Littérature scientifique sur le sujet « Disk laser »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Disk laser ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Disk laser"
Xiahui Han, Xiahui Han, et and Jianlang Li and Jianlang Li. « Maglev rotating disk laser ». Chinese Optics Letters 13, no 12 (2015) : 121403–6. http://dx.doi.org/10.3788/col201513.121403.
Texte intégralZubov, Fedor I., Eduard I. Moiseev, Mikhail V. Maximov, Alexandr A. Vorobyev, Alexey M. Mozharov, Yuri M. Shernyakov, Nikolay A. Kalyuzhnyy et al. « Half-disk lasers with active region based on InGaAs/GaAs quantum well-dots ». Laser Physics 32, no 12 (28 octobre 2022) : 125802. http://dx.doi.org/10.1088/1555-6611/ac996f.
Texte intégralKaglyak, Oleksiy, Alina Klimova, Oleksandr Poleshko, Oleksii Goncharuk et Leonid Golovko. « Modernization of disc laser design using ellipsoid illuminator ». Mechanics and Advanced Technologies 6, no 1 (31 mai 2022) : 56–61. http://dx.doi.org/10.20535/2521-1943.2022.6.1.257026.
Texte intégralChilamakuri, S., X. Zhao et B. Bhushan. « Failure analysis of laser-textured surfaces ». Proceedings of the Institution of Mechanical Engineers, Part J : Journal of Engineering Tribology 214, no 5 (1 mai 2000) : 471–83. http://dx.doi.org/10.1243/1350650001543340.
Texte intégralChen, Yongqian, Si Chen, Yuzhi Huang, Xianshi Jia, Hantian Chen et Xiwang Wu. « Fluorescence Radiation and Thermal Effect at the Edge of the Disk-Shaped Laser Crystal ». International Journal of Optics 2022 (20 octobre 2022) : 1–8. http://dx.doi.org/10.1155/2022/2977673.
Texte intégralGlavnyi, V. G., V. V. Rakhmanov, S. V. Dvoynishnikov, S. V. Krotov et V. G. Meledin. « Calibration platform controller of the laser Doppler anemometer ». Journal of Physics : Conference Series 2057, no 1 (1 octobre 2021) : 012092. http://dx.doi.org/10.1088/1742-6596/2057/1/012092.
Texte intégralApollonov, Victor V. « High power disk laser ». Natural Science 05, no 05 (2013) : 556–62. http://dx.doi.org/10.4236/ns.2013.55070.
Texte intégralWentsch, Katrin Sarah, Birgit Weichelt, Stefan Günster, Frederic Druon, Patrick Georges, Marwan Abdou Ahmed et Thomas Graf. « Yb:CaF_2 thin-disk laser ». Optics Express 22, no 2 (15 janvier 2014) : 1524. http://dx.doi.org/10.1364/oe.22.001524.
Texte intégralLee, R. K., O. J. Painter, B. Kitzke, A. Scherer et A. Yariv. « Photonic bandgap disk laser ». Electronics Letters 35, no 7 (1999) : 569. http://dx.doi.org/10.1049/el:19990415.
Texte intégralRicaud, S., A. Jaffres, P. Loiseau, B. Viana, B. Weichelt, M. Abdou-Ahmed, A. Voss et al. « Yb:CaGdAlO_4 thin-disk laser ». Optics Letters 36, no 21 (19 octobre 2011) : 4134. http://dx.doi.org/10.1364/ol.36.004134.
Texte intégralThèses sur le sujet "Disk laser"
Hempler, Nils. « Semiconductor disk laser pumped Cr²⁺:chalcogenide lasers ». Thesis, University of Strathclyde, 2010. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=15339.
Texte intégralZhang, Tao. « High power disk laser cutting ». Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609511.
Texte intégralButkus, Mantas. « Quantum dot based semiconductor disk lasers ». Thesis, University of Dundee, 2012. https://discovery.dundee.ac.uk/en/studentTheses/6b17df24-a721-4904-b49f-e35055990c16.
Texte intégralMastrocinque, Ernesto. « Laser welding of Ti6Al4V alloy by disk laser : analysis and optimization ». Doctoral thesis, Universita degli studi di Salerno, 2012. http://hdl.handle.net/10556/352.
Texte intégralTitanium alloys have been successfully applied in many industrial fields because of their better performance and lighter weight than other commonly used structural materials. The conventional welding methods used for titanium alloys are tungsten inert gas (TIG) and plasma arc welding. In recent decades, autogenous processes with highly concentrated energy sources have become popular; these joining processes are laser and electron-beam welding. The power source can be concentrated in very small areas so as to achieve energy densities up to 10,000 times higher than those of the arc processes. Laser welding allows joints to be made with limited distortion. The fullyautomated process, ensures high productivity and high-quality joints. Laser technology is acquiring industrial interest because the electron-beam processes have limitations, such as the need to operate in vacuum, the increased costs and the emission of X-rays. Titanium alloys are widely used in the aircraft industry, because of their high strength-to-weight ratio, corrosion resistance, operating temperature and bonding with composite materials (electrochemical compatibility, similar coefficients of thermal expansion). The criteria for the design, manufacture and operation were changed to obtain structures that are lighter and more efficient than the ones made of aluminum. However, the structures in carbonfiber- reinforced-polymer require the use of metal structures, especially in areas of great concentration of loads. In spite of several advantages, these alloys lead to excessive manufacturing costs related to the cost of the raw materials, the high volumes of waste and the complex and expensive finishing. For these reasons, it is cheaper to produce semi-finished products by welding simpler parts, instead of casting and forming processes; therefore, laser welding can be used due to its high productivity and quality end-products. The aim of the thesis work is to find the better input process parameters values to weld 3 mm and 1 mm Ti6Al4V sheets using a 2 kW Yb:YAG disk laser. Both bead on plate and butt tests have been performed, and the beads quality is characterized in terms of geometric features, porosity content, microstructure, hardness and strength. This work is organized in five chapters. Chapter 1 discusses the principles of operation and the different types of laser including disk laser, used in the experimental part. Chapter 2 presents the properties of titanium and its alloys, highlighting the various fields of application. Chapter 3 presents a review of the different technologies used for welding of titanium alloys, focusing primarily on laser welding and its mechanisms. Chapter 4 describes the titanium alloy, equipment and methodologies used in the experimental work. Finally, Chapter 5 presents the results obtained. [edited by author]
X n.s.
Rodriguez-Valls, Omar. « Characterization and Modeling of a High Power Thin Disk Laster ». Master's thesis, University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2099.
Texte intégralM.S.E.E.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering MSEE
Baker, Caleb W., et Caleb W. Baker. « Practical Design and Applications of Ultrafast Semiconductor Disk Lasers ». Diss., The University of Arizona, 2017. http://hdl.handle.net/10150/625900.
Texte intégralScheller, Maik, Caleb W. Baker, Stephan W. Koch et Jerome V. Moloney. « Dual-Wavelength Passively Mode-Locked Semiconductor Disk Laser ». IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2016. http://hdl.handle.net/10150/621738.
Texte intégralAlfieri, Vittorio. « Disk laser welding of metal alloys for aerospace ». Doctoral thesis, Universita degli studi di Salerno, 2013. http://hdl.handle.net/10556/857.
Texte intégralLaser welding is the logical processing solution to accomplish different needs. Improvements at the design stage are actually aimed to remove any mechanical fastening, thus moving towards a technology which would not increase the joint thickness; moreover, a number of benefits in comparison with conventional welding methods are provided when considering laser beams, since deep penetration is achieved and the energy is effectively used where needed, thus melting the interface to be joined rather than excessively heating up the base metal, which would suffer from thermal distortion and degradation of metallurgical properties otherwise. Further advantages are achieved in laser welding with thin disk sources, since high output power, high efficiency and good beam quality are simultaneously delivered, unlike traditional laser systems; costs are significantly reduced in comparison with lamp-pumped laser systems. As a consequence, specific interest is shown in aerospace where strict specifications apply. Nevertheless, a number of issues must be addressed, depending on the material to be welded, as many variables and sub processes concerning fusion and vaporization are involved in laser welding and a delicate balance between heating and cooling is in place within a spatially localized volume. Therefore, extensive studies are required to manage both the stability and the reproducibility of the overall process, before introducing any change in industrial environments. Methods, experimental results and discussions concerning laser welding of common metal alloys for aerospace are provided in this Ph.D. thesis. A general view of applications and basic advantages of laser welding is first given, with mention to diagnostics and safety. Hence, the principles of laser emission are examined, with respect to the architecture of the sources, beam geometry, quality and efficiency, in order to better portray the benefits of a thin disk laser concept. Processing dynamics of laser welding are explained afterward, referring to conduction and key-hole mode, instability, gas supply and leading governing parameters such as laser power, welding speed, defocusing and beam angle to be considered in the experimental work. Procedures are provided for proper bead characterization, from preliminary examinations including non destructive tests such as fluorescent penetrant inspections and radiographic tests, to sample preparation and eventual mechanical assessment in terms of tensile strength and Vickers micro hardness in the fused zone. A straightforward description of the design of experiment approach and the response surface methodology is given, so to introduce the testing method to be taken, as well as the steps for data elaboration via statistical tools. Hence, four case studies about metal aerospace alloys are presented and discussed in their common seam configuration: autogenous butt and overlapping welding of aluminum alloy 2024; autogenous butt welding of titanium alloy Ti-6Al-4V; dissimilar butt welding of Haynes 188 and Inconel 718; dissimilar overlapping welding of Hastelloy X and René 80. All of the welding tests were conducted at the Department of Industrial Engineering at the University of Salerno; a Trumpf Tru-Disk 2002 Yb:YAG disk-laser source with a BEO D70 focusing optics, moved by an ABB IRB 2004/16 robot was employed. When needed, additional tests for the purpose of specific bead characterization were conducted by Avio and Europea Microfusioni Aerospaziali. As general procedure for each topic, the operating ranges to be examined are found via preliminary trials in combination with the existing literature on the subject. Then, special consideration is given to the processing set-up, the resulting bead profile, possible imperfections, defects and overall features; consistent constraint criteria for optimization of the responses are chosen on a case-by-case basis depending on materials and seam geometry and referring to international standards as well as customer specifications for quality compliance. Optimal combinations of the input welding parameters for actual industrial applications are eventually suggested, based on statistical tools of analysis. Convincing reasons are provided to give grounds to improvements in real applications. Moreover, based on the results, a proper device for bead shielding, to be conveniently adjusted depending on both geometry and materials to be welded has been designed, produced and patented (SA2012A000016). As concerning aluminum welding, a comprehensive description is given for laserrelated issues: reflectivity and thermal conductivity influence on the material response is illustrated; the porosity evolution is discussed with respect to thermal input and defocusing; a theory for softening in the fused zone is provided through energy dispersive spectrometry and estimations of magnesium content in the crosssection. Optimization is performed for butt configuration of 1.25 mm thick sheets; the discussion about the interactions among the governing factors is deepen with reference to overlapping welding. With respect to titanium welding, optimization is performed for 3 mm thick butt welding; the resulting micro structure in the weld is discussed since it is thought to be closely related to the mechanical properties. In particular, special care is taken of the grain size as a function of the governing factors. Dissimilar welding of super alloys is considered for gas turbine components; for this specific purpose, laser welding is expected to offer a valid alternative to arc and electron beam welding, whose weaknesses are pointed out. Given their actual application in the engine, Haynes 188 and Inconel 718 are examined in butt welding configuration, whilst an overlapping geometry is preferred for Hastelloy X and René 80. Considerable tolerances are matched, thus promoting the suggested range of the operating variables. [edited by author]
XI n.s.
Sickinger, Daniel. « Development of a Thulium Germanate Thin Disk Laser Prototype ». Thesis, The University of Arizona, 2016. http://hdl.handle.net/10150/613444.
Texte intégralInnerhofer, Edith. « High average power Yb:YAG thin disk laser and its application for an RGB laser source / ». Zürich, 2005. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=16108.
Texte intégralLivres sur le sujet "Disk laser"
B, Carlin Donald, Connolly J. C et Langley Research Center, dir. Linear laser diode arrays for improvement in optical disk recording. Hampton, Va : Langley Research Center, 1990.
Trouver le texte intégralChoy, Daniel S. J. Percutaneous laser disc decompression : A practical guide. New York : Springer, 2011.
Trouver le texte intégralGrigsby, Mason. COLD, the report on computer output to laser disk : Trends and opportunities in the COLD market. Westport, CT : Image Pub., 1993.
Trouver le texte intégralGrigsby, Mason. COLD, the next generation : The report on computer output to laser disk : trends and opportunities in the COLD market. Westport, CT : Image Publishing, 1996.
Trouver le texte intégralGrigsby, Mason. COLD, the next generation : the report on computer output to laser disk : trends and opportunities in the COLD market. Westport, CT : Image Publishing, 1998.
Trouver le texte intégralB, Carlin Donald, Connolly J. C et United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., dir. Linear laser diode arrays for improvement in optical disk recording for space stations. [Washington, DC] : National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Trouver le texte intégralLeVitus, Bob. Dr. Macintosh : Tips, techniques, and advice on mastering the Macintosh. Reading, Mass : Addison-Wesley Pub. Co., 1989.
Trouver le texte intégralLeVitus, Bob. Dr. Macintosh : How to become a Macintosh power user. 2e éd. Reading, Mass : Addison-Wesley Pub. Co., 1992.
Trouver le texte intégralOkhotnikov, Oleg G., dir. Semiconductor Disk Lasers. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527630394.
Texte intégralOkhotnikov, Oleg G. Semiconductor disk lasers : Physics and technology. Weinheim : Wiley-VCH, 2010.
Trouver le texte intégralChapitres de livres sur le sujet "Disk laser"
Weik, Martin H. « laser disk ». Dans Computer Science and Communications Dictionary, 874. Boston, MA : Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_9959.
Texte intégralUnger, P. « 15.2 Optically pumped semiconductor disk lasers ». Dans Laser Systems, 236–44. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14177-5_16.
Texte intégralApollonov, Victor V. « Mono-module Disk Laser ». Dans Springer Series in Optical Sciences, 145–55. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10753-0_15.
Texte intégralSahul, Miroslav, Milan Turňa et Martin Sahul. « Welding of Dissimilar Light Metals by Disk Laser ». Dans Magnesium Technology 2014, 301–5. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-48231-6_58.
Texte intégralSahul, Miroslav, et Milan Turňa. « Welding of Dissimilar Light Metals by Disk Laser ». Dans Magnesium Technology 2014, 301–5. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118888179.ch58.
Texte intégralSahul, Miroslav, et Martin Sahul. « Study of ZE10 Magnesium Alloy Welded Joints Produced with Disk Laser ». Dans Magnesium Technology 2016, 103–7. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48114-2_22.
Texte intégralKromine, A. K., P. A. Fomitchov, S. Krishnaswamy et J. D. Achenbach. « Scanning Laser Source Technique and its Application to Turbine Disk Inspection ». Dans Review of Progress in Quantitative Nondestructive Evaluation, 381–86. Boston, MA : Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4791-4_47.
Texte intégralSahul, Miroslav, et Martin Sahul. « Study of ZE10 Magnesium Alloy Welded Joints Produced With Disk Laser ». Dans Magnesium Technology 2016, 103–7. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119274803.ch22.
Texte intégralGao, Xiangdong, Runlin Wang, Yingying Liu et Yongchen Yang. « Analysis of Metallic Plume Image Characteristics During High Power Disk Laser Welding ». Dans Lecture Notes in Electrical Engineering, 225–40. Dordrecht : Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6818-5_17.
Texte intégralWu, Lan Ying, Huai Guo Ban, Jing Deng et Rui Guo. « An Actuator Laser of Optical Disk Drive High-Frequency Electromagnetic Vibrations Characteristic Analysis ». Dans Materials Science Forum, 1135–38. Stafa : Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-462-6.1135.
Texte intégralActes de conférences sur le sujet "Disk laser"
Saarinen, Esa J., Elena Vasileva, Oleg Antipov, Jussi-Pekka Penttinen, Miki Tavast, Tomi Leinonen et Oleg G. Okhotnikov. « Ceramic Tm:Lu2O3 Disk Laser Pumped with a Semiconductor Disk Laser ». Dans Advanced Solid State Lasers. Washington, D.C. : OSA, 2013. http://dx.doi.org/10.1364/assl.2013.jth2a.48.
Texte intégralKouznetsov, Dmitrii, Jean-François Bisson et Kenichi Ueda. « Scaling Laws of Disk Lasers ». Dans Laser Science. Washington, D.C. : OSA, 2007. http://dx.doi.org/10.1364/ls.2007.ltue6.
Texte intégralAlbrecht, George F., Steven B. Sutton, E. V. George, Walter R. Sooy et William F. Krupke. « Heat capacity disk laser ». Dans High-Power Laser Ablation, sous la direction de Claude R. Phipps. SPIE, 1998. http://dx.doi.org/10.1117/12.321589.
Texte intégralHuegel, Helmut, et Willy L. Bohn. « Solid state thin disk laser ». Dans Twelfth International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference. SPIE, 1998. http://dx.doi.org/10.1117/12.334426.
Texte intégralSchlueter, Holger, Viorel Negoita, John Hostetler, David Havrilla, Juergen Stollhof, Rüdiger Brockmann, Alexander Killi et al. « Diode laser pumping of thin disk lasers ». Dans ICALEO® 2007 : 26th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2007. http://dx.doi.org/10.2351/1.5061078.
Texte intégralJohannsen, I., S. Erhard, D. Müllier, C. Stewen, A. Giesen et K. Contag. « Nd:YAG thin disk laser ». Dans Advanced Solid State Lasers. Washington, D.C. : OSA, 2000. http://dx.doi.org/10.1364/assl.2000.tub7.
Texte intégralSong, Yanrong, Peng Zhang, Jinrong Tian et Xinping Zhang. « 1043nm semiconductor disk laser ». Dans SPIE LASE, sous la direction de Mark S. Zediker. SPIE, 2010. http://dx.doi.org/10.1117/12.842228.
Texte intégralChivel, Yu, I. Niconchuk et D. Zatiagin. « Short pulse disk laser ». Dans International Conference on Lasers, Applications, and Technologies '07, sous la direction de Vladislav Panchenko, Vladimir Golubev, Andrey Ionin et Alexander Chumakov. SPIE, 2007. http://dx.doi.org/10.1117/12.753288.
Texte intégralCao, Wei-Lou, Mei-Zhen Zhang et Qinhao Chen. « Clear aperture 40-mm Nd:YAG disk laser ». Dans OSA Annual Meeting. Washington, D.C. : Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.fk6.
Texte intégralDandarov, Anton, Ivelin Bakalski et Zlatan Djurelov. « Investigation on laser microprocessing of magnetic disk ». Dans Laser Optics, sous la direction de Artur A. Mak. SPIE, 1994. http://dx.doi.org/10.1117/12.183135.
Texte intégralRapports d'organisations sur le sujet "Disk laser"
Berndt, V. L. Lessons learned in procuring a laser optical disk system. Office of Scientific and Technical Information (OSTI), mai 1993. http://dx.doi.org/10.2172/10177066.
Texte intégralHunt, J., R. Boben, R. Blocker, J. Clark, M. Henesian, J. Victoria, S. Mayo et al. Janus Upgrade using brewster angle disk amplifier technology. [Janus laser system]. Office of Scientific and Technical Information (OSTI), octobre 1990. http://dx.doi.org/10.2172/6078951.
Texte intégralEaton, J. K. Experimental investigation of the three-dimensional boundary layer on a rotating disk. Progress report. Office of Scientific and Technical Information (OSTI), mai 1990. http://dx.doi.org/10.2172/10157481.
Texte intégralDvornikov, D., E. Walker, P. Rentzepis et S. Esener. Multi-Layer Worm Disk with Parallel Recording and Read-Out for High Capacity Storage. Fort Belvoir, VA : Defense Technical Information Center, avril 2003. http://dx.doi.org/10.21236/ada413850.
Texte intégralEaton, J. K. Structure and modeling of the three dimensional boundary layer on a rotating disk. Final report. Office of Scientific and Technical Information (OSTI), décembre 1996. http://dx.doi.org/10.2172/453492.
Texte intégralEaton, J. K. Structure and modelling of the three-dimensional boundary layer on a rotating disk : Progress report. Office of Scientific and Technical Information (OSTI), décembre 1993. http://dx.doi.org/10.2172/10134351.
Texte intégralBauer, Andrew. In situ and time. Engineer Research and Development Center (U.S.), décembre 2022. http://dx.doi.org/10.21079/11681/46162.
Texte intégralEaton, J. K. Experimental investigation of the three-dimensional boundary layer on a rotating disk. Proposal for research and progress report. Office of Scientific and Technical Information (OSTI), janvier 1989. http://dx.doi.org/10.2172/10157479.
Texte intégralBadia, R., J. Ejarque, S. Böhm, C. Soriano et R. Rossi. D4.4 API and runtime (complete with documentation and basic unit testing) for IO employing fast local storage. Scipedia, 2021. http://dx.doi.org/10.23967/exaqute.2021.9.001.
Texte intégralWhirl Analysis of an Overhung Disk Shaft System Mounted on Non-rigid Bearings. SAE International, mars 2022. http://dx.doi.org/10.4271/2022-01-0607.
Texte intégral