Articles de revues sur le sujet « Discrete Boltzmann equation »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Discrete Boltzmann equation.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Discrete Boltzmann equation ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Simonis, Stephan, Martin Frank et Mathias J. Krause. « On relaxation systems and their relation to discrete velocity Boltzmann models for scalar advection–diffusion equations ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 378, no 2175 (22 juin 2020) : 20190400. http://dx.doi.org/10.1098/rsta.2019.0400.

Texte intégral
Résumé :
The connection of relaxation systems and discrete velocity models is essential to the progress of stability as well as convergence results for lattice Boltzmann methods. In the present study we propose a formal perturbation ansatz starting from a scalar one-dimensional target equation, which yields a relaxation system specifically constructed for its equivalence to a discrete velocity Boltzmann model as commonly found in lattice Boltzmann methods. Further, the investigation of stability structures for the discrete velocity Boltzmann equation allows for algebraic characterizations of the equilibrium and collision operator. The methods introduced and summarized here are tailored for scalar, linear advection–diffusion equations, which can be used as a foundation for the constructive design of discrete velocity Boltzmann models and lattice Boltzmann methods to approximate different types of partial differential equations. This article is part of the theme issue ‘Fluid dynamics, soft matter and complex systems: recent results and new methods’.
Styles APA, Harvard, Vancouver, ISO, etc.
2

QU, KUN, CHANG SHU et JINSHENG CAI. « DEVELOPING LBM-BASED FLUX SOLVER AND ITS APPLICATIONS IN MULTI-DIMENSION SIMULATIONS ». International Journal of Modern Physics : Conference Series 19 (janvier 2012) : 90–99. http://dx.doi.org/10.1142/s2010194512008628.

Texte intégral
Résumé :
In this paper, a new flux solver was developed based on a lattice Boltzmann model. Different from solving discrete velocity Boltzmann equation and lattice Boltzmann equation, Euler/Navier-Stokes (NS) equations were solved in this approach, and the flux at the interface was evaluated with a compressible lattice Boltzmann model. This method combined lattice Boltzmann method with finite volume method to solve Euler/NS equations. The proposed approach was validated by some simulations of one-dimensional and multi-dimensional problems.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hekmat, Mohamad Hamed, et Masoud Mirzaei. « Development of Discrete Adjoint Approach Based on the Lattice Boltzmann Method ». Advances in Mechanical Engineering 6 (1 janvier 2014) : 230854. http://dx.doi.org/10.1155/2014/230854.

Texte intégral
Résumé :
The purpose of this research is to present a general procedure with low implementation cost to develop the discrete adjoint approach for solving optimization problems based on the LB method. Initially, the macroscopic and microscopic discrete adjoint equations and the cost function gradient vector are derived mathematically, in detail, using the discrete LB equation. Meanwhile, for an elementary case, the analytical evaluation of the macroscopic and microscopic adjoint variables and the cost function gradients are presented. The investigation of the derivation procedure shows that the simplicity of the Boltzmann equation, as an alternative for the Navier-Stokes (NS) equations, can facilitate the process of extracting the discrete adjoint equation. Therefore, the implementation of the discrete adjoint equation based on the LB method needs fewer attempts than that of the NS equations. Finally, this approach is validated for the sample test case, and the results gained from the macroscopic and microscopic discrete adjoint equations are compared in an inverse optimization problem. The results show that the convergence rate of the optimization algorithm using both equations is identical and the evaluated gradients have a very good agreement with each other.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bernhoff, Niclas. « Boundary Layers and Shock Profiles for the Broadwell Model ». International Journal of Differential Equations 2016 (2016) : 1–8. http://dx.doi.org/10.1155/2016/5801728.

