Articles de revues sur le sujet « Disordered Rocksalt »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Disordered Rocksalt.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Disordered Rocksalt ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Pi, Liquan, Erik Björklund, Gregory Rees, Robert House et Peter Bruce. « Understanding the Degradation Mechanisms in Lithium Manganese Oxyfluoride Cathodes ». ECS Meeting Abstracts MA2023-01, no 2 (28 août 2023) : 493. http://dx.doi.org/10.1149/ma2023-012493mtgabs.

Texte intégral
Résumé :
The development of next-generation nickel and cobalt-free Li-ion batteries with significantly greater energy density for electric vehicles is largely contingent on the discovery of new cathode materials. A number of novel candidates with a disordered rocksalt crystal structure have recently been reported to exhibit high capacities, offering a highly promising new avenue for cathode research.1–5 However, disordered rocksalt cathode materials generally suffer from voltage and capacity fade over cycling. For example, the Mn-based archetypal oxyfluoride Li2MnO2F shows 254 mAh g-1 discharge capacity in the first cycle but fades to 104 mAh g-1 after 100 cycles. For improving these materials leading to practical devices, it is vital to develop an understanding of the fading mechanisms. Various explanations have been proposed for the gradual deterioration in performance of disordered rocksalt oxide and oxyfluoride cathodes. These include O-loss and surface densification4,6, growth of a CEI layer7, phase segregation6,8. In this study, we examine the main degradation mechanisms in Li2MnO2F over cycling and demonstrate that the capacity and voltage retention can be improved through compositional control, figure below. This understanding points the way to manganese oxyfluorides with better cycling performance. House, R. A. et al. Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox. Energy Environ. Sci. 11, 926–932 (2018). Lee, J. et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature 556, 185–190 (2018). Yabuuchi, N. et al. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries. Nat. Commun. 7, 1–10 (2016). Li, L. et al. Fluorination‐Enhanced Surface Stability of Cation‐Disordered Rocksalt Cathodes for Li‐Ion Batteries. Adv. Funct. Mater. 2101888, 2101888 (2021). Chen, R. et al. Disordered lithium-rich oxyfluoride as a stable host for enhanced Li+ intercalation storage. Adv. Energy Mater. 5, (2015). Chen, D., Kan, W. H. & Chen, G. Understanding Performance Degradation in Cation-Disordered Rock-Salt Oxide Cathodes. Adv. Energy Mater. 9, 1–15 (2019). Källquist, I. et al. Degradation Mechanisms in Li2VO2F Li-Rich Disordered Rock-Salt Cathodes. Chem. Mater. 31, 6084–6096 (2019). Chen, D., Ahn, J., Self, E., Nanda, J. & Chen, G. Understanding cation-disordered rocksalt oxyfluoride cathodes. J. Mater. Chem. A 2, 7826–7837 (2021). Figure 1
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ahn, Juhyeon, et Guoying Chen. « Development of Cation-Disordered Rocksalt Cathodes ». ECS Meeting Abstracts MA2021-02, no 3 (19 octobre 2021) : 392. http://dx.doi.org/10.1149/ma2021-023392mtgabs.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Chen, Dongchang, Juhyeon Ahn, Ethan Self, Jagjit Nanda et Guoying Chen. « Understanding cation-disordered rocksalt oxyfluoride cathodes ». Journal of Materials Chemistry A 9, no 12 (2021) : 7826–37. http://dx.doi.org/10.1039/d0ta12179g.

