Littérature scientifique sur le sujet « Distal regulatory element »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Distal regulatory element ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Distal regulatory element"
NEGI, Sarita, Saurabh K. SINGH, Nirupma PATI, Vikas HANDA, Ruchi CHAUHAN et Uttam PATI. « A proximal tissue-specific module and a distal negative regulatory module control apolipoprotein(a) gene transcription ». Biochemical Journal 379, no 1 (1 avril 2004) : 151–59. http://dx.doi.org/10.1042/bj20030985.
Texte intégralHerbomel, P., A. Rollier, F. Tronche, M. O. Ott, M. Yaniv et M. C. Weiss. « The rat albumin promoter is composed of six distinct positive elements within 130 nucleotides ». Molecular and Cellular Biology 9, no 11 (novembre 1989) : 4750–58. http://dx.doi.org/10.1128/mcb.9.11.4750-4758.1989.
Texte intégralHerbomel, P., A. Rollier, F. Tronche, M. O. Ott, M. Yaniv et M. C. Weiss. « The rat albumin promoter is composed of six distinct positive elements within 130 nucleotides. » Molecular and Cellular Biology 9, no 11 (novembre 1989) : 4750–58. http://dx.doi.org/10.1128/mcb.9.11.4750.
Texte intégralCollins, Patrick, Melodie Henderson, Shojing Chang, Georgia Davis, Allyson McLoed, Douglas Mortlock et Thomas Aune. « Distal regions of the human IFNG locus direct cell-type specific expression (88.12) ». Journal of Immunology 184, no 1_Supplement (1 avril 2010) : 88.12. http://dx.doi.org/10.4049/jimmunol.184.supp.88.12.
Texte intégralMangnier, Loïc, Charles Joly-Beauparlant, Arnaud Droit, Steve Bilodeau et Alexandre Bureau. « Cis-regulatory hubs : a new 3D model of complex disease genetics with an application to schizophrenia ». Life Science Alliance 5, no 5 (27 janvier 2022) : e202101156. http://dx.doi.org/10.26508/lsa.202101156.
Texte intégralMüller, Patrick, Kenneth W. Merrell, Justin D. Crofts, Caroline Rönnlund, Chin-Yo Lin, Jan-Åke Gustafsson et Anders Ström. « Estrogen-dependent downregulation of hairy and enhancer of split homolog-1 gene expression in breast cancer cells is mediated via a 3′ distal element ». Journal of Endocrinology 200, no 3 (27 novembre 2008) : 311–19. http://dx.doi.org/10.1677/joe-08-0094.
Texte intégralTsika, Richard W., John McCarthy, Natalia Karasseva, Yangsi Ou et Gretchen L. Tsika. « Divergence in species and regulatory role of β-myosin heavy chain proximal promoter muscle-CAT elements ». American Journal of Physiology-Cell Physiology 283, no 6 (1 décembre 2002) : C1761—C1775. http://dx.doi.org/10.1152/ajpcell.00278.2002.
Texte intégralLi, Youlin, Yutaka Okuno, Pu Zhang, Hanna S. Radomska, Hui-min Chen, Hiromi Iwasaki, Koichi Akashi et al. « Regulation of the PU.1 gene by distal elements ». Blood 98, no 10 (15 novembre 2001) : 2958–65. http://dx.doi.org/10.1182/blood.v98.10.2958.
Texte intégralMaghsoudlou, Sepehr Steve, Timothy R. Hughes et Peter J. Hornsby. « Analysis of the distal 5′ region of the humanCYP17gene ». Genome 38, no 5 (1 octobre 1995) : 845–49. http://dx.doi.org/10.1139/g95-111.
Texte intégralTapscott, S. J., A. B. Lassar et H. Weintraub. « A novel myoblast enhancer element mediates MyoD transcription ». Molecular and Cellular Biology 12, no 11 (novembre 1992) : 4994–5003. http://dx.doi.org/10.1128/mcb.12.11.4994-5003.1992.
Texte intégralThèses sur le sujet "Distal regulatory element"
BERTOLINI, JESSICA ARMIDA. « Functional characterization of regulatory sequences targeted by the transcription factor SOX2, identified by studies of long-range chromatin interactions in brain-derived neural stem/precursor cells ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/83922.
Texte intégralSox2 encodes a transcription factor required for embryonic stem cell pluripotency. Heterozygous Sox2 mutations in humans cause defects in the development of eyes (anophthalmia, microphthalmia) and hippocampus, with neurological pathology including epilepsy, motor control problems and learning disabilities. Using a Sox2 conditional knock-out in mouse, we discovered that Sox2 is important for brain development and for neural stem cell maintenance. Recently, it was found that transcriptional regulatory elements are not always localized in proximity of the gene they control, but often they lie very far from it on the linear chromosome map. Mutations in these elements can cause pathology, due to the deregulation of the associated gene. In collaboration with Dr. C.-L. Wei’s lab (California), we compared long-range DNA interactions in chromatin of wild-type mouse neural stem/precursor cells (NPCs) and Sox2-deleted cells, using the ChIA-PET technique: out of a total of 7000 long-range interactions mapped in wild-type NPCs, 2700 were lost in Sox2-deleted cells. Many of the lost interactions involved genes important for neural development and sequences already identified as forebrain enhancers by p300 binding in mouse developing telencephalon. In parallel, we determined the genome-wide map of SOX2 binding sites in chromatin of wild-type NPCs, by ChIP-seq (in collaboration with Dr. F. Guillemot; London). At least half of the SOX2-dependent long-range interactions contain a SOX2 ChIP-seq peak, suggesting that SOX2 has a direct role in their maintenance. My project seeks to define if distal sequences, associated in a SOX2-dependent way to neural genes (candidates to be putative SOX2 targets), represent transcriptional regulatory elements active during embryonic brain development and if their activity is regulated by SOX2. We selected 13 putative distal regulatory elements (DREs), among the ChIA-PET interactions lost in Sox2-deleted cells, to functionally characterize them in transgenic experiments in zebrafish. I did the transgenesis experiments in Dr. P. Bovolenta’s lab in Madrid, supported by an EMBO short-term fellowship. We cloned the 13 DREs upstream of a minimal promoter and a GFP gene (in a “ZED” plasmid). The plasmid is injected in 1-cell stage embryos and the DNA is integrated into the fish genome. After injection, the embryos are observed during development to analyze if, and where, the tested sequences drive GFP expression. I found that 12 out of 13 DREs give rise to reproducible GFP expression in the developing forebrain and/or in more posterior neural regions, matching the expression pattern of the associated gene. This indicates that the selected DREs alone are able to guide reporter gene expression. I collected the transient GFP+ embryos (F0) of 8 DREs to obtain F1 stable transgenic lines. To test if the enhancer activity of DREs is regulated by SOX2, I used a loss of function experiment. I injected a morpholino antisense oligonucleotide, specifically directed against the Sox2 mRNA, in F2 zebrafish embryos at 1-cell stage. Two, out of 8, stable lines showed a reduced GFP expression specifically in forebrain in early developmental stages. We have also cloned some of the selected DREs in a luciferase vector to test them by transfection in cultured cells. One of the DREs showed a significant increase in luciferase activity if co-transfected with Sox2 and Mash1 expressing vectors, suggesting a regulatory mechanism operated by SOX2 on this element in presence of the cofactor MASH1. We can conclude that some of the tested DREs, involved in ChIA-PET interactions lost in Sox2-deleted cells, work as regulatory elements in in vivo experiments and are directly regulated by SOX2.
Mitchelmore, Joanna. « Investigation of transcription factor binding at distal regulatory elements ». Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/277805.
Texte intégralSchoenborn, Jamie R. « Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing Ifng transcription / ». Thesis, Connect to this title online ; UW restricted, 2007. http://hdl.handle.net/1773/5098.
Texte intégralZhang, Wei, et 张伟. « Characterization of distal and proximal regulatory elements of the human neuroglobin gene ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47147568.
Texte intégralZerucha, Ted. « Evolution of auto- and cross-regulatory elements of members of the distal-less-related family of homeobox-containing genes ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0017/NQ45202.pdf.
Texte intégralHamdan, Feda Hisham Moh'd [Verfasser], Steven [Akademischer Betreuer] Johnsen, Steven [Gutachter] Johnsen, Matthias [Gutachter] Dobbelstein, Heidi [Gutachter] Hahn, Nico [Gutachter] Posnien, Ufuk [Gutachter] Günesdogan et Volker [Gutachter] Ellenrieder. « Role of Distal Regulatory Elements in Cancer Progression and Therapy / Feda Hisham Moh'd Hamdan ; Gutachter : Steven Johnsen, Matthias Dobbelstein, Heidi Hahn, Nico Posnien, Ufuk Günesdogan, Volker Ellenrieder ; Betreuer : Steven Johnsen ». Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2019. http://d-nb.info/1203218915/34.
Texte intégralHamdan, Feda Hisham Moh'd. « Role of Distal Regulatory Elements in Cancer Progression and Therapy ». Doctoral thesis, 2018. http://hdl.handle.net/11858/00-1735-0000-002E-E556-A.
Texte intégralChapitres de livres sur le sujet "Distal regulatory element"
Ovcharenko, Ivan. « Structure of Proximal and Distant Regulatory Elements in the Human Genome ». Dans Bioinformatics Research and Applications, 125. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13078-6_14.
Texte intégralKarasu, Nezih, et Tom Sexton. « Assessment of 3D Interactions Between Promoters and Distal Regulatory Elements with Promoter Capture Hi-C (PCHi-C) ». Dans Methods in Molecular Biology, 229–48. New York, NY : Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1597-3_13.
Texte intégralMohammed, Arif, Othman A. Alghamdi, Mohd Rehan, Babajan Banaganapalli, Ramu Elango et Noor Ahmad Shaik. « Understanding the Regulatory Features of Co-regulated Genes Using Distant Regulatory Elements (DiRE) Genomic Tool in Health and Disease ». Dans Essentials of Bioinformatics, Volume II, 283–99. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18375-2_13.
Texte intégralRevington, M. J., et W. Lee. « Heteronuclear Strategies for the Assignment of Larger protein/DNA complexes : Application to the 37 kDa trp Represser-Operator Complex ». Dans Biological NMR Spectroscopy. Oxford University Press, 1997. http://dx.doi.org/10.1093/oso/9780195094688.003.0012.
Texte intégralActes de conférences sur le sujet "Distal regulatory element"
Jeon, Myeongjune. « Distal Regulatory Element of FLOWERING LOCUS C Allows Plants to Distinguish Different Types of Cold ». Dans ASPB PLANT BIOLOGY 2020. USA : ASPB, 2020. http://dx.doi.org/10.46678/pb.20.399365.
Texte intégralTeng, Li, et Kai Tan. « Discovering distal regulatory elements by integrating multiple types of chromatin state maps ». Dans 2012 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2012. http://dx.doi.org/10.1109/bibm.2012.6392628.
Texte intégral