Texte intégral
Résumé :
We consider the existence of nonlinear boundary layers and the typically nonlinear problem of existence of shock profiles for the Broadwell model, which is a simplified discrete velocity model for the Boltzmann equation. We find explicit expressions for the nonlinear boundary layers and the shock profiles. In spite of the few velocities used for the Broadwell model, the solutions are (at least partly) in qualitatively good agreement with the results for the discrete Boltzmann equation, that is the general discrete velocity model, and the full Boltzmann equation.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Banoo, K., F. Assad et M. S. Lundstrom. « Formulation of the Boltzmann Equation as a Multi-Mode Drift-Diffusion Equation ». VLSI Design 8, no 1-4 (1 janvier 1998) : 539–44. http://dx.doi.org/10.1155/1998/59373.

Texte intégral
Résumé :
We present a multi-mode drift-diffusion equation as reformulation of the Boltzmann equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.
Styles APA, Harvard, Vancouver, ISO, etc.
6

MARTYS, NICOS S. « ENERGY CONSERVING DISCRETE BOLTZMANN EQUATION FOR NONIDEAL SYSTEMS ». International Journal of Modern Physics C 10, no 07 (octobre 1999) : 1367–82. http://dx.doi.org/10.1142/s0129183199001121.

Texte intégral
Résumé :
The BBGKY formalism is utilized to obtain a set of moment equations to be satisfied by the collision operator in an energy conserving discrete Boltzmann equation for the case of a nonlocal interaction potential. A modified BGK form of the collision operator consistent with these moment equations is described. In the regime of isothermal flows, a previous proposed nonideal gas model is recovered. Other approaches to constructing the collision operator are discussed. Numerical implementation of the modified BGK form, using a thermal lattice Boltzmann model, is illustrated as an example. The time dependence of the density autocorrelation function was studied for this model and found, at early times, to be strongly affected by the constraint of total energy conservation. The long time behavior of the density autocorrelation function was consistent with the theory of hydrodynamic fluctuations.
Styles APA, Harvard, Vancouver, ISO, etc.
7

BELLOUQUID, A. « A DIFFUSIVE LIMIT FOR NONLINEAR DISCRETE VELOCITY MODELS ». Mathematical Models and Methods in Applied Sciences 13, no 01 (janvier 2003) : 35–58. http://dx.doi.org/10.1142/s0218202503002374.

Texte intégral
Résumé :
This paper is devoted to the analysis of the diffusive limit for a general discrete velocity model of the Boltzmann equation in any dimension of the physical space, for densities which remain in a suitable small neighbourhood of global Maxwellians. The scaled solutions of discrete Boltzmann equation are shown to have fluctuations that converge locally in time weakly to a limit governed by a solution of incompressible Stokes equations provided that the initial fluctuations are smooth. The weak limit becomes strong when the initial fluctuations converge to appropriate initial data. As applications the Carleman model and the one-dimensional Broadwell model are analyzed in detail.
Styles APA, Harvard, Vancouver, ISO, etc.
8

He, Xiaoyi, Xiaowen Shan et Gary D. Doolen. « Discrete Boltzmann equation model for nonideal gases ». Physical Review E 57, no 1 (1 janvier 1998) : R13—R16. http://dx.doi.org/10.1103/physreve.57.r13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

ANDALLAH, LAEK S., et HANS BABOVSKY. « A DISCRETE BOLTZMANN EQUATION BASED ON HEXAGONS ». Mathematical Models and Methods in Applied Sciences 13, no 11 (novembre 2003) : 1537–63. http://dx.doi.org/10.1142/s0218202503003021.

Texte intégral
Résumé :
We develop the theory of a Boltzmann equation which is based on a hexagonal discretization of the velocity space. We prove that such a model contains all the basic features of classical kinetic theory, like collision invariants, H-theorem, equilibrium solutions, features of the linearized problem etc. This theory includes the infinite as well as finite hexagonal grids which may be used for numerical purposes.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Makai, Mihály. « Discrete Symmetries of the Linear Boltzmann equation ». Transport Theory and Statistical Physics 15, no 3 (mai 1986) : 249–73. http://dx.doi.org/10.1080/00411458608210452.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Cabannes, H. « The discrete model of the Boltzmann equation ». Transport Theory and Statistical Physics 16, no 4-6 (juin 1987) : 809–36. http://dx.doi.org/10.1080/00411458708204316.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Fu, S. C., R. M. C. So et W. W. F. Leung. « A Discrete Flux Scheme for Aerodynamic and Hydrodynamic Flows ». Communications in Computational Physics 9, no 5 (mai 2011) : 1257–83. http://dx.doi.org/10.4208/cicp.311009.241110s.