Texte intégral
Résumé :
A “concerted-densification” based failure mechanism, involving atomic-level changes in both transition-metal cationic sublattice and oxygen/fluorine anionic sublattice, is proposed for the degradation of F-DRX cathode materials.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kitchaev, Daniil A., Zhengyan Lun, William D. Richards, Huiwen Ji, Raphaële J. Clément, Mahalingam Balasubramanian, Deok-Hwang Kwon et al. « Design principles for high transition metal capacity in disordered rocksalt Li-ion cathodes ». Energy & ; Environmental Science 11, no 8 (2018) : 2159–71. http://dx.doi.org/10.1039/c8ee00816g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

House, Robert A., Liyu Jin, Urmimala Maitra, Kazuki Tsuruta, James W. Somerville, Dominic P. Förstermann, Felix Massel, Laurent Duda, Matthew R. Roberts et Peter G. Bruce. « Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox ». Energy & ; Environmental Science 11, no 4 (2018) : 926–32. http://dx.doi.org/10.1039/c7ee03195e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Chen, Ying, et Chun Huang. « Realising higher capacity and stability for disordered rocksalt oxyfluoride cathode materials for Li ion batteries ». RSC Advances 13, no 42 (2023) : 29343–53. http://dx.doi.org/10.1039/d3ra05684h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ahn, Juhyeon, et Guoying Chen. « (Invited) High-Energy Mn-Rich Disordered Rocksalt Cathodes ». ECS Meeting Abstracts MA2022-02, no 1 (9 octobre 2022) : 35. http://dx.doi.org/10.1149/ma2022-02135mtgabs.

Texte intégral
Résumé :
In recent years, cation-disordered Li-excess rocksalts (DRX) have emerged as a promising new class of high-energy cathode materials for lithium-ion batteries. [1] Aside from the desirable Co-free chemistry, these compounds offer exceptionally large charge storage capacities by utilizing the redox reactions of both cationic transition-metals and anionic oxygen in the lattice. While early research focused on DRX oxides, which met with significant challenges in voltage stability and capacity retention upon cycling [2-3], recent studies shifted towards oxyfluorides with a substantial level of F substitution. It was found that incorporating F into the anionic sublattice can reduce oxygen gas release, impedance rise and capacity fade, consequently improving cathode cycling stability. [4-5] To this end, developing synthesis methods to incorporate large F content in the lattice as well as designing and optimizing oxyfluoride chemistry for both high energy density and cycling stability are imperative. While high F substitution levels (up to 30-40 at.%) in DRX have been achieved through mechanochemical synthesis, the method has limitations in industrial application due to poor scalability. Solid-state synthesis, on the other hand, are readily scalable and often offers drop-in replacement in materials processing. In this presentation, we show our recent effort in developing calcination-based fluorination approach to achieve high-level fluorination of Mn-redox-active DRX materials. [6] The unique behavior of capacity rise upon cycling of a new class of Mn-rich DRX oxyfluoride cathodes will be reported. Our understanding in how chemistry can impact local and long-range structures and their evolution during electrochemical cycling will also be presented, as well as perspectives on future directions in DRX development. References Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G. Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries. Science 2014, 343, 519. Yabuuchi, N.; Takeuchi, M.; Nakayama, M.; Shiiba, H.; Ogawa, M.; Nakayama, K.; Ohta, T.; Endo, D.; Ozaki, T.; Inamasu, T.; Sato, K.; Komaba, S., High-Capacity Electrode Materials for Rechargeable Lithium Batteries: Li3NbO4-based System with Cation-Disordered Rocksalt Structure. Natl. Acad. Sci. 2015, 112, 7650. Chen, D.; Kan, W. H.; Chen, G. Understanding Performance Degradation in Cation-Disordered Rock-Salt Oxide Cathodes. Energy Mater. 2019, 9, 1901255. Lee, J.; Papp, J. K.; Clément, R. J.; Sallis, S.; Kwon, D.-H.; Shi, T.; Yang, W.; McCloskey, B. D.; Ceder, G. Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials. Commun. 2017, 8, 981. Lun, Z.; Ouyang, B.; Kitchaev, D. A.; Clément, R. J.; Papp, J. K.; Balasubramanian, M.; Tian, Y.; Lei, T.; Shi, T.; McCloskey, B. D.; Lee, J.; Ceder, G. Improved Cycling Performance of Li-Excess Cation-Disordered Cathode Materials upon Fluorine Substitution. Energy Mater. 2018, 9,1802959. Ahn, J.; Chen, D.; Chen, G.. A Fluorination Method for Improving Cation-Disordered Rocksalt Cathode Performance. Energy Mater. 2020, 10, 2001671.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sato, Kei, Masanobu Nakayama, Alexey M. Glushenkov, Takahiro Mukai, Yu Hashimoto, Keisuke Yamanaka, Masashi Yoshimura, Toshiaki Ohta et Naoaki Yabuuchi. « Na-Excess Cation-Disordered Rocksalt Oxide : Na1.3Nb0.3Mn0.4O2 ». Chemistry of Materials 29, no 12 (14 juin 2017) : 5043–47. http://dx.doi.org/10.1021/acs.chemmater.7b00172.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sato, Takahito, Kei Sato, Wenwen Zhao, Yoshio Kajiya et Naoaki Yabuuchi. « Metastable and nanosize cation-disordered rocksalt-type oxides : revisit of stoichiometric LiMnO2 and NaMnO2 ». Journal of Materials Chemistry A 6, no 28 (2018) : 13943–51. http://dx.doi.org/10.1039/c8ta03667e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Clément, R. J., Z. Lun et G. Ceder. « Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes ». Energy & ; Environmental Science 13, no 2 (2020) : 345–73. http://dx.doi.org/10.1039/c9ee02803j.

Texte intégral
Résumé :
Cation-disordered rocksalt oxides and oxyfluorides are promising high energy density lithium-ion cathodes, yet require a detailed understanding of the impact of disorder and short-range order on the structural and electrochemical properties.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Celasun, Yagmur, Jean-François Colin, Sébastien Martinet, Anass Benayad et David Peralta. « Lithium-Rich Rock Salt Type Sulfides-Selenides (Li2TiSexS3−x) : High Energy Cathode Materials for Lithium-Ion Batteries ». Materials 15, no 9 (22 avril 2022) : 3037. http://dx.doi.org/10.3390/ma15093037.

Texte intégral
Résumé :
Lithium-rich disordered rocksalt Li2TiS3 offers large discharge capacities (>350 mAh·g−1) and can be considered a promising cathode material for high-energy lithium-ion battery applications. However, the quick fading of the specific capacity results in a poor cycle life of the system, especially when liquid electrolyte-based batteries are used. Our efforts to solve the cycling stability problem resulted in the discovery of new high-energy selenium-substituted materials (Li2TiSexS3−x), which were prepared using a wet mechanochemistry process. X-ray diffraction analysis confirmed that all compositions were obtained in cation-disordered rocksalt phase and that the lattice parameters were expanded by selenium substitution. Substituted materials delivered large reversible capacities, with smaller average potentials, and their cycling stability was superior compared to Li2TiS3 upon cycling at a rate of C/10 between 3.0–1.6 V vs. Li+/Li.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Li, Linze, Juhyeon Ahn, Yuan Yue, Wei Tong, Guoying Chen et Chongmin Wang. « Fluorination‐Enhanced Surface Stability of Disordered Rocksalt Cathodes ». Advanced Materials 34, no 12 (8 février 2022) : 2106256. http://dx.doi.org/10.1002/adma.202106256.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Xu, Xiaoyu, Liquan Pi, John-Joseph Marie, Gregory J. Rees, Chen Gong, Shengda Pu, Robert A. House, Alexander W. Robertson et Peter G. Bruce. « Li2NiO2F a New Oxyfluoride Disordered Rocksalt Cathode Material ». Journal of The Electrochemical Society 168, no 8 (1 août 2021) : 080521. http://dx.doi.org/10.1149/1945-7111/ac1be1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Lun, Zhengyan, Bin Ouyang, Raphaële J. Clément, Deok-Hwang Kwon et Gerbrand Ceder. « High-Capacity Mn-Based Cation-Disordered Rocksalt Cathodes ». ECS Meeting Abstracts MA2020-01, no 2 (1 mai 2020) : 187. http://dx.doi.org/10.1149/ma2020-012187mtgabs.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Ahn, Juhyeon, Dongchang Chen et Guoying Chen. « Improving Performance of Cation-Disordered Rocksalt Oxyfluoride Cathodes ». ECS Meeting Abstracts MA2020-02, no 2 (23 novembre 2020) : 339. http://dx.doi.org/10.1149/ma2020-022339mtgabs.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Zhong, Peichen, Zijian Cai, Yaqian Zhang, Raynald Giovine, Bin Ouyang, Guobo Zeng, Yu Chen, Raphaële Clément, Zhengyan Lun et Gerbrand Ceder. « Increasing Capacity in Disordered Rocksalt Cathodes by Mg Doping ». Chemistry of Materials 32, no 24 (3 décembre 2020) : 10728–36. http://dx.doi.org/10.1021/acs.chemmater.0c04109.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Privitera, Stefania, Antonio M. Mio, Julia Benke, Christoph Persch, Emanuele Smecca, Alessandra Alberti et Emanuele Rimini. « Phase Transitions in Ge-Sb-Te Alloys Induced by Ion Irradiations ». MRS Advances 1, no 39 (2016) : 2701–9. http://dx.doi.org/10.1557/adv.2016.280.

Texte intégral
Résumé :
ABSTRACTThe variation of the electrical and optical properties under 150 keV Ar+ ion irradiation has been studied in Ge2Sb2Te5 polycrystalline films, either in the rocksalt or in the trigonal structure, by in situ reflectivity measurements and ex situ resistance measurements. As the irradiation dose increases, the disorder introduced in the crystalline films increases and the reflectivity decreases, down to a minimum value that corresponds to complete amorphization. Large differences are found by changing the irradiation temperature, for the two crystalline structures. Indeed, the measured amorphization threshold is the same for the two crystalline phases and equal to 1x1013 cm-2 under irradiation at 77K, whilst at room temperature the trigonal phase requires a dose almost double than the rocksalt phase to be amorphized. By structural analyses we found that, before amorphization, ion irradiation induces a transition from the trigonal to the rocksalt structure. The van der Waals gaps present in the trigonal phase might act as preferential sinks for the displaced and mobile atoms, thus promoting this transition. By further increasing the irradiation dose the formed disordered rocksalt phase converts into the amorphous phase. Ion irradiation also affects the electrical properties of the material: the disorder modifies the temperature dependence of resistance of the trigonal Ge2Sb2Te5 and induces a change of sign (from metallic to insulating behavior) at a dose of 2x1013 cm-2, well below the amorphization threshold.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Kosova, N. V., K. V. Mishchenko, O. A. Podgornova, D. O. Semykina et A. A. Shindrov. « High Energy Density Electrode Materials with the Disordered Rocksalt Structure ». Russian Journal of Electrochemistry 58, no 7 (juillet 2022) : 567–73. http://dx.doi.org/10.1134/s1023193522070084.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Li, Hao, Richie Fong, Moohyun Woo, Hoda Ahmed, Dong-Hwa Seo, Rahul Malik et Jinhyuk Lee. « Toward high-energy Mn-based disordered-rocksalt Li-ion cathodes ». Joule 6, no 1 (janvier 2022) : 53–91. http://dx.doi.org/10.1016/j.joule.2021.11.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Chen, Dongchang, Jin Zhang, Zhisen Jiang, Chenxi Wei, Jordan Burns, Linze Li, Chongmin Wang, Kristin Persson, Yijin Liu et Guoying Chen. « Role of Fluorine in Chemomechanics of Cation-Disordered Rocksalt Cathodes ». Chemistry of Materials 33, no 17 (26 août 2021) : 7028–38. http://dx.doi.org/10.1021/acs.chemmater.1c02118.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Ahn, Juhyeon, Dongchang Chen et Guoying Chen. « A Fluorination Method for Improving Cation‐Disordered Rocksalt Cathode Performance ». Advanced Energy Materials 10, no 35 (28 juillet 2020) : 2001671. http://dx.doi.org/10.1002/aenm.202001671.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Stone, K. H., Y. Liu, D. Sokaras, W. Chueh et J. L. Nelson Weker. « Phase evolution during solid-state synthesis of disordered rocksalt cathodes ». Acta Crystallographica Section A Foundations and Advances 79, a2 (22 août 2023) : C34. http://dx.doi.org/10.1107/s205327332309575x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Shirazi Moghadam, Y., A. El Kharbachi, G. Melinte, T. Diemant et M. Fichtner. « Bulk and Surface Stabilization Process of Metastable Li-Rich Disordered Rocksalt Oxyfluorides as Efficient Cathode Materials ». Journal of The Electrochemical Society 169, no 12 (1 décembre 2022) : 120514. http://dx.doi.org/10.1149/1945-7111/acaa62.

Texte intégral
Résumé :
Manganese based disordered rocksalt systems have attracted attention as Co-free and high capacity cathode materials for Li-ion batteries. However, for a practical application these materials are considered as metastable and exhibit too limited cyclability. In order to improve the structural stability of the disordered rocksalt Li1+xMn2/3Ti1/3O2Fx (0 ≤ x ≤ 1) system during cycling, we have introduced a mild temperature heat treatment process under reducing atmosphere, which is intended to overcome the structural anomalies formed during the mechanochemical synthesis. The heat-treated samples presented better electrochemical properties, which are ascribed to a structural defect mitigation process both at the surface and in the bulk, resulting in improved crystal structure stability. In addition, the optimized particle size and the smaller BET surface area induced by the recrystallization contributes to the observed enhanced performance. Among the studied compositions, the heat treated Li2Mn2/3Ti1/3O2F sample displayed better electrochemical performance with a discharge capacity of 165 mAh g−1 after 100 cycles at 0.1 C (∼80% of the initial capacity), when combined with further conditioning of the cells. The results point explicitly towards a guided stabilization approach, which could have a beneficial effect regarding the application of DRS oxyfluoride materials for sustainable LIBs.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Lun, Zhengyan, Bin Ouyang, Zijian Cai, Raphaële J. Clément, Deok-Hwang Kwon, Jianping Huang, Joseph K. Papp et al. « Design Principles for High-Capacity Mn-Based Cation-Disordered Rocksalt Cathodes ». Chem 6, no 1 (janvier 2020) : 153–68. http://dx.doi.org/10.1016/j.chempr.2019.10.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Clement, Raphaele J., Raynald Giovine, Yuefan Ji, Ashlea Patterson, Emily E. Foley, Zhengyan Lun, Daniil Kitchaev et al. « (Invited) Novel Approaches for the Study of Disordered Rocksalt Oxyfluoride Intercalation Cathodes ». ECS Meeting Abstracts MA2021-02, no 2 (19 octobre 2021) : 190. http://dx.doi.org/10.1149/ma2021-022190mtgabs.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Yue, Yuan, Yang Ha, Tzu-Yang Huang, Ning Li, Linze Li, Qingtian Li, Jun Feng et al. « Interplay between Cation and Anion Redox in Ni-Based Disordered Rocksalt Cathodes ». ACS Nano 15, no 8 (4 août 2021) : 13360–69. http://dx.doi.org/10.1021/acsnano.1c03289.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Yue, Yuan, Yang Ha, Raynald Giovine, Raphaële Clément, Wanli Yang et Wei Tong. « High-Voltage Reactivity and Long-Term Stability of Cation-Disordered Rocksalt Cathodes ». Chemistry of Materials 34, no 4 (8 février 2022) : 1524–32. http://dx.doi.org/10.1021/acs.chemmater.1c03115.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Lee, Jinhyuk, Chao Wang, Dong-Hwa Seo et Ju Li. « Dual Roles of Li-Excess for Disordered-Rocksalt Li-Ion Battery Cathodes ». ECS Meeting Abstracts MA2021-02, no 3 (19 octobre 2021) : 375. http://dx.doi.org/10.1149/ma2021-023375mtgabs.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Lee, Jinhyuk, et Ju Li. « Reevaluating the Criticality of Li-Excess for Disordered-Rocksalt Li-Battery Cathodes ». ECS Meeting Abstracts MA2021-01, no 2 (30 mai 2021) : 72. http://dx.doi.org/10.1149/ma2021-01272mtgabs.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Jones, Michael A., Philip J. Reeves, Ieuan D. Seymour, Matthew J. Cliffe, Siân E. Dutton et Clare P. Grey. « Short-range ordering in a battery electrode, the ‘cation-disordered’ rocksalt Li1.25Nb0.25Mn0.5O2 ». Chemical Communications 55, no 61 (2019) : 9027–30. http://dx.doi.org/10.1039/c9cc04250d.

Texte intégral
Résumé :
We demonstrate short-range ordering in Li-ion battery material Li1.25Nb0.25Mn0.5O2, and identify its local structure and correlation length—which is sensitive to synthesis conditions and has important consequences for the material's electrochemistry.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Naylor, Andrew J., Ida Källquist, David Peralta, Jean-Frederic Martin, Adrien Boulineau, Jean-François Colin, Christian Baur et al. « Stabilization of Li-Rich Disordered Rocksalt Oxyfluoride Cathodes by Particle Surface Modification ». ACS Applied Energy Materials 3, no 6 (29 mai 2020) : 5937–48. http://dx.doi.org/10.1021/acsaem.0c00839.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Shi, Tan, Penghao Xiao, Deok-Hwang Kwon, Gopalakrishnan Sai Gautam, Khetpakorn Chakarawet, Hyunchul Kim, Shou-Hang Bo et Gerbrand Ceder. « Shear-Assisted Formation of Cation-Disordered Rocksalt NaMO2 (M = Fe or Mn) ». Chemistry of Materials 30, no 24 (21 novembre 2018) : 8811–21. http://dx.doi.org/10.1021/acs.chemmater.8b03490.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Nakajima, Mizuki, et Naoaki Yabuuchi. « Lithium-Excess Cation-Disordered Rocksalt-Type Oxide with Nanoscale Phase Segregation : Li1.25Nb0.25V0.5O2 ». Chemistry of Materials 29, no 16 (31 juillet 2017) : 6927–35. http://dx.doi.org/10.1021/acs.chemmater.7b02343.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Zhong, Peichen, Zijian Cai, Yaqian Zhang, Bin Ouyang, Guobo Zeng, Yu Chen, Zhengyan Lun et Gerbrand Ceder. « Resolving Li-F Locking Effect in Disordered Rocksalt Cathodes with Mg-Doping ». ECS Meeting Abstracts MA2020-02, no 1 (23 novembre 2020) : 129. http://dx.doi.org/10.1149/ma2020-021129mtgabs.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Liu, Haodong, Zhuoying Zhu, Huolin Xin, Jun Lu, Ping Liu et Shyue Ping Ong. « (Invited) Novel Disordered Rocksalt Electrodes for Safe, Fast Charging Lithium-Ion Batteries ». ECS Meeting Abstracts MA2020-02, no 1 (23 novembre 2020) : 22. http://dx.doi.org/10.1149/ma2020-02122mtgabs.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Lun, Zhengyan, Bin Ouyang, Deok-Hwang Kwon et Gerbrand Ceder. « Short-Range Order and Macroscopic Lithium Transport in Cation-Disordered Rocksalt Cathodes ». ECS Meeting Abstracts MA2020-02, no 1 (23 novembre 2020) : 75. http://dx.doi.org/10.1149/ma2020-02175mtgabs.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Li, Yining, Yi Li, Haoxin Li, Yang Gan, Wujie Qiu et Jianjun Liu. « Rational design of high reversible capacity in Li-rich disordered rocksalt cathodes ». Nano Energy 119 (janvier 2024) : 109064. http://dx.doi.org/10.1016/j.nanoen.2023.109064.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Lee, Jinhyuk, Chao Wang, Rahul Malik, Yanhao Dong, Yimeng Huang, Dong‐Hwa Seo et Ju Li. « Determining the Criticality of Li‐Excess for Disordered‐Rocksalt Li‐Ion Battery Cathodes ». Advanced Energy Materials 11, no 24 (5 mai 2021) : 2100204. http://dx.doi.org/10.1002/aenm.202100204.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Yue, Yuan, Ning Li, Yang Ha, Matthew J. Crafton, Bryan D. McCloskey, Wanli Yang et Wei Tong. « Tailoring the Redox Reactions for High‐Capacity Cycling of Cation‐Disordered Rocksalt Cathodes ». Advanced Functional Materials 31, no 14 (27 janvier 2021) : 2008696. http://dx.doi.org/10.1002/adfm.202008696.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Li, Linze, Zhengyan Lun, Dongchang Chen, Yuan Yue, Wei Tong, Guoying Chen, Gerbrand Ceder et Chongmin Wang. « Fluorination‐Enhanced Surface Stability of Cation‐Disordered Rocksalt Cathodes for Li‐Ion Batteries ». Advanced Functional Materials 31, no 25 (17 avril 2021) : 2101888. http://dx.doi.org/10.1002/adfm.202101888.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Li, Linze, Zhengyan Lun, Dongchang Chen, Yuan Yue, Wei Tong, Guoying Chen, Gerbrand Ceder et Chongmin Wang. « Atomic-scale mechanisms for fluorination-enhanced cycling stability of cation-disordered rocksalt cathodes ». Microscopy and Microanalysis 27, S1 (30 juillet 2021) : 1256–58. http://dx.doi.org/10.1017/s1431927621004712.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Brinkmann, Jan-Paul, Niloofar Ehteshami-Flammer, Mingzeng Luo, Marco Leißing, Stephan Röser, Sascha Nowak, Yong Yang, Martin Winter et Jie Li. « Compatibility of Various Electrolytes with Cation Disordered Rocksalt Cathodes in Lithium Ion Batteries ». ACS Applied Energy Materials 4, no 10 (4 octobre 2021) : 10909–20. http://dx.doi.org/10.1021/acsaem.1c01879.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Brinkmann, Jan-Paul, Niloofar Ehteshami-Flammer, Mingzeng Luo, Marco Leißing, Stephan Röser, Sascha Nowak, Yong Yang, Martin Winter et Jie Li. « Compatibility of Various Electrolytes with Cation Disordered Rocksalt Cathodes in Lithium Ion Batteries ». ACS Applied Energy Materials 4, no 10 (4 octobre 2021) : 10909–20. http://dx.doi.org/10.1021/acsaem.1c01879.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Crafton, Matthew, Yuan Yue, Wei Tong et Bryan D. McCloskey. « Anion Reactivity in Cation-Disordered Rocksalt Cathode Materials : The Influence of Fluorine Substitution ». ECS Meeting Abstracts MA2020-02, no 1 (23 novembre 2020) : 160. http://dx.doi.org/10.1149/ma2020-021160mtgabs.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Crafton, Matthew J., Yuan Yue, Tzu‐Yang Huang, Wei Tong et Bryan D. McCloskey. « Anion Reactivity in Cation‐Disordered Rocksalt Cathode Materials : The Influence of Fluorine Substitution ». Advanced Energy Materials 10, no 35 (2 août 2020) : 2001500. http://dx.doi.org/10.1002/aenm.202001500.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Kobayashi, Tokio, Wenwen Zhao, Hongahally Basappa Rajendra, Keisuke Yamanaka, Toshiaki Ohta et Naoaki Yabuuchi. « Nanosize Cation‐Disordered Rocksalt Oxides : Na 2 TiO 3 –NaMnO 2 Binary System ». Small 16, no 12 (mars 2020) : 1902462. http://dx.doi.org/10.1002/smll.201902462.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Singh, Aditya Narayan, Amir Hajibabaei, Miran Ha, Abhishek Meena, Hyun-Seok Kim, Chinna Bathula et Kyung-Wan Nam. « Reduced Potential Barrier of Sodium-Substituted Disordered Rocksalt Cathode for Oxygen Evolution Electrocatalysts ». Nanomaterials 13, no 1 (20 décembre 2022) : 10. http://dx.doi.org/10.3390/nano13010010.

Texte intégral
Résumé :
Cation-disordered rocksalt (DRX) cathodes have been viewed as next-generation high-energy density materials surpassing conventional layered cathodes for lithium-ion battery (LIB) technology. Utilizing the opportunity of a better cation mixing facility in DRX, we synthesize Na-doped DRX as an efficient electrocatalyst toward oxygen evolution reaction (OER). This novel OER electrocatalyst generates a current density of 10 mA cm−2 at an overpotential (η) of 270 mV, Tafel slope of 67.5 mV dec−1, and long-term stability >5.5 days’ superior to benchmark IrO2 (η = 330 mV with Tafel slope = 74.8 mV dec−1). This superior electrochemical behavior is well supported by experiment and sparse Gaussian process potential (SGPP) machine learning-based search for minimum energy structure. Moreover, as oxygen binding energy (OBE) on the surface closely relates to OER activity, our density functional theory (DFT) calculations reveal that Na-doping assists in facile O2 evolution (OBE = 5.45 eV) compared with pristine-DRX (6.51 eV).
Styles APA, Harvard, Vancouver, ISO, etc.
48

Yang, Julia H., Haegyeom Kim et Gerbrand Ceder. « Insights into Layered Oxide Cathodes for Rechargeable Batteries ». Molecules 26, no 11 (26 mai 2021) : 3173. http://dx.doi.org/10.3390/molecules26113173.

Texte intégral
Résumé :
Layered intercalation compounds are the dominant cathode materials for rechargeable Li-ion batteries. In this article we summarize in a pedagogical way our work in understanding how the structure’s topology, electronic structure, and chemistry interact to determine its electrochemical performance. We discuss how alkali–alkali interactions within the Li layer influence the voltage profile, the role of the transition metal electronic structure in dictating O3-structural stability, and the mechanism for alkali diffusion. We then briefly delve into emerging, next-generation Li-ion cathodes that move beyond layered intercalation hosts by discussing disordered rocksalt Li-excess structures, a class of materials which may be essential in circumventing impending resource limitations in our era of clean energy technology.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Yue, Yuan, Ning Li, Linze Li, Emily E. Foley, Yanbao Fu, Vincent S. Battaglia, Raphaële J. Clément, Chongmin Wang et Wei Tong. « Redox Behaviors in a Li-Excess Cation-Disordered Mn–Nb–O–F Rocksalt Cathode ». Chemistry of Materials 32, no 11 (4 mai 2020) : 4490–98. http://dx.doi.org/10.1021/acs.chemmater.9b05221.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Chen, Dongchang, Jinpeng Wu, Joseph K. Papp, Bryan D. McCloskey, Wanli Yang et Guoying Chen. « Role of Redox‐Inactive Transition‐Metals in the Behavior of Cation‐Disordered Rocksalt Cathodes ». Small 16, no 22 (4 mai 2020) : 2000656. http://dx.doi.org/10.1002/smll.202000656.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie