Littérature scientifique sur le sujet « Distributed Acoustic Sensing (DAS) »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Distributed Acoustic Sensing (DAS) ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Distributed Acoustic Sensing (DAS)"
Chambers, Derrick, Peiyao Li, Harpreet Sethi et Jeffery Shragge. « Monitoring industrial acoustics with distributed acoustic sensing ». Journal of the Acoustical Society of America 151, no 4 (avril 2022) : A58. http://dx.doi.org/10.1121/10.0010648.
Texte intégralShang, Ying, Maocheng Sun, Chen Wang, Jian Yang, Yuankai Du, Jichao Yi, Wenan Zhao, Yingying Wang, Yanjie Zhao et Jiasheng Ni. « Research Progress in Distributed Acoustic Sensing Techniques ». Sensors 22, no 16 (13 août 2022) : 6060. http://dx.doi.org/10.3390/s22166060.
Texte intégralAbadi, Shima, William S. Wilcock et Brad P. Lipovsky. « Detecting hydro-acoustic signals using Distributed Acoustics Sensing technology ». Journal of the Acoustical Society of America 152, no 4 (octobre 2022) : A201. http://dx.doi.org/10.1121/10.0016027.
Texte intégralShen, Zhichao, Wenbo Wu et Ying-Tsong Lin. « High-resolution observations of shallow-water acoustic propagation with distributed acoustic sensing ». Journal of the Acoustical Society of America 156, no 4 (1 octobre 2024) : 2237–49. http://dx.doi.org/10.1121/10.0030400.
Texte intégralEllmauthaler, Andreas, Brian C. Seabrook, Glenn A. Wilson, John Maida, Jeff Bush, Michel LeBlanc, James Dupree et Mauricio Uribe. « Distributed acoustic sensing of subsea wells ». Leading Edge 39, no 11 (novembre 2020) : 801–7. http://dx.doi.org/10.1190/tle39110801.1.
Texte intégralSchmidt, Henrik. « Distributed acoustic sensing in shallow water ». Journal of the Acoustical Society of America 120, no 5 (novembre 2006) : 3297. http://dx.doi.org/10.1121/1.4778019.
Texte intégralRosalie, Cedric, Nik Rajic, Patrick Norman et Claire Davis. « Acoustic Source Localisation Using Distributed Sensing ». Procedia Engineering 188 (2017) : 499–507. http://dx.doi.org/10.1016/j.proeng.2017.04.514.
Texte intégralSchick, Yannik, Guilherme H. Weber, Marco Da Silva, Cicero Martelli et Mark W. Hlawitschka. « Flow monitoring in a bubble column reactor by Distributed Acoustic Sensing ». tm - Technisches Messen 91, s1 (1 août 2024) : 14–19. http://dx.doi.org/10.1515/teme-2024-0048.
Texte intégralBecker, Matthew, Thomas Coleman, Christopher Ciervo, Matthew Cole et Michael Mondanos. « Fluid pressure sensing with fiber-optic distributed acoustic sensing ». Leading Edge 36, no 12 (décembre 2017) : 1018–23. http://dx.doi.org/10.1190/tle36121018.1.
Texte intégralDouglass, Alexander S., John Ragland et Shima Abadi. « Overview of distributed acoustic sensing technology and recently acquired data sets ». Journal of the Acoustical Society of America 153, no 3_supplement (1 mars 2023) : A64. http://dx.doi.org/10.1121/10.0018174.
Texte intégralThèses sur le sujet "Distributed Acoustic Sensing (DAS)"
Hu, Di. « Fully Distributed Multi-parameter Sensors Based on Acoustic Fiber Bragg Gratings ». Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/85112.
Texte intégralPh. D.
dos, Santos Maia Correa Julia. « Distributed Acoustic Sensing for Seismic Imaging and Reservoir Monitoring Applied to CO2 Geosequestration ». Thesis, Curtin University, 2018. http://hdl.handle.net/20.500.11937/75668.
Texte intégralMarcon, Leonardo. « Development of high performance distributed acoustic sensors based on Rayleigh backscattering ». Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3423194.
Texte intégralCiervo, Christopher M. « Establishing Hydraulic Connectivity in Bedrock by Measuring the Hydromechanical Response of Fractures with Distributed Acoustic Sensing (DAS) ». Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10840951.
Texte intégralFiber optic Distributed Acoustic Sensing (DAS) is based on the principles of Coherent Rayleigh Optical Time Domain Reflectometry, where light pulses are fired through an optical fiber, and photon backscatter is measured with an optical sensor. Strain in the fiber causes changes in the amplitude and phase of backscattered light. Using light’s two-way travel time, the optical sensor measures strain at distributed points along the length of fiber. In this work, DAS was adapted to establish hydraulic connectivity in bedrock by measuring hydromechanical strain in an observation well, as periodic well tests were conducted at mHz frequencies at an interrogation well ~30 m away. A lognormal relationship with a strong degree of interdependence was found between measured displacements and pressure amplitudes. This behavior is consistent with the semi-logarithmic closure law of fractured rock. The nanometer scale displacements reported here, however, suggest closure occurring as in-contact asperities deform, rather than opposing fracture surfaces coming into contact.
Wild, Graham. « Distributed optical fibre smart sensors for acoustic sensing in the structural health monitoring of robust aerospace vehicles ». Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2010. https://ro.ecu.edu.au/theses/1873.
Texte intégralWang, Yunjing. « Fiber-Optic Sensors for Fully-Distributed Physical, Chemical and Biological Measurement ». Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/19222.
Texte intégralThis dissertation presents a fully-distributed fiber-optic sensing technique based on a traveling long-period grating (T-LPG) in a single-mode fiber. The T-LPG is generated by pulsed acoustic waves that propagate along the fiber. When there are changes in the fiber surrounding medium or in the fiber surface coating, induced by various physical, chemical or biological stimuli, the optical transmission spectrum of the T-LPG may shift. Therefore, by measuring the T-LPG resonance wavelength at different locations along the fiber, distributed measurement can be realized for a number of parameters beyond temperature and strain.
Based on this platform, fully-distributed temperature measurement in a 2.5m fiber was demonstrated. Then by coating the fiber with functional coatings, fully-distributed biological and chemical sensing was also demonstrated. In the biological sensing experiment, immunoglobulin G (IgG) was immobilized onto the fiber surface, and the experimental results show that only specific antigen-antibody binding can introduce a measurable shift in the transmission optical spectrum of the T-LPG when it passes through the pretreated fiber segment. In the hydrogen sensing experiment, the fiber was coated with a platinum (Pt) catalyst layer, which is heated by the thermal energy released from Pt-assisted combustion of H2 and O2, and the resulted temperature change gives rise to a measurable T-LPG wavelength shift when the T-LPG passes through. Hydrogen concentration from 1% to 3.8% was detected in the experiment. This technique may also permit measurement of other quantities by changing the functional coating on the fiber; therefore it is expected to be capable of other fully-distributed sensing applications.
Ph. D.
Schilke, Sven. « Importance du couplage des capteurs distribués à fibre optique dans le cadre des VSP ». Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM042/document.
Texte intégralDistributed Acoustic Sensing (DAS) is a new technology of seismic acquisition that relies on traditional fibre-optic cables to provide inline strain measurement. This acquisition system is largely used in vertical seismic profiling (VSP) surveys. Coupling is a key factor influencing data quality. While geophones and accelerometers are clamped to the borehole wall during VSP surveys, the fibre cable is either clamped and then cemented behind the casing, or attached with rigid clamps to the tubing, or loosely lowered into the borehole. The latter deployment strategy, also called wireline deployment, usually acquires the lowest level of signal but is regarded as the most cost-effective in particular for existing well installations. This PhD thesis addresses the problematic of coupling of DAS using wireline deployment. We develop numerical models that are used to analyse real data. The interpretation of these results allows us concluding that an immediate contact of the cable with the borehole wall with a computed contact force is required to provide good coupling conditions. Based on those findings, we propose solutions to further optimise DAS acquisitions. We numerically modify the contact force and the elastic properties of the DAS cable and show how these modifications can improve but also deteriorate data quality. Finally, we propose a coupling detection algorithm that is applied to real datasets and allows ensuring the acquisition of data with a high signal-to-noise ratio
Huynh, Camille. « Real-time seismic monitoring using DAS fiber-optic instrumentation and machine learning : towards autonomous classification of natural and anthropogenic events ». Electronic Thesis or Diss., Strasbourg, 2025. http://www.theses.fr/2025STRAH001.
Texte intégralIn recent years, alongside traditional seismometer-based approaches, a new technology based on the use of optical fibers has emerged for monitoring natural or anthropogenic acoustic events: Distributed Acoustic Sensing (DAS). This innovative technology enables the measurement of seismic vibrations at very high spatial resolution over distances ranging from tens of meters to several hundred kilometers. Although these data are larger and more complex to process than those from traditional seismometers, they offer promising perspectives, particularly for analyzing the wavefields generated by earthquakes, detecting landslides, monitoring various anthropogenic events (such as pedestrian movements, vehicle movements, or seismic signals from human activities), low-amplitude or highly localized events, and precisely locating the origin of these seismic events. The goal of this thesis is to develop and test automated data analysis chains using AI-based approaches to detect, classify and analyze near-real-time fiber-optics DAS data. The objective is focused on local and regional monitoring of specific areas to enable the real-time detection and identification of natural events such as earthquakes and landslides
Schilke, Sven. « Importance du couplage des capteurs distribués à fibre optique dans le cadre des VSP ». Electronic Thesis or Diss., Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM042.
Texte intégralDistributed Acoustic Sensing (DAS) is a new technology of seismic acquisition that relies on traditional fibre-optic cables to provide inline strain measurement. This acquisition system is largely used in vertical seismic profiling (VSP) surveys. Coupling is a key factor influencing data quality. While geophones and accelerometers are clamped to the borehole wall during VSP surveys, the fibre cable is either clamped and then cemented behind the casing, or attached with rigid clamps to the tubing, or loosely lowered into the borehole. The latter deployment strategy, also called wireline deployment, usually acquires the lowest level of signal but is regarded as the most cost-effective in particular for existing well installations. This PhD thesis addresses the problematic of coupling of DAS using wireline deployment. We develop numerical models that are used to analyse real data. The interpretation of these results allows us concluding that an immediate contact of the cable with the borehole wall with a computed contact force is required to provide good coupling conditions. Based on those findings, we propose solutions to further optimise DAS acquisitions. We numerically modify the contact force and the elastic properties of the DAS cable and show how these modifications can improve but also deteriorate data quality. Finally, we propose a coupling detection algorithm that is applied to real datasets and allows ensuring the acquisition of data with a high signal-to-noise ratio
Becerril, Carlos Ernesto. « Développement de la mesure acoustique distribuée (DAS) à basse fréquence pour la détection des tsunamis ». Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5078.
Texte intégralTo date, an effective Tsunami Early-Warning System (TEWS) at a global scale is not yet in place. This reflects a proverbial challenge in geosciences: To instrument the world's ocean floors and conduct long-term observations with sufficient spatial and temporal coverage. A paradigm in the form of a novel photonic technology has been proposed for truly multi-scale monitoring, whilst keeping costs relatively low. Distributed Acoustic Sensing (DAS) uses optical fibers themselves to measure the spatial distribution of environmental properties along every point of the optic fiber. By leveraging the more than one million kilometers of optical fiber laid across the continents and oceans, the scientific community stands to gain permanent, global monitoring network of densely-spaced, highly sensitive single-component sensors, capable of providing continuous real-time data. Although it's been shown that DAS is capable of recording long-period oceanographic phenomena such as tides and gravity waves waves, and empirical observations of sensitivity to seafloor pressure variations; the pressure detection mechanism in DAS remains to be quantitatively described.Within this context, this thesis aims to provide a proof-of-concept of a specific DAS architecture (phase-sensitive detection employing chirped laser pulses) suitable for TEWS applications. Towards this objective, this work assessed the sensitivity required, and considers DAS instrument performance to ascertain detection of tsunami waves. A derived model of the expected seafloor strains potentially induced by tsunami waves is presented and finds seafloor compliance and the Poisson effect on the cable as the primary mechanisms through which DAS is anticipated to record the passage of tsunami waves. The analysis of the derived model is supported by fully coupled 3-D physics-based simulations of earthquake rupture, seismo-acoustic waves and tsunami wave propagation. Furthermore, as most instrumentation, the sensitivity at low frequencies is primarily hindered by 1/f instrument noise. This work identifies several enhancements in the opto-electronic hardware towards reducing instrument noise, and increase of sensitivity to low-frequency signals relevant to tsunami signals, specifically in the 1-10 mHz regime. The theoretical analysis and numerical simulations presented in this work point to the real possibility of detecting tsunami waves using fiber optic cables
Livres sur le sujet "Distributed Acoustic Sensing (DAS)"
Singal, S. P., dir. Acoustic Remote Sensing Applications. Berlin, Heidelberg : Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0009557.
Texte intégralBradley, Stuart. Atmospheric acoustic remote sensing. Boca Raton : CRC Press, 2008.
Trouver le texte intégralP, Singal S., dir. Acoustic remote sensing applications. Berlin : Springer-Verlag, 1997.
Trouver le texte intégralElhoseny, Mohamed, Xiaohui Yuan et Salah-ddine Krit, dir. Distributed Sensing and Intelligent Systems. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-64258-7.
Texte intégralColuccia, Giulio, Chiara Ravazzi et Enrico Magli. Compressed Sensing for Distributed Systems. Singapore : Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-390-3.
Texte intégralMazzeo, Pier Luigi, Paolo Spagnolo et Thomas B. Moeslund, dir. Activity Monitoring by Multiple Distributed Sensing. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13323-2.
Texte intégral1947-, Dakin John, dir. The Distributed fibre optic sensing handbook. Kempston, Bedford, UK : IFS Publications, 1990.
Trouver le texte intégralGao, Fei. Multi-wave Electromagnetic-Acoustic Sensing and Imaging. Singapore : Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3716-0.
Texte intégralSniatala, Pawel, M. Hadi Amini et Kianoosh G. Boroojeni. Fundamentals of Brooks–Iyengar Distributed Sensing Algorithm. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33132-0.
Texte intégralUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Program., dir. Distributed acoustic receptivity in laminar flow control configurations. [Washington, DC] : National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1992.
Trouver le texte intégralChapitres de livres sur le sujet "Distributed Acoustic Sensing (DAS)"
Li, Zhiheng. « Exploiting CNN-BiLSTM Model for Distributed Acoustic Sensing Event Recognition ». Dans Advances in Intelligent Systems Research, 333–41. Dordrecht : Atlantis Press International BV, 2024. http://dx.doi.org/10.2991/978-94-6463-512-6_36.
Texte intégralKosuke, Nakashima, Fujioka Kazuyori, Ueno Shinya, Yamazaki Mitsuru, Yashima Atsushi, Murata Yoshinobu et Sawada Kazuhide. « Structural Health Monitoring of Expressway Embankment Using Distributed Acoustic Sensing (DAS) ». Dans Environmental Science and Engineering, 161–71. Singapore : Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9203-4_11.
Texte intégralMa, G., W. Qin, C. Shi, H. Zhou, Y. Li et C. Li. « Electrical Discharge Localization for Gas Insulated Line Based on Distributed Acoustic Sensing ». Dans Lecture Notes in Electrical Engineering, 606–14. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31676-1_57.
Texte intégralShahabudin, Mohd Safuwan Bin, Nor Farisha Binti Muhamad Krishnan et Farahida Hanim Binti Mausor. « Spiking Neural Network for Microseismic Events Detection Using Distributed Acoustic Sensing Data ». Dans Lecture Notes in Networks and Systems, 317–26. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-66965-1_31.
Texte intégralChandran, Satishvaran Ragu, Hisham Mohamad, Muhammad Yusoff Mohd Nasir, Muhammad Farid Ghazali, Muhammad Aizzuddin Abdullah et Vorathin Epin. « A Comparative Study of Seismic Characteristics Between Distributed Acoustic Sensing (DAS) and Geophones ». Dans Advances in Civil Engineering Materials, 771–83. Singapore : Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0751-5_66.
Texte intégralJensen, Andrew L., William A. Redford, Nimran P. Shergill, Luke B. Beardslee et Carly M. Donahue. « Identification of Bird Species in Large Multi-channel Data Streams Using Distributed Acoustic Sensing ». Dans Conference Proceedings of the Society for Experimental Mechanics Series, 97–107. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-68142-4_13.
Texte intégralZhang, Cheng-Cheng, et Bin Shi. « Evaluating Dark Fiber Distributed Acoustic and Strain Sensing for Shallow Ground Movement Monitoring : A Field Trial ». Dans Environmental Science and Engineering, 665–73. Singapore : Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9061-0_47.
Texte intégralVantassel, Joseph P., Brady R. Cox, Peter G. Hubbard, Michael Yust, Farnyuh Menq, Kyle Spikes et Dante Fratta. « Effectiveness of Distributed Acoustic Sensing for Acquiring Surface Wave Dispersion Data Using Multichannel Analysis of Surface Waves ». Dans Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022), 1000–1008. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11898-2_77.
Texte intégralAimar, Mauro, Brady R. Cox et Sebastiano Foti. « Surface Wave Testing with Distributed Acoustic Sensing Measurements to Estimate the Shear-Wave Velocity and the Small-Strain Damping Ratio ». Dans Springer Series in Geomechanics and Geoengineering, 145–52. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-34761-0_18.
Texte intégralWang, Zheng, Tao Xie, Cheng-Cheng Zhang et Bin Shi. « Assessing the Impact of Borehole Coupling Materials on Shallow Downhole Fiber-Optic Distributed Acoustic Sensing (FO-DAS) Using Laboratory Simulations ». Dans Environmental Science and Engineering, 51–60. Singapore : Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9069-6_4.
Texte intégralActes de conférences sur le sujet "Distributed Acoustic Sensing (DAS)"
Badillo, Diego, et Marcelo A. Soto. « Acoustic Source Localisation Based on Distributed Acoustic Sensing and Sequential Least Squares Programming ». Dans Optical Sensors, SF4C.4. Washington, D.C. : Optica Publishing Group, 2024. https://doi.org/10.1364/sensors.2024.sf4c.4.
Texte intégralLu, Ping. « High Performance Distributed Acoustic Sensing Enabled by Continuously Enhanced Backscattering Fiber ». Dans Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, BW2A.1. Washington, D.C. : Optica Publishing Group, 2024. https://doi.org/10.1364/bgpp.2024.bw2a.1.
Texte intégralNing, Ivan Lim Chen, et Paul Sava. « Multicomponent distributed acoustic sensing ». Dans SEG Technical Program Expanded Abstracts 2016. Society of Exploration Geophysicists, 2016. http://dx.doi.org/10.1190/segam2016-13952981.1.
Texte intégralCrickmore, R. I., C. Minto, A. Godfrey et R. Ellwood. « Quantitative Underwater Acoustic Measurements Using Distributed Acoustic Sensing ». Dans Optical Fiber Sensors. Washington, D.C. : Optica Publishing Group, 2022. http://dx.doi.org/10.1364/ofs.2022.w4.15.
Texte intégralParker, Tom R., Arran Gillies, Sergey V. Shatalin et Mahmoud Farhadiroushan. « The intelligent distributed acoustic sensing ». Dans OFS2014 23rd International Conference on Optical Fiber Sensors, sous la direction de José M. López-Higuera, Julian D. C. Jones, Manuel López-Amo et José L. Santos. SPIE, 2014. http://dx.doi.org/10.1117/12.2064889.
Texte intégralKirkendall, Clay. « Distributed Acoustic and Seismic Sensing ». Dans OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference. IEEE, 2007. http://dx.doi.org/10.1109/ofc.2007.4348619.
Texte intégralGonzalez-Herraez, Miguel, Maria R. Fernandez-Ruiz, Regina Magalhaes, Luis Costa, Hugo F. Martins, Carlos Becerril, Sonia Martin-Lopez et al. « Distributed Acoustic Sensing in Seismology ». Dans Optical Fiber Sensors. Washington, D.C. : Optica Publishing Group, 2022. http://dx.doi.org/10.1364/ofs.2022.th2.1.
Texte intégralGonzalez-Herraez, Miguel, Maria R. Fernandez-Ruiz, Regina Magalhaes, Luis Costa, Hugo F. Martins, Andrés Garcia-Ruiz, Sonia Martin-Lopez, Ethan Williams, Zhongwen Zhan et Roel Vantilho. « Distributed acoustic sensing in seismology ». Dans Optical Fiber Sensors. Washington, D.C. : OSA, 2021. http://dx.doi.org/10.1364/ofs.2020.th2.1.
Texte intégralJin, Zhicheng, Jiageng Chen, Yanming Chang, Qingwen Liu et Zuyuan He. « Silicon Photonic Distributed Acoustic Sensing Interrogator ». Dans Optical Fiber Sensors. Washington, D.C. : Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofs.2023.th5.5.
Texte intégralClarke, A., D. Miller, T. Parker et J. Greer. « Advanced Applications of Distributed Acoustic Sensing ». Dans EAGE/DGG Workshop 2017. Netherlands : EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201700151.
Texte intégralRapports d'organisations sur le sujet "Distributed Acoustic Sensing (DAS)"
Baker, Michael, Robert Abbott et William O'Rourke. The Cryosphere/Ocean Distributed Acoustic Sensing (CODAS) Experiment. Office of Scientific and Technical Information (OSTI), septembre 2023. http://dx.doi.org/10.2172/2430275.
Texte intégralQuinn, Meghan. Geotechnical effects on fiber optic distributed acoustic sensing performance. Engineer Research and Development Center (U.S.), juillet 2021. http://dx.doi.org/10.21079/11681/41325.
Texte intégralViens, Loic. Distributed Acoustic Sensing as a Monitoring Tool at LANL. Office of Scientific and Technical Information (OSTI), octobre 2023. http://dx.doi.org/10.2172/2203386.
Texte intégralSiebenaler, Shane. PR-015-163766-R01 Field Testing of Distributed Acoustic Sensing Systems. Chantilly, Virginia : Pipeline Research Council International, Inc. (PRCI), juillet 2018. http://dx.doi.org/10.55274/r0011503.
Texte intégralBecker, Matthew. Phase I Project : Fiber Optic Distributed Acoustic Sensing for Periodic Hydraulic Tests. Office of Scientific and Technical Information (OSTI), décembre 2017. http://dx.doi.org/10.2172/1430694.
Texte intégralPorritt, Robert, Robert Abbott et Christian Poppeliers. Quantitative assessment of Distributed Acoustic Sensing at the Source Physics Experiment, Phase II. Office of Scientific and Technical Information (OSTI), novembre 2021. http://dx.doi.org/10.2172/1833177.
Texte intégralPorritt, Robert, Robert Abbott et Christian Poppeliers. Quantitative assessment of Distributed Acoustic Sensing at the Source Physics Experiment, Phase II. Office of Scientific and Technical Information (OSTI), janvier 2022. http://dx.doi.org/10.2172/1855336.
Texte intégralViens, Loic. Probing the Solid Earth and the Hydrosphere with Ocean-Bottom Distributed Acoustic Sensing. Office of Scientific and Technical Information (OSTI), novembre 2023. http://dx.doi.org/10.2172/2205032.
Texte intégralBruno, Michael S., Kang Lao, Nicky Oliver et Matthew Becker. Use of Fiber Optic Distributed Acoustic Sensing for Measuring Hydraulic Connectivity for Geothermal Applications. Office of Scientific and Technical Information (OSTI), avril 2018. http://dx.doi.org/10.2172/1434494.
Texte intégralIchinose, G., et R. Mellors. Seismic Array Analysis Using Fiber-Optic Distributed Acoustic Sensing on Small Local and Regional Earthquakes. Office of Scientific and Technical Information (OSTI), août 2021. http://dx.doi.org/10.2172/1818399.
Texte intégral