Texte intégral
Résumé :
AbstractThe objective of this paper is to seek an alternative to the numerical simulation of the Navier-Stokes equations by a method similar to solving the BGK-type modeled lattice Boltzmann equation. The proposed method is valid for both gas and liquid flows. A discrete flux scheme (DFS) is used to derive the governing equations for two distribution functions; one for mass and another for thermal energy. These equations are derived by considering an infinitesimally small control volume with a velocity lattice representation for the distribution functions. The zero-order moment equation of the mass distribution function is used to recover the continuity equation, while the first-order moment equation recovers the linear momentum equation. The recovered equations are correct to the first order of the Knudsen number(Kn);thus, satisfying the continuum assumption. Similarly, the zero-order moment equation of the thermal energy distribution function is used to recover the thermal energy equation. For aerodynamic flows, it is shown that the finite difference solution of the DFS is equivalent to solving the lattice Boltzmann equation (LBE) with a BGK-type model and a specified equation of state. Thus formulated, the DFS can be used to simulate a variety of aerodynamic and hydrodynamic flows. Examples of classical aeroacoustics, compressible flow with shocks, incompressible isothermal and non-isothermal Couette flows, stratified flow in a cavity, and double diffusive flow inside a rectangle are used to demonstrate the validity and extent of the DFS. Very good to excellent agreement with known analytical and/or numerical solutions is obtained; thus lending evidence to the DFS approach as an alternative to solving the Navier-Stokes equations for fluid flow simulations.
Styles APA, Harvard, Vancouver, ISO, etc.
13

NANBU, K. « MODEL KINETIC EQUATION FOR THE DISTRIBUTION OF DISCRETIZED INTERNAL ENERGY ». Mathematical Models and Methods in Applied Sciences 04, no 05 (octobre 1994) : 669–75. http://dx.doi.org/10.1142/s0218202594000376.

Texte intégral
Résumé :
Kinetic equation for discretized internal energy is obtained by using the idea underlying the discrete-velocity kinetic theory. The equation satisfies the Boltzmann H-theorem. The solution of this equation in equilibrium is the Boltzmann distribution. The second moment of distribution shows an exponential relaxation.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Vedenyapin, Victor V., Sergey Z. Adzhiev et Vladlena V. Kazantseva. « Entropy in the Sense of Boltzmann and Poincare, Boltzmann Extremals, and the Hamilton-Jacobi Method in Non-Hamiltonian Context ». Contemporary Mathematics. Fundamental Directions 64, no 1 (15 décembre 2018) : 37–59. http://dx.doi.org/10.22363/2413-3639-2018-64-1-37-59.

Texte intégral
Résumé :
In this paper, we prove the H-theorem for generalized chemical kinetics equations. We consider important physical examples of such a generalization: discrete models of quantum kinetic equations (Uehling-Uhlenbeck equations) and a quantum Markov process (quantum random walk). We prove that time averages coincide with Boltzmann extremals for all such equations and for the Liouville equation as well. This gives us an approach for choosing the action-angle variables in the Hamilton-Jacobi method in a non-Hamiltonian context. We propose a simple derivation of the Hamilton-Jacobi equation from the Liouville equations in the finite-dimensional case.
Styles APA, Harvard, Vancouver, ISO, etc.
15

WANG, Y., Y. L. HE, Q. LI, G. H. TANG et W. Q. TAO. « LATTICE BOLTZMANN MODEL FOR SIMULATING VISCOUS COMPRESSIBLE FLOWS ». International Journal of Modern Physics C 21, no 03 (mars 2010) : 383–407. http://dx.doi.org/10.1142/s0129183110015178.

