–202. http://dx.doi.org/10.1049/joe.2017.0720.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

El-Khattam, W., Y. G. Hegazy et M. M. A. Salama. « An Integrated Distributed Generation Optimization Model for Distribution System Planning ». IEEE Transactions on Power Systems 20, no 2 (mai 2005) : 1158–65. http://dx.doi.org/10.1109/tpwrs.2005.846114.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie