Littérature scientifique sur le sujet « Dirichlet modeling »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Dirichlet modeling ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Dirichlet modeling"
Makgai, Seitebaleng, Andriette Bekker et Mohammad Arashi. « Compositional Data Modeling through Dirichlet Innovations ». Mathematics 9, no 19 (3 octobre 2021) : 2477. http://dx.doi.org/10.3390/math9192477.
Texte intégralChauhan, Uttam, et Apurva Shah. « Topic Modeling Using Latent Dirichlet allocation ». ACM Computing Surveys 54, no 7 (30 septembre 2022) : 1–35. http://dx.doi.org/10.1145/3462478.
Texte intégralNavarro, Daniel J., Thomas L. Griffiths, Mark Steyvers et Michael D. Lee. « Modeling individual differences using Dirichlet processes ». Journal of Mathematical Psychology 50, no 2 (avril 2006) : 101–22. http://dx.doi.org/10.1016/j.jmp.2005.11.006.
Texte intégralLingwall, Jeff W., William F. Christensen et C. Shane Reese. « Dirichlet based Bayesian multivariate receptor modeling ». Environmetrics 19, no 6 (septembre 2008) : 618–29. http://dx.doi.org/10.1002/env.902.
Texte intégralSchwarz, Carlo. « Ldagibbs : A Command for Topic Modeling in Stata Using Latent Dirichlet Allocation ». Stata Journal : Promoting communications on statistics and Stata 18, no 1 (mars 2018) : 101–17. http://dx.doi.org/10.1177/1536867x1801800107.
Texte intégralŞahin, Büşra, Atıf Evren, Elif Tuna, Zehra Zeynep Şahinbaşoğlu et Erhan Ustaoğlu. « Parameter Estimation of the Dirichlet Distribution Based on Entropy ». Axioms 12, no 10 (5 octobre 2023) : 947. http://dx.doi.org/10.3390/axioms12100947.
Texte intégralBouguila, N., et D. Ziou. « A Dirichlet Process Mixture of Generalized Dirichlet Distributions for Proportional Data Modeling ». IEEE Transactions on Neural Networks 21, no 1 (janvier 2010) : 107–22. http://dx.doi.org/10.1109/tnn.2009.2034851.
Texte intégralChristy, A., Anto Praveena et Jany Shabu. « A Hybrid Model for Topic Modeling Using Latent Dirichlet Allocation and Feature Selection Method ». Journal of Computational and Theoretical Nanoscience 16, no 8 (1 août 2019) : 3367–71. http://dx.doi.org/10.1166/jctn.2019.8234.
Texte intégralElliott, Lloyd T., Maria De Iorio, Stefano Favaro, Kaustubh Adhikari et Yee Whye Teh. « Modeling Population Structure Under Hierarchical Dirichlet Processes ». Bayesian Analysis 14, no 2 (juin 2019) : 313–39. http://dx.doi.org/10.1214/17-ba1093.
Texte intégralLi, Yuelin, Elizabeth Schofield et Mithat Gönen. « A tutorial on Dirichlet process mixture modeling ». Journal of Mathematical Psychology 91 (août 2019) : 128–44. http://dx.doi.org/10.1016/j.jmp.2019.04.004.
Texte intégralThèses sur le sujet "Dirichlet modeling"
Heaton, Matthew J. « Temporally Correlated Dirichlet Processes in Pollution Receptor Modeling ». Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1861.pdf.
Texte intégralHu, Zhen. « Modeling photonic crystal devices by Dirichlet-to-Neumann maps / ». access full-text access abstract and table of contents, 2009. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?phd-ma-b30082559f.pdf.
Texte intégral"Submitted to Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy." Includes bibliographical references (leaves [85]-91)
Gao, Wenyu. « Advanced Nonparametric Bayesian Functional Modeling ». Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/99913.