Texte intégral
Résumé :
A lattice Boltzmann model is developed for viscous compressible flows with flexible specific-heat ratio and Prandtl number. Unlike the Maxwellian distribution function or circle function used in the existing lattice Boltzmann models, a polynomial kernel function in the phase space is introduced to recover the Navier–Stokes–Fourier equations. A discrete equilibrium density distribution function and a discrete equilibrium total energy distribution function are obtained from the discretization of the polynomial kernel function with Lagrangian interpolation. The equilibrium distribution functions are then coupled via the equation of state. In this framework, a model for viscous compressible flows is proposed. Several numerical tests from subsonic to supersonic flows, including the Sod shock tube, the double Mach reflection and the thermal Couette flow, are simulated to validate the present model. In particular, the discrete Boltzmann equation with the Bhatnagar–Gross–Krook approximation is solved by the finite-difference method. Numerical results agree well with the exact or analytic solutions. The present model has potential application in the study of complex fluid systems such as thermal compressible flows.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Vedenyapin, V. V., et S. A. Amosov. « Discrete models of the boltzmann equation for mixtures ». Differential Equations 36, no 7 (juillet 2000) : 1027–32. http://dx.doi.org/10.1007/bf02754504.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Koller, W., et F. Schürrer. « PNAPPROXIMATION OF THE NONLINEAR SEMI-DISCRETE BOLTZMANN EQUATION ». Transport Theory and Statistical Physics 30, no 4-6 (31 août 2001) : 471–89. http://dx.doi.org/10.1081/tt-100105933.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Vedenyapin, V. V., I. V. Mingalev et O. V. Mingalev. « ON DISCRETE MODELS OF THE QUANTUM BOLTZMANN EQUATION ». Russian Academy of Sciences. Sbornik Mathematics 80, no 2 (28 février 1995) : 271–85. http://dx.doi.org/10.1070/sm1995v080n02abeh003525.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Preziosi, L. « Thermal creep problems by the discrete Boltzmann equation ». Transport Theory and Statistical Physics 21, no 3 (juin 1992) : 183–209. http://dx.doi.org/10.1080/00411459208203920.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Shizuta, Yasushi, et Shuichi Kawashima. « The regular discrete models of the Boltzmann equation ». Journal of Mathematics of Kyoto University 27, no 1 (1987) : 131–40. http://dx.doi.org/10.1215/kjm/1250520768.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Lee, Taehun, et Ching-Long Lin. « A Characteristic Galerkin Method for Discrete Boltzmann Equation ». Journal of Computational Physics 171, no 1 (juillet 2001) : 336–56. http://dx.doi.org/10.1006/jcph.2001.6791.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Viggen, Erlend Magnus. « Sound Propagation Properties of the Discrete-Velocity Boltzmann Equation ». Communications in Computational Physics 13, no 3 (mars 2013) : 671–84. http://dx.doi.org/10.4208/cicp.271011.020212s.

Texte intégral
Résumé :
AbstractAs the numerical resolution is increased and the discretisation error decreases, the lattice Boltzmann method tends towards the discrete-velocity Boltzmann equation (DVBE). An expression for the propagation properties of plane sound waves is found for this equation. This expression is compared to similar ones from the Navier-Stokes and Burnett models, and is found to be closest to the latter. The anisotropy of sound propagation with the DVBE is examined using a two-dimensional velocity set. It is found that both the anisotropy and the deviation between the models is negligible if the Knudsen number is less than 1 by at least an order of magnitude.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Marcos, Aboubacar, et Ambroise Soglo. « Solutions of a Class of Degenerate Kinetic Equations Using Steepest Descent in Wasserstein Space ». Journal of Mathematics 2020 (9 juin 2020) : 1–30. http://dx.doi.org/10.1155/2020/7489532.

Texte intégral
Résumé :
We use the steepest descent method in an Orlicz–Wasserstein space to study the existence of solutions for a very broad class of kinetic equations, which include the Boltzmann equation, the Vlasov–Poisson equation, the porous medium equation, and the parabolic p-Laplacian equation, among others. We combine a splitting technique along with an iterative variational scheme to build a discrete solution which converges to a weak solution of our problem.
Styles APA, Harvard, Vancouver, ISO, etc.
24

RINGHOFER, CHRISTIAN. « DISSIPATIVE DISCRETIZATION METHODS FOR APPROXIMATIONS TO THE BOLTZMANN EQUATION ». Mathematical Models and Methods in Applied Sciences 11, no 01 (février 2001) : 133–48. http://dx.doi.org/10.1142/s0218202501000799.

Texte intégral
Résumé :
This paper deals with the spatial discretization of partial differential equations arising from Galerkin approximations to the Boltzmann equation, which preserves the entropy properties of the original collision operator. A general condition on finite difference methods is derived, which guarantees that the discrete system satisfies the appropriate equivalent of the entropy condition. As an application of this concept, entropy producing difference methods for the hydrodynamic model equations and for spherical harmonics expansions are presented.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Chen, Yu, Shulong Teng, Takauki Shukuwa et Hirotada Ohashi. « Lattice-Boltzmann Simulation of Two-Phase Fluid Flows ». International Journal of Modern Physics C 09, no 08 (décembre 1998) : 1383–91. http://dx.doi.org/10.1142/s0129183198001254.

Texte intégral
Résumé :
A model with a volumetric stress tensor added to the Navier–Stokes Equation is used to study two-phase fluid flows. The implementation of such an interface model into the lattice-Boltzmann equation is derived from the continuous Boltzmann BGK equation with an external force term, by using the discrete coordinate method. Numerical simulations are carried out for phase separation and "dam breaking" phenomena.
Styles APA, Harvard, Vancouver, ISO, etc.
26

SIEBERT, DIOGO NARDELLI, LUIZ ADOLFO HEGELE, RODRIGO SURMAS, LUÍS ORLANDO EMERICH DOS SANTOS et PAULO CESAR PHILIPPI. « THERMAL LATTICE BOLTZMANN IN TWO DIMENSIONS ». International Journal of Modern Physics C 18, no 04 (avril 2007) : 546–55. http://dx.doi.org/10.1142/s0129183107010784.

Texte intégral
Résumé :
The velocity discretization is a critical step in deriving the lattice Boltzmann (LBE) from the Boltzmann equation. The velocity discretization problem was considered in a recent paper (Philippi et al., From the continuous to the lattice Boltzmann equation: the discretization problem and thermal models, Physical Review E 73: 56702, 2006) following a new approach and giving the minimal discrete velocity sets in accordance with the order of approximation that is required for the LBE with respect to the Boltzmann equation. As a consequence, two-dimensional lattices and their respective equilibrium distributions were derived and discussed, considering the order of approximation that was required for the LBE. In the present work, a Chapman-Enskog (CE) analysis is performed for deriving the macroscopic transport equations for the mass, momentum and energy for these lattices. The problem of describing the transfer of energy in fluids is discussed in relation with the order of approximation of the LBE model. Simulation of temperature, pressure and velocity steps are also presented to validate the CE analysis.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Zhai, Qinglan, Song Zheng et Lin Zheng. « A kinetic theory based thermal lattice Boltzmann equation model ». International Journal of Modern Physics C 28, no 04 (avril 2017) : 1750047. http://dx.doi.org/10.1142/s0129183117500474.

Texte intégral
Résumé :
A thermal lattice Boltzmann equation (LBE) model within the framework of double distribution function (DDF) method is proposed from the continuous DDF Boltzmann equation, which has a clear physical significance. Since the discrete velocity set in present LBE model is not space filled, a Lax–Wendroff scheme is applied to solve the evolution equations by which the spatial interpolation of two distribution functions is overcome. To validate the model, some classical numerical tests include thermal Couette flow and natural convection flow are simulated, and the results agree well with the analytic solutions and other numerical results, which showed that the present model had the ability to describe the thermal fluid flow phenomena.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Shizuta, Yasushi, et Shuichi Kawashima. « The regularity of discrete models of the Boltzmann equation ». Proceedings of the Japan Academy, Series A, Mathematical Sciences 61, no 8 (1985) : 252–54. http://dx.doi.org/10.3792/pjaa.61.252.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Gross, M., M. E. Cates, F. Varnik et R. Adhikari. « Langevin theory of fluctuations in the discrete Boltzmann equation ». Journal of Statistical Mechanics : Theory and Experiment 2011, no 03 (31 mars 2011) : P03030. http://dx.doi.org/10.1088/1742-5468/2011/03/p03030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Amossov, Stepan A. « Discrete kinetic models of relativistic Boltzmann equation for mixtures ». Physica A : Statistical Mechanics and its Applications 301, no 1-4 (décembre 2001) : 330–40. http://dx.doi.org/10.1016/s0378-4371(01)00380-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Płatkowski, T., et W. Waluś. « An efficient discrete-velocity method for the Boltzmann equation ». Computer Physics Communications 121-122 (septembre 1999) : 717. http://dx.doi.org/10.1016/s0010-4655(06)70120-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

La Rocca, Michele, Andrea Montessori, Pietro Prestininzi et Lakshmanan Elango. « Discrete Boltzmann Equation model of polydisperse shallow granular flows ». International Journal of Multiphase Flow 113 (avril 2019) : 107–16. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2019.01.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Wagner, Wolfgang. « Approximation of the Boltzmann equation by discrete velocity models ». Journal of Statistical Physics 78, no 5-6 (mars 1995) : 1555–70. http://dx.doi.org/10.1007/bf02180142.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Kawashima, Shuichi. « Asymptotic stability of Maxwellians of the discrete Boltzmann equation ». Transport Theory and Statistical Physics 16, no 4-6 (juin 1987) : 781–93. http://dx.doi.org/10.1080/00411458708204314.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Mischler, Stéphane. « Convergence of Discrete-Velocity Schemes for the Boltzmann Equation ». Archive for Rational Mechanics and Analysis 140, no 1 (1 novembre 1997) : 53–77. http://dx.doi.org/10.1007/s002050050060.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

PREMNATH, KANNAN N., et JOHN ABRAHAM. « DISCRETE LATTICE BGK BOLTZMANN EQUATION COMPUTATIONS OF TRANSIENT INCOMPRESSIBLE TURBULENT JETS ». International Journal of Modern Physics C 15, no 05 (juin 2004) : 699–719. http://dx.doi.org/10.1142/s0129183104006157.

Texte intégral
Résumé :
In this paper, computations of transient, incompressible, turbulent, plane jets using the discrete lattice BGK Boltzmann equation are reported. Á priori derivation of the discrete lattice BGK Boltzmann equation with a spatially and temporally dependent relaxation time parameter, which is used to represent the averaged flow field, from its corresponding continuous form is given. The averaged behavior of the turbulence field is represented by the standard k–∊ turbulence model and computed using a finite-volume scheme on nonuniform grids. Computed results are compared with analytical solutions, experimental data and results of other computational methods. Satisfactory agreement is shown.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Ren, Junjie, Ping Guo et Zhaoli Guo. « Rectangular Lattice Boltzmann Equation for Gaseous Microscale Flow ». Advances in Applied Mathematics and Mechanics 8, no 2 (avril 2014) : 306–30. http://dx.doi.org/10.4208/aamm.2014.m672.

Texte intégral
Résumé :
AbstractThe lattice Boltzmann equation (LBE) is considered as a promising approach for simulating flows of liquid and gas. Most of LBE studies have been devoted to regular square LBE and few works have focused on the rectangular LBE in the simulation of gaseous microscale flows. In fact, the rectangular LBE, as an alternative and efficient method, has some advantages over the square LBE in simulating flows with certain computational domains of large aspect ratio (e.g., long micro channels). Therefore, in this paper we expand the application scopes of the rectangular LBE to gaseous microscale flow. The kinetic boundary conditions for the rectangular LBE with a multiple-relaxation-time (MRT) collision operator, i.e., the combined bounce-back/specular-reflection (CBBSR) boundary condition and the discrete Maxwell's diffuse-reflection (DMDR) boundary condition, are studied in detail. We observe some discrete effects in both the CBBSR and DMDR boundary conditions for the rectangular LBE and present a reasonable approach to overcome these discrete effects in the two boundary conditions. It is found that the DMDR boundary condition for the square MRT-LBE can not realize the real fully diffusive boundary condition, while the DMDR boundary condition for the rectangular MRT-LBE with the grid aspect ratio a≠1 can do it well. Some numerical tests are implemented to validate the presented theoretical analysis. In addition, the computational efficiency and relative difference between the rectangular LBE and the square LBE are analyzed in detail. The rectangular LBE is found to be an efficient method for simulating the gaseous microscale flows in domains with large aspect ratios.
Styles APA, Harvard, Vancouver, ISO, etc.
38

KAWASHIMA, SHUICHI. « THE DISCRETE BOLTZMANN EQUATION WITH MULTIPLE COLLISIONS AND THE CORRESPONDING FLUID-DYNAMICAL EQUATIONS ». Mathematical Models and Methods in Applied Sciences 03, no 05 (octobre 1993) : 681–92. http://dx.doi.org/10.1142/s0218202593000345.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Zhang, Zhenyu, Wei Zhao, Qingjun Zhao, Guojing Lu et Jianzhong Xu. « Inlet and outlet boundary conditions for the discrete velocity direction model ». Modern Physics Letters B 32, no 04 (9 février 2018) : 1850048. http://dx.doi.org/10.1142/s0217984918500483.

Texte intégral
Résumé :
The discrete velocity direction model is an approximate method to the Boltzmann equation, which is an optional kinetic method to microgas flow and heat transfer. In this paper, the treatment of the inlet and outlet boundary conditions for the model is proposed. In the computation strategy, the microscopic molecular speed distribution functions at inlet and outlet are indirectly determined by the macroscopic gas pressure, mass flux and temperature, which are all measurable parameters in microgas flow and heat transfer. The discrete velocity direction model with the pressure correction boundary conditions was applied into the plane Poiseuille flow in microscales and the calculations cover all flow regimes. The numerical results agree well with the data of the NS equation near the continuum regime and the date of linearized Boltzmann equation and the DSMC method in the transition regime and free molecular flow. The Knudsen paradox and the nonlinear pressure distributions have been accurately captured by the discrete velocity direction model with the present boundary conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Zhukov, V. P., A. Ye Barochkin, A. N. Belyakov et O. V. Sizova. « Analysis of application and improvement of methods to solve discrete models of Boltzmann equation ». Vestnik IGEU, no 6 (28 décembre 2021) : 62–69. http://dx.doi.org/10.17588/2072-2672.2021.6.062-069.

Texte intégral
Résumé :
To describe technological systems using models of Markov chains and discrete models of the Boltzmann equation it is necessary to determine the probabilities of transition of a system from one state to another. An urgent topic of a scientific research is to improve the accuracy of solving the Boltzmann equation by making a reasonable choice of probabilities of transition and admissible areas of their application. The strategy to model and determine the probabilities of transitions is based on the finite volume method, the ratios of the theory of probability and the joint analysis of material and energy balances. Considering the ratios of the theory of probability, the authors have obtained the refined formula for the probabilities of transitions over the cells of the computational space of discrete models of the Boltzmann equations in case of the description of technological systems. Recommendations to choose the area of application of the model are presented. The computational analysis has showed a significant improvement of the quality of forecasting when we implement the proposed dependencies and recommendations. The relative error of calculating the energy of the system is reduced from 8,4 to 2,8 %. The presented calculated dependencies to determine the probabilities of transition and recommendations for their application can be used to simulate various technological processes and improve the quality of their description.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Premnath, Kannan N., et Sanjoy Banerjee. « Inertial Frame Independent Forcing for Discrete Velocity Boltzmann Equation : Implications for Filtered Turbulence Simulation ». Communications in Computational Physics 12, no 3 (septembre 2012) : 732–66. http://dx.doi.org/10.4208/cicp.181210.090911a.

Texte intégral
Résumé :
AbstractWe present a systematic derivation of a model based on the central moment lattice Boltzmann equation that rigorously maintains Galilean invariance of forces to simulate inertial frame independent flow fields. In this regard, the central moments, i.e. moments shifted by the local fluid velocity, of the discrete source terms of the lattice Boltzmann equation are obtained by matching those of the continuous full Boltzmann equation of various orders. This results in an exact hierarchical identity between the central moments of the source terms of a given order and the components of the central moments of the distribution functions and sources of lower orders. The corresponding source terms in velocity space are then obtained from an exact inverse transformation due to a suitable choice of orthogonal basis for moments. Furthermore, such a central moment based kinetic model is further extended by incorporating reduced compressibility effects to represent incompressible flow. Moreover, the description and simulation of fluid turbulence for full or any subset of scales or their averaged behavior should remain independent of any inertial frame of reference. Thus, based on the above formulation, a new approach in lattice Boltzmann framework to incorporate turbulence models for simulation of Galilean invariant statistical averaged or filtered turbulent fluid motion is discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Bobylev, Alexander, Mirela Vinerean et Åsa Windfäll. « Discrete velocity models of the Boltzmann equation and conservation laws ». Kinetic & ; Related Models 3, no 1 (2010) : 35–58. http://dx.doi.org/10.3934/krm.2010.3.35.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

NIKKUNI, Yoshiko, et Reiko SAKAMOTO. « Solutions to the discrete Boltzmann equation with general boundary conditions ». Journal of the Mathematical Society of Japan 51, no 3 (juillet 1999) : 757–79. http://dx.doi.org/10.2969/jmsj/05130757.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Saint-Raymond, Laure. « DISCRETE TIME NAVIER-STOKES LIMIT FOR THE BGK BOLTZMANN EQUATION ». Communications in Partial Differential Equations 27, no 1-2 (3 novembre 2002) : 149–84. http://dx.doi.org/10.1081/pde-120002785.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Saint-Raymond, Laure. « Discrete time Navier–Stokes limit for the BGK Boltzmann equation ». Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 330, no 2 (janvier 2000) : 163–68. http://dx.doi.org/10.1016/s0764-4442(00)00117-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Brechtken, Stefan, et Thomas Sasse. « Normal, high order discrete velocity models of the Boltzmann equation ». Computers & ; Mathematics with Applications 75, no 2 (janvier 2018) : 503–19. http://dx.doi.org/10.1016/j.camwa.2017.09.024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Cabannes, Henri. « Survey of initial value problem for the discrete Boltzmann equation ». Rendiconti del Seminario Matematico e Fisico di Milano 62, no 1 (décembre 1992) : 139–56. http://dx.doi.org/10.1007/bf02925441.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Kawashima, Shuichi. « Large-time behavior of solutions of the discrete Boltzmann equation ». Communications in Mathematical Physics 109, no 4 (décembre 1987) : 563–89. http://dx.doi.org/10.1007/bf01208958.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Oliveira, Filipe, et Ana Jacinta Soares. « A note on a Discrete Boltzmann Equation with multiple collisions ». Journal of Mathematical Analysis and Applications 341, no 2 (mai 2008) : 1476–81. http://dx.doi.org/10.1016/j.jmaa.2007.11.047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Amossov, S. A. « TWO-LEVEL DISCRETE MODELS OF BOLTZMANN EQUATION FOR BINARY MIXTURES ». Transport Theory and Statistical Physics 31, no 2 (21 mai 2002) : 125–39. http://dx.doi.org/10.1081/tt-120003970.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie