Littérature scientifique sur le sujet « Distracter suppression »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Distracter suppression ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Distracter suppression"
Fishman, Yonatan I., Christophe Micheyl et Mitchell Steinschneider. « Neural mechanisms of rhythmic masking release in monkey primary auditory cortex : implications for models of auditory scene analysis ». Journal of Neurophysiology 107, no 9 (1 mai 2012) : 2366–82. http://dx.doi.org/10.1152/jn.01010.2011.
Texte intégralLanssens, Armien, Gloria Pizzamiglio, Dante Mantini et Celine R. Gillebert. « Role of the dorsal attention network in distracter suppression based on features ». Cognitive Neuroscience 11, no 1-2 (1 novembre 2019) : 37–46. http://dx.doi.org/10.1080/17588928.2019.1683525.
Texte intégralReich, Darcy A., et Robert D. Mather. « Busy Perceivers and Ineffective Suppression Goals : A Critical Role for Distracter Thoughts ». Personality and Social Psychology Bulletin 34, no 5 (5 mars 2008) : 706–18. http://dx.doi.org/10.1177/0146167207313732.
Texte intégralSeidl, K. N., M. V. Peelen et S. Kastner. « Neural Evidence for Distracter Suppression during Visual Search in Real-World Scenes ». Journal of Neuroscience 32, no 34 (22 août 2012) : 11812–19. http://dx.doi.org/10.1523/jneurosci.1693-12.2012.
Texte intégralTays, William J., Jane Dywan, Karen J. Mathewson et Sidney J. Segalowitz. « Age Differences in Target Detection and Interference Resolution in Working Memory : An Event-related Potential Study ». Journal of Cognitive Neuroscience 20, no 12 (décembre 2008) : 2250–62. http://dx.doi.org/10.1162/jocn.2008.20158.
Texte intégralConci, Markus, Klaus Gramann, Hermann J. Müller et Mark A. Elliott. « Electrophysiological Correlates of Similarity-based Interference during Detection of Visual Forms ». Journal of Cognitive Neuroscience 18, no 6 (juin 2006) : 880–88. http://dx.doi.org/10.1162/jocn.2006.18.6.880.
Texte intégralLennert, Therese, et Julio Martinez-Trujillo. « Strength of Response Suppression to Distracter Stimuli Determines Attentional-Filtering Performance in Primate Prefrontal Neurons ». Neuron 70, no 1 (avril 2011) : 141–52. http://dx.doi.org/10.1016/j.neuron.2011.02.041.
Texte intégralLennert, Therese, et Julio Martinez-Trujillo. « Strength of Response Suppression to Distracter Stimuli Determines Attentional-Filtering Performance in Primate Prefrontal Neurons ». Neuron 70, no 2 (avril 2011) : 375. http://dx.doi.org/10.1016/j.neuron.2011.04.011.
Texte intégralMcSorley, Eugene, Patrick Haggard et Robin Walker. « Time Course of Oculomotor Inhibition Revealed by Saccade Trajectory Modulation ». Journal of Neurophysiology 96, no 3 (septembre 2006) : 1420–24. http://dx.doi.org/10.1152/jn.00315.2006.
Texte intégralFailing, Michel, et Jan Theeuwes. « More capture, more suppression : Distractor suppression due to statistical regularities is determined by the magnitude of attentional capture ». Psychonomic Bulletin & ; Review 27, no 1 (17 décembre 2019) : 86–95. http://dx.doi.org/10.3758/s13423-019-01672-z.
Texte intégralThèses sur le sujet "Distracter suppression"
MARINI, FRANCESCO. « Attentional control guides the strategic filtering of potential distraction as revealed by behavior and Fmri ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/50236.
Texte intégralWang, Deming. « The Search for a More Effective Distractor in Thought Suppression under Cognitive Load ». Thesis, Curtin University, 2017. http://hdl.handle.net/20.500.11937/66027.
Texte intégralBretherton, Paul. « The neural mechanisms of attention : exploring threat-related suppression and enhancement using ERPs ». Thesis, University of Roehampton, 2016. https://pure.roehampton.ac.uk/portal/en/studentthesis/the-neural-mechanisms-of-attention(87e183ac-3a36-40e6-9c69-91f7c1209e87).html.
Texte intégralKiss, Monika. « Searching for a color singleton among new items no preliminary suppression of old distractor locations ». Berlin Logos-Verl, 2004. http://deposit.d-nb.de/cgi-bin/dokserv?id=2865585&prov=M&dok_var=1&dok_ext=htm.
Texte intégralMagnusson, Oscar. « Attentional selection and suppression in non-clinical adults : An event-related potential study ». Thesis, Högskolan i Skövde, Institutionen för biovetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-18727.
Texte intégralChih-HaoLien et 連志浩. « fMRI Repetition Suppression for Targets and Distractors ». Thesis, 2016. http://ndltd.ncl.edu.tw/handle/09432371591400080666.
Texte intégral國立成功大學
心理學系
104
Repetition Suppression (RS) refers to the phenomenon that when the same stimulus is repeated, the BOLD responses to it decrease in certain brain areas. It reminas unclear what exactly its underlying neural mechanism is. One theory suggests that RS is a perceptual-level automatic process; therefore it should remain the same regardless of attentional or task demand manipulations (e.g., Jiang et al., 2000). However, there are also several studies reported a different pattern suggesting that RS is not an automatic process and can be modulated by attention (Yi & Chun, 2005). One reason that why previous studies have yield different results might be the differences in the level of attention to the stimuli manipulated in those studies. We reckon that when targets and distractors belong to very different categories, the distractors can be ignored immediately after the stimulus category is identified, thus receives minimum attention. And this may not be enough to produce RS (e.g., Yi & Chun, 2005). We modified the paradigm Jiang et al. (2000) used, adding a manipulation of using two categories of stimuli (face and scene), to investigation our hypothesis. The results indicate that RS can be found in stimulus-category related areas (ie. parahippocampal place area and fusiform face area) in all four conditions regardless of whether targets and distractors were from same category or not. In sum, our results support better the view that RS is an automatic process, at least in the paradigm we used.
趙化如. « Thought Suppression : The Roles of Distractor Type and Cognitive Load ». Thesis, 1999. http://ndltd.ncl.edu.tw/handle/21871173403742133635.
Texte intégral中原大學
心理學系
87
Thought suppression refers to "an attempt to keep an wanted thought or concept out of one''s consciousness". Most of people find suppression so difficulty that they need to try very hard to think something else again and again. Wegner (1992) proposed that there are two processes underlying this mental control: the operating process and the monitoring process. The former requires cognitive capacity, and the latter is an automatic process. Wegner suggested that when the individual only has very limited cognitive capacity, the monitoring process may supersede the operating process and as a result, induces the ironic effect. In the present study, we hypothesized that, by giving a focused distractor, subjects would be able to perform the operating process more efficiently even in the condition with limited cognitive capacity, and thus thought suppression could be achieved. We randomly assigned one hundred and twenty five subjects to a 3 (task: suppression-focused distractor vs. suppression-unfocused distractor vs. concentration) × 2 (cognitive load: high/low) × 3 (word type: target word vs. target-related word vs. target-unrelated word) design, with the last factor as a within variable. Subject were first asked to make an oral report about what come to their mind during the suppression/concentration processes and then do the Stroop test. The dependent measures were the frequency of target word reported and the reaction time during the Stroop test. The results indicated a main effect of cognitive load. Subjects in the high load condition generally had longer reaction time. We did not, however, found any other main effect or interaction. After comparing the frequency of target word reported by our subjects and by Wegner''s (1987) subjects, we found that the reported frequencies of our subjects were much less. Therefore, we conducted one complimentary experiment to collect more information. The result indicated that our subjects performed "thought suppression" easily. In other words, subjects could stop whatever they were thinking almost right away. We speculate that the result might be due to the culture differences and the education system employed. Further implications were also discussed.
Berteau, Stefan André. « Modeling biophysical and neural circuit bases for core cognitive abilities evident in neuroimaging patterns : hippocampal mismatch, mismatch negativity, repetition positivity, and alpha suppression of distractors ». Thesis, 2018. https://hdl.handle.net/2144/27671.
Texte intégralLivres sur le sujet "Distracter suppression"
Kiss, Monika. Searching for a color singleton among new items : No preliminary suppression of old distractor locations. Logos Verlag Berlin, 2006.
Trouver le texte intégralDienstag, Joshua Foa. Cinema Pessimism. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780190067717.001.0001.
Texte intégralActes de conférences sur le sujet "Distracter suppression"
Liu, Kaiwen, Jin Gao, Haowei Liu, Liang Li, Bing Li et Weiming Hu. « Exploring Motion Information for Distractor Suppression in Visual Tracking ». Dans 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2022. http://dx.doi.org/10.1109/cvprw56347.2022.00209.
Texte intégralGao, Guangjie, Yan Gao, Liyang Xu, Huibin Tan et Yuhua Tang. « DSGA : Distractor-Suppressing Graph Attention for Multi-object Tracking ». Dans ICRAI 2022 : 2022 8th International Conference on Robotics and Artificial Intelligence. New York, NY, USA : ACM, 2022. http://dx.doi.org/10.1145/3573910.3573916.
Texte intégralWöstmann, Malte, Mohsen Alavash et Jonas Obleser. « Distractor Suppression Uniquely Contributes to the Lateralized Alpha Response in Spatial Attention ». Dans 2019 Conference on Cognitive Computational Neuroscience. Brentwood, Tennessee, USA : Cognitive Computational Neuroscience, 2019. http://dx.doi.org/10.32470/ccn.2019.1137-0.
Texte intégralKolarik, Tomas, Ivo Maly et Zdenek Mikovec. « Suppressing external visual distractors from driver’s field of view ». Dans 2018 IEEE 9th International Conference on Cognitive Infocommunications (CogInfoCom). IEEE, 2018. http://dx.doi.org/10.1109/coginfocom.2018.8639951.
Texte intégralTan, Wei Ren, et Shang-Hong Lai. « i-Siam : Improving Siamese Tracker with Distractors Suppression and Long-Term Strategies ». Dans 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). IEEE, 2019. http://dx.doi.org/10.1109/iccvw.2019.00013.
Texte intégral