Texte intégralDoctor of Philosophy
As we have easier access to massive data sets, functional analyses have gained more interest to analyze data providing information about curves, surfaces, or others varying over a continuum. However, such data sets often contain large heterogeneities and noise. When generalizing the analyses from vectors to functions, classical methods might not work directly. This dissertation considers noisy information reduction in functional analyses from two perspectives: functional variable selection to reduce the dimensionality and functional clustering to group similar observations and thus reduce the sample size. The complicated data structures and relations can be easily modeled by a Bayesian hierarchical model due to its flexibility. Hence, this dissertation focuses on the development of nonparametric Bayesian approaches for functional analyses. Our proposed methods can be applied in various applications: the epidemiological studies on aseptic meningitis with clustered binary data, the genetic diabetes data, and breast cancer racial disparities.
Monson, Rebecca Lee. « Modeling Transition Probabilities for Loan States Using a Bayesian Hierarchical Model ». Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd2179.pdf.
Texte intégrallim, woobeen. « Bayesian Semiparametric Joint Modeling of Longitudinal Predictors and Discrete Outcomes ». The Ohio State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1618955725276958.
Texte intégralDomingues, Rémi. « Probabilistic Modeling for Novelty Detection with Applications to Fraud Identification ». Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS473.pdf.
Texte intégralNovelty detection is the unsupervised problem of identifying anomalies in test data which significantly differ from the training set. While numerous novelty detection methods were designed to model continuous numerical data, tackling datasets composed of mixed-type features, such as numerical and categorical data, or temporal datasets describing discrete event sequences is a challenging task. In addition to the supported data types, the key criteria for efficient novelty detection methods are the ability to accurately dissociate novelties from nominal samples, the interpretability, the scalability and the robustness to anomalies located in the training data. In this thesis, we investigate novel ways to tackle these issues. In particular, we propose (i) a survey of state-of-the-art novelty detection methods applied to mixed-type data, including extensive scalability, memory consumption and robustness tests (ii) a survey of state-of-the-art novelty detection methods suitable for sequence data (iii) a probabilistic nonparametric novelty detection method for mixed-type data based on Dirichlet process mixtures and exponential-family distributions and (iv) an autoencoder-based novelty detection model with encoder/decoder modelled as deep Gaussian processes. The learning of this last model is made tractable and scalable through the use of random feature approximations and stochastic variational inference. The method is suitable for large-scale novelty detection problems and data with mixed-type features. The experiments indicate that the proposed model achieves competitive results with state-of-the-art novelty detection methods
Race, Jonathan Andrew. « Semi-parametric Survival Analysis via Dirichlet Process Mixtures of the First Hitting Time Model ». The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu157357742741077.
Texte intégralHuo, Shuning. « Bayesian Modeling of Complex High-Dimensional Data ». Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/101037.
Texte intégralDoctor of Philosophy
With the rapid development of modern high-throughput technologies, scientists can now collect high-dimensional data in different forms, such as engineering signals, medical images, and genomics measurements. However, acquisition of such data does not automatically lead to efficient knowledge discovery. The main objective of this dissertation is to develop novel Bayesian methods to extract useful knowledge from complex high-dimensional data. It has two parts—the development of an ultra-fast functional mixed model and the modeling of data heterogeneity via Dirichlet Diffusion Trees. The first part focuses on developing approximate Bayesian methods in functional mixed models to estimate parameters and detect significant regions. Two datasets demonstrate the effectiveness of proposed method—a mass spectrometry dataset in a cancer study and a neuroimaging dataset in an Alzheimer's disease study. The second part focuses on modeling data heterogeneity via Dirichlet Diffusion Trees. The method helps uncover the underlying hierarchical tree structures and estimate systematic differences between the group of samples. We demonstrate the effectiveness of the method through the brain tumor imaging data.
Liu, Jia. « Heterogeneous Sensor Data based Online Quality Assurance for Advanced Manufacturing using Spatiotemporal Modeling ». Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/78722.
Texte intégralPh. D.
Bui, Quang Vu. « Pretopology and Topic Modeling for Complex Systems Analysis : Application on Document Classification and Complex Network Analysis ». Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEP034/document.
Texte intégralThe work of this thesis presents the development of algorithms for document classification on the one hand, or complex network analysis on the other hand, based on pretopology, a theory that models the concept of proximity. The first work develops a framework for document clustering by combining Topic Modeling and Pretopology. Our contribution proposes using topic distributions extracted from topic modeling treatment as input for classification methods. In this approach, we investigated two aspects: determine an appropriate distance between documents by studying the relevance of Probabilistic-Based and Vector-Based Measurements and effect groupings according to several criteria using a pseudo-distance defined from pretopology. The second work introduces a general framework for modeling Complex Networks by developing a reformulation of stochastic pretopology and proposes Pretopology Cascade Model as a general model for information diffusion. In addition, we proposed an agent-based model, Textual-ABM, to analyze complex dynamic networks associated with textual information using author-topic model and introduced Textual-Homo-IC, an independent cascade model of the resemblance, in which homophily is measured based on textual content obtained by utilizing Topic Modeling
Livres sur le sujet "Dirichlet modeling"
Liang, Percy, Michael Jordan et Dan Klein. Probabilistic grammars and hierarchical Dirichlet processes. Sous la direction de Anthony O'Hagan et Mike West. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198703174.013.27.
Texte intégralJockers, Matthew L. Theme. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252037528.003.0008.
Texte intégralChapitres de livres sur le sujet "Dirichlet modeling"
Palencia-Olivar, Miguel, Stéphane Bonnevay, Alexandre Aussem et Bruno Canitia. « Neural Embedded Dirichlet Processes for Topic Modeling ». Dans Modeling Decisions for Artificial Intelligence, 299–310. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85529-1_24.
Texte intégralAzamova, Nilufar A., Elena S. Alekseeva, Alexander A. Potapov et Alexander A. Rassadin. « Fractality and the Internal Dirichlet Problem ». Dans 13th Chaotic Modeling and Simulation International Conference, 111–22. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70795-8_9.
Texte intégralZamzami, Nuha, et Nizar Bouguila. « Text Modeling Using Multinomial Scaled Dirichlet Distributions ». Dans Lecture Notes in Computer Science, 69–80. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92058-0_7.
Texte intégralHa-Thuc, Viet, et Padmini Srinivasan. « A Latent Dirichlet Framework for Relevance Modeling ». Dans Information Retrieval Technology, 13–25. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04769-5_2.
Texte intégralStals, Linda, et Stephen Roberts. « Smoothing and Filling Holes with Dirichlet Boundary Conditions ». Dans Modeling, Simulation and Optimization of Complex Processes, 521–30. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-79409-7_38.
Texte intégralFlorindo, João Batista. « Dirichlet Series in Complex Network Modeling of Texture Images ». Dans Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, 368–75. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13469-3_43.
Texte intégralHe, Yuan, Cheng Wang et Changjun Jiang. « Multi-perspective Hierarchical Dirichlet Process for Geographical Topic Modeling ». Dans Advances in Knowledge Discovery and Data Mining, 811–23. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57454-7_63.
Texte intégralOf, Günther, Thanh Xuan Phan et Olaf Steinbach. « Finite and Boundary Element Energy Approximations of Dirichlet Control Problems ». Dans Modeling, Simulation and Optimization of Complex Processes, 219–31. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25707-0_18.
Texte intégralChatterjee, Rajdeep, Chandan Mukherjee, Siddhartha Chatterjee et Biswaroop Nath. « Latent Dirichlet Allocation for Topic Modeling and Intelligent Document Classification ». Dans Lecture Notes in Networks and Systems, 71–83. Singapore : Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4928-7_6.
Texte intégralHaritha, P., et P. Shanmugavadivu. « Optimized Latent-Dirichlet-Allocation Based Topic Modeling–An Empirical Study ». Dans Communications in Computer and Information Science, 412–19. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-58495-4_30.
Texte intégralActes de conférences sur le sujet "Dirichlet modeling"
Nallamothu, Sai Karthik, Rohith Kamal Kumar Yenduri, Sai Sandeep Pippalla, Kpvm Karthik, Bhargav Sai Alapati, Sri Naga Venkata Kowshik Veldhi et Prashanthi Boyapati. « Comparative Analysis of Feature Representations for Topic Modeling with Latent Dirichlet Allocation ». Dans 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icccnt61001.2024.10725873.
Texte intégralManuaba, Ida Bagus Kerthyayana, et Mochammad Faisal Karim. « Latent Dirichlet Allocation (LDA) Topic Modeling and Sentiment Analysis for Myanmar Coup Tweets ». Dans 2024 8th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), 161–66. IEEE, 2024. http://dx.doi.org/10.1109/icitisee63424.2024.10730529.
Texte intégralFernandis, Rasio, Daniel Swanjaya, Risky Aswi Ramadhani, Patmi Kasih et Julian Sahertian. « Topic Modeling Using Latent Dirichlet Allocation Method Based On Child Anecdotal Record Data ». Dans 2024 4th International Conference of Science and Information Technology in Smart Administration (ICSINTESA), 299–304. IEEE, 2024. http://dx.doi.org/10.1109/icsintesa62455.2024.10747976.
Texte intégralGarewal, Ishmeen Kaur, Shruti Jha et Chaitanya V. Mahamuni. « Topic Modeling for Identifying Emerging Trends on Instagram Using Latent Dirichlet Allocation and Non-Negative Matrix Factorization ». Dans 2024 10th International Conference on Advanced Computing and Communication Systems (ICACCS), 1103–10. IEEE, 2024. http://dx.doi.org/10.1109/icaccs60874.2024.10717021.
Texte intégralNurmiati, Evy, Muhammad Qomarul Huda et Selly Mitsalina. « Sentiment Analysis and Topics Modeling on Mobile Banking Reviews of Sharia Bank in Indonesia Using Naive Bayes and Latent Dirichlet Allocation ». Dans 2024 12th International Conference on Cyber and IT Service Management (CITSM), 1–6. IEEE, 2024. https://doi.org/10.1109/citsm64103.2024.10775521.
Texte intégralYi-Qun Ding, Zhen Zhang et Bin Xu. « Nested Dirichlet process for collaborative mobility modeling ». Dans 2009 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2009. http://dx.doi.org/10.1109/icmlc.2009.5212623.
Texte intégralMadsen, Rasmus E., David Kauchak et Charles Elkan. « Modeling word burstiness using the Dirichlet distribution ». Dans the 22nd international conference. New York, New York, USA : ACM Press, 2005. http://dx.doi.org/10.1145/1102351.1102420.
Texte intégralBian, Wei, et Dacheng Tao. « Dirichlet Mixture Allocation for Multiclass Document Collections Modeling ». Dans 2009 Ninth IEEE International Conference on Data Mining (ICDM). IEEE, 2009. http://dx.doi.org/10.1109/icdm.2009.102.
Texte intégralLu, Ya Yan, Jianhua Yuan et Shaojie Li. « Modeling Photonic Crystals by Dirichlet-to-Neumann Maps ». Dans Integrated Photonics and Nanophotonics Research and Applications. Washington, D.C. : OSA, 2007. http://dx.doi.org/10.1364/ipnra.2007.imb1.
Texte intégralChien, Jen-Tzung. « The shared dirichlet priors for bayesian language modeling ». Dans ICASSP 2015 - 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015. http://dx.doi.org/10.1109/icassp.2015.7178337.
Texte intégralRapports d'organisations sur le sujet "Dirichlet modeling"
Alonso-Robisco, Andrés, José Manuel Carbó et José Manuel Carbó. Machine Learning methods in climate finance : a systematic review. Madrid : Banco de España, février 2023. http://dx.doi.org/10.53479/29594.
Texte intégral