Littérature scientifique sur le sujet « Dirac Neutrino Mass »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Dirac Neutrino Mass ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Dirac Neutrino Mass"

1

Hyodo, Yuta, et Teruyuki Kitabayashi. « Magic square and Dirac flavor neutrino mass matrix ». International Journal of Modern Physics A 35, no 29 (13 octobre 2020) : 2050183. http://dx.doi.org/10.1142/s0217751x20501833.

Texte intégral
Résumé :
The magic texture is one of the successful textures of the flavor neutrino mass matrix for the Majorana type neutrinos. The name “magic” is inspired by the nature of the magic square. We estimate the compatibility of the magic square with the Dirac, instead of the Majorana, flavor neutrino mass matrix. It turned out that some parts of the nature of the magic square are appeared approximately in the Dirac flavor neutrino mass matrix and the magic squares prefer the normal mass ordering rather than the inverted mass ordering for the Dirac neutrinos.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Matute, Ernesto A. « Low-scale minimal linear seesaw model for neutrino mass and flavor mixing ». Modern Physics Letters A 36, no 22 (19 juillet 2021) : 2150159. http://dx.doi.org/10.1142/s0217732321501595.

Texte intégral
Résumé :
We consider an extension of the Standard Model with three right-handed (RH) neutrinos and a Dirac pair of extra sterile neutrinos, odd under a discrete [Formula: see text] symmetry, in order to have left–right symmetry in the neutrino content and obtain tiny neutrino masses from the latter ones only. Our working hypothesis is that the heavy RH neutrinos do not influence phenomenology at low energies. We use the usual high-scale seesaw to suppress all of the mass terms involving RH neutrinos and a low-scale minimal variant of the linear seesaw led by the Dirac mass of the extra sterile neutrinos to provide the small mass of active neutrinos. One of the active neutrinos is massless, which fixes the mass of the other two on the basis of a soft breaking of the [Formula: see text] symmetry. The mixing between the extra neutrinos makes for a particle that effectively behaves like a Dirac sterile neutrino with mass around the GeV level.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Matute, Ernesto A. « Neutrino mass generation with extra right-handed fields in a Dirac scenario via the type-I seesaw mechanism ». Modern Physics Letters A 29, no 40 (28 décembre 2014) : 1450212. http://dx.doi.org/10.1142/s0217732314502125.

Texte intégral
Résumé :
An extension of the Standard Model (SM) is studied in which two right-handed (RH) neutrinos per generation are incorporated, but considering the hypothesis of the symmetry of lepton and quark contents in order to deprive the number of RH neutrinos of freedom, generate Dirac neutrinos and accommodate naturally tiny values for their masses. The high scale type-I seesaw regime is applied to the first, ordinary RH neutrino, whereas a low scale pseudo-Dirac scenario is used for the second, adulterant RH neutrino, implying that the first RH neutrino decouples at the high scale, while the second RH neutrino survives down to the low scale to pair off in a Dirac-like form with the corresponding left-handed (LH) neutrino. The small mass and couplings of this extra RH neutrino are explained by means of the statement of the symmetry of fermionic content, only regarded as a guideline to the natural choice of parameters since it is not a proper symmetry in the Lagrangian.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Petcov, S. T. « Leptonic CP violation and leptogenesis ». International Journal of Modern Physics A 29, no 11n12 (25 avril 2014) : 1430028. http://dx.doi.org/10.1142/s0217751x14300282.

Texte intégral
Résumé :
The phenomenology of 3-neutrino mixing, the current status of our knowledge about the 3-neutrino mixing parameters, including the absolute neutrino mass scale, and of the Dirac and Majorana CP violation in the lepton sector, are reviewed. The problems of CP violation in neutrino oscillations and of determining the nature — Dirac or Majorana — of massive neutrinos, are discussed. The seesaw mechanism of neutrino mass generation and the related leptogenesis scenario of generation of the baryon asymmetry of the universe, are considered. The results showing that the CP violation necessary for the generation of the baryon asymmetry of the universe in leptogenesis can be due exclusively to the Dirac and/or Majorana CP-violating phase(s) in the neutrino mixing matrix U, are briefly reviewed.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Peinado, Eduardo, Mario Reig, Rahul Srivastava et Jose W. F. Valle. « Dirac neutrinos from Peccei–Quinn symmetry : A fresh look at the axion ». Modern Physics Letters A 35, no 21 (29 mai 2020) : 2050176. http://dx.doi.org/10.1142/s021773232050176x.

Texte intégral
Résumé :
We show that a very simple solution to the strong CP problem naturally leads to Dirac neutrinos. Small effective neutrino masses emerge from a type-I Dirac seesaw mechanism. Neutrino mass limits probe the axion parameters in regions currently inaccessible to conventional searches.
Styles APA, Harvard, Vancouver, ISO, etc.
6

RAJPOOT, SUBHASH. « MASSIVE DIRAC NEUTRINOS AND SN1987A ». Modern Physics Letters A 08, no 13 (30 avril 1993) : 1179–84. http://dx.doi.org/10.1142/s021773239300266x.

Texte intégral
Résumé :
If neutrinos are massive Dirac particles, their right-handed components are inert to interactions with matter. However, the helicity flip mechanism due to the mass term can participate in the cooling of a new born star. The observed neutrino bursts from SN1987A constrained Dirac neutrino masses to lie between 1 keV and 10 keV so as to avoid rapid cooling due to the mass induced helicity flip mechanism. We suggest scalar particle mediated new interactions between the right-handed neutrinos and nuclear matter that trap the right-handed neutrinos long enough so that the total energy of the exploding star is carried away predominantly by left-handed neutrinos. The bounds from cosmology are also shown to be satisfied.
Styles APA, Harvard, Vancouver, ISO, etc.
7

FRAMPTON, P. H. « ASPECTS OF NEUTRINO MASS MATRICES ». International Journal of Modern Physics A 20, no 06 (10 mars 2005) : 1188–96. http://dx.doi.org/10.1142/s0217751x05024079.

Texte intégral
Résumé :
After an Introduction briefly describing the rise and fall of the three-zero texture of the Zee model, we discuss still-allowed two-zero textures for the Majorana three-neutrino mass matrix. Finally, a model with two right-handed neutrinos and two Dirac texture zeros is described (FGY model) which can relate CP violation in leptogenesis to CP violation in long-baseline neutrino oscillations.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Matute, Ernesto A. « Neutrino mass generation from the perspective of presymmetry ». Modern Physics Letters A 34, no 34 (5 novembre 2019) : 1950284. http://dx.doi.org/10.1142/s0217732319502845.

Texte intégral
Résumé :
The Standard Model (SM) with one right-handed neutrino per generation is revisited with presymmetry being the global [Formula: see text] symmetry of an electroweak theory of leptons and quarks with initially postulated symmetric fractional charges. The cancellation of gauge anomalies and the non-perturbative normalization of lepton charges proceed through the mixing of local and topological charges, the global [Formula: see text] measuring the induced charge associated with a unit of topological charge, and the mathematical replacement of the original fractional charges with the experimentally observed ones. The [Formula: see text] symmetry of the SM with Dirac neutrinos is seen as a residual presymmetry. High-scale and low-scale seesaw mechanisms proposed to explain the mass of neutrinos are examined from the perspective of presymmetry, be they of Majorana or pseudo-Dirac type. We find that the tiny mass splitting in pseudo-Dirac neutrinos and the mass of heavy neutrinos ride on the opposite ends of the seesaw. We show that pseudo-Dirac neutrinos contain extra sterile neutrinos with imprints of presymmetry and for heavy ones we get constraints favoring the low-scale linear seesaw over the inverse variant.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Nicolaidis, Argyris. « Neutrinos and the structure of space-time ». Facta universitatis - series : Physics, Chemistry and Technology 12, no 2 (2014) : 179–88. http://dx.doi.org/10.2298/fupct1402179n.

Texte intégral
Résumé :
The phenomenon of neutrino oscillations is studied usually as a mixing between the flavor neutrinos and the neutrinos having a definite mass. The mixing angles and the mass eigenvalues are treated independently in order to accommodate the experimental data. We suggest that neutrino oscillations are connected to the structure of spacetime. We expand on a recently proposed model, where two ?mirror? branes coexist. One brane hosts left-handed particles (our brane), while the other brane hosts right-handed particles. Majorana-type couplings mixes neutrinos in an individual brane, while Dirac-type couplings mixes neutrinos across the brares. We first focus our attention in a single brane. The mass matrix, determined by the Majorana mass, leads to mass eigenstates and further to mixing angles identical to the mixing angles proposed by the tri-bimaximal mixing. When we include the Dirac-type coupling, connecting the two branes, we obtain a definite prediction for the transition to a sterile neutrino (righthanded neutrino). With mL (mR) the Majorana mass for the left (right) brane, we are able to explain the solar and the atmospheric neutrino data with mL = 2mR and mR = 10-2 eV.
Styles APA, Harvard, Vancouver, ISO, etc.
10

BELL, N. F. « HOW MAGNETIC IS THE NEUTRINO ? » International Journal of Modern Physics A 22, no 27 (30 octobre 2007) : 4891–99. http://dx.doi.org/10.1142/s0217751x07038256.

Texte intégral
Résumé :
The existence of a neutrino magnetic moment implies contributions to the neutrino mass via radiative corrections. We derive model-independent "naturalness" upper bounds on the magnetic moments of Dirac and Majorana neutrinos, generated by physics above the electroweak scale. For Dirac neutrinos, the bound is several orders of magnitude more stringent than present experimental limits. However, for Majorana neutrinos the magnetic moment bounds are weaker than present experimental limits if μν is generated by new physics at ~ 1 TeV , and surpass current experimental sensitivity only for new physics scales > 10 – 100 TeV . The discovery of a neutrino magnetic moment near present limits would thus signify that neutrinos are Majorana particles.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Dirac Neutrino Mass"

1

Nezri, Emmanuel. « Neutrinos et Cosmologie dans les modèles de Grande Unification : Détection de matière noire supersymétrique, Oscillations et Leptogénèse dans SO(10) ». Phd thesis, Clermont-Ferrand 2, 2002. http://www.theses.fr/2002CLF21387.

Texte intégral
Résumé :
Deux problématiques de la cosmologie sont abordées : la matière noire et l'asymétrie baryonique de l'Univers. Dans le cadre du MSSM, le neutralino est le meilleur candidat de la matière noire froide. Le potentiel de détection indirecte du neutralino par Antares et les télescopes à neutrinos est étudié dans les modèles de Grande Unification et comparé avec les expériences de détection directe. La détection de neutrinos issus de l'annihilation de neutralinos au centre de la Terre dans ces modèles s'avère hors de portée. Dans le cas universel, les modèles où le neutralino comporte une composante higgsino dominante sont très intéressants pour les flux en provenance du Soleil. En relachant les relations d'universalité dans le secteur des jauginos, notamment en diminuant M3(barre veticale)GUT, on obtient des régions de densités reliques intéressantes bien plus vastes que dans le cas universel et une forte augmentation des taux de détection de plusieurs ordres de grandeur. Concernant le calcul de l'asymétrie baryonique, la leptogénèse par désintégration de neutrinos droits lourds de Majorana est créditée de fortes potentialités. Ces neutrinos droits sont aussi, par le mécanisme de see-saw, le moyen le plus séduisant pour rendre compte des masses des neutrinos. Nous avons fixé le secteur de Dirac des neutrinos à celui des quarks up par les relations simples inspirées du groupe de Grande Unification SO(10). Nous avons alors mis en évidence l'importance du paramètre le moins contraint expérimentalement Ue3 pour maximer l'asymétrie. Malgré cet ajustement, il n'est pas possible dans de modèle de faire concorder les données expérimentales des oscillations avec l'asymétrie baryonique requise par la nucléosynthèse primordiale
Styles APA, Harvard, Vancouver, ISO, etc.
2

Iyer, Abhishek Muralidhar. « Randall-Sundrum Model as a Theory of Flavour ». Thesis, 2013. http://etd.iisc.ac.in/handle/2005/3381.

Texte intégral
Résumé :
The discovery of the Higgs boson by the LHC provided the last piece of the puzzle neces- sary for the Standard Model (SM) to be a successful theory of electroweak scale physics. However there exist various phenomenological reasons which serve as pointer towards the existence of physics beyond the Standard Model. For example the explanation for the smallness of the neutrino mass, baryon asymmetry of the universe, the presence of dark matter and dark energy etc. are not within purview of the Standard Model. Con- ceptual issues like the gauge hierarchy problem, weakness of gravity provide some of the theoretical motivation to pursue theories beyond the SM. We consider scenarios with warped extra-dimensions (Randall-Sundrum (RS) Model ) as our preferred candidate to answer some of the questions raised above. RS model gives an elegant geometric solution to address the hierarchy between the two fundamental scales of nature i.e. Planck scale and electroweak scale. In addition to this, the geometry of RS serves as a useful setup wherein the fermion mass hierarchy problem can also be solved. The goal of this thesis is to investigate whether RS model can be an acceptable theory of avour while at the same time serving as a solution to the hierarchy problem. In Chapter[1] we begin with a brief introduction of the SM, highlighting issues which pro- vides the necessary motivation for constructing new physics models. Various candidates of Beyond Standard Model (BSM) physics are introduced and a few preliminaries es- sential to understand frameworks with additional spatial-dimensions ( at and warped) is provided. In Chapter[2] we specialize to the case of warped extra-dimensions and motivate the need to have the SM elds in the bulk. Mathematical details related to the analysis of various spin elds (0; 12; 1 and 2) in a warped background necessary to understand relevant phenomenology is provided. The lack of knowledge of Dirac or Majorana nature of the neutrino leads to a wide variety of possibilities as far as neutrino mass generation is concerned. In Chapter[3] we focus on the leptonic sector where three cases of neutrino mass generation are consid- ered: a)Planck Scale lepton number violation (LLHH case) b) Dirac neutrinos c) Bulk Majorana mass terms. We then study the implications of each case on the charged lepton mass tting. The case with Planck scale lepton number violation in normal RS scenario requires large and negative values for the bulk mass parameters for the charged singlets cE. Dirac neutrinos and the case with Bulk Majorana mass terms give good t to data. For completeness, the ts for the hadronic sector is provided in the appendix. In Chapter[4] avour violation for each of three cases introduced in Chapter[3] is studied. For the case with Planck scale lepton number violation, the non-perturbative Yukawa coupling between the SM singlets and the KK states render the higher order diagrams incalculable. Lepton avour violation (LFV) is particularly large for the Dirac case and the bulk Majorana case for low Kaluza-Klein(KK) mass scales. We then invoke the ansatz of Minimal Flavour violation to suppress LFV with low lying KK scales and examples of avour group is provided for both cases. In Chapter[5] we present an example with a type II two Higgs doublet model applied to the LLHH case. The setup o ers a solution where LLHH scenario can be consistently realized in RS model, where the masses and mixing angles in the leptonic sector can bet with O(1) choice of bulk parameters. Assumption of global lepton number conservation (like in Dirac neutrinos) could lead to problems in theories of quantum gravity where it does not hold. This leads us to the question whether Dirac neutrinos can be naturally realized in nature. In Chapter[6] we consider the special case of bulk Majorana mass encountered in Chapter[3] where the bulk Dirac mass terms for the right handed neutrino is set to zero. We nd that this leads to a case where the e ective zero mode neutrino mass is of Dirac type with negligible e ects from the tower of Majorana states. In Chapter[7] we consider RS at the GUT scale which no longer serves as a solution to the hierarchy problem. SUSY is introduced in the bulk and the low energy SUSY serves as a solution to the hierarchy problem. Such models serve as a useful alternative to SUSY models with family symmetries (e.g. Froggatt-Nielsen Model). However the solutions to the Yukawa hierarchy problem are constrained due to anomaly cancellation conditions. In Chapter[8] supersymmetry breaking due to radion mediation in addition to brane localized sources is considered and detailed analysis of the running of soft masses and the low energy avour observables is considered for both cases separately. In Chapter[9] we conclude and present future directions.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Iyer, Abhishek Muralidhar. « Randall-Sundrum Model as a Theory of Flavour ». Thesis, 2013. http://etd.iisc.ernet.in/2005/3381.

Texte intégral
Résumé :
The discovery of the Higgs boson by the LHC provided the last piece of the puzzle neces- sary for the Standard Model (SM) to be a successful theory of electroweak scale physics. However there exist various phenomenological reasons which serve as pointer towards the existence of physics beyond the Standard Model. For example the explanation for the smallness of the neutrino mass, baryon asymmetry of the universe, the presence of dark matter and dark energy etc. are not within purview of the Standard Model. Con- ceptual issues like the gauge hierarchy problem, weakness of gravity provide some of the theoretical motivation to pursue theories beyond the SM. We consider scenarios with warped extra-dimensions (Randall-Sundrum (RS) Model ) as our preferred candidate to answer some of the questions raised above. RS model gives an elegant geometric solution to address the hierarchy between the two fundamental scales of nature i.e. Planck scale and electroweak scale. In addition to this, the geometry of RS serves as a useful setup wherein the fermion mass hierarchy problem can also be solved. The goal of this thesis is to investigate whether RS model can be an acceptable theory of avour while at the same time serving as a solution to the hierarchy problem. In Chapter[1] we begin with a brief introduction of the SM, highlighting issues which pro- vides the necessary motivation for constructing new physics models. Various candidates of Beyond Standard Model (BSM) physics are introduced and a few preliminaries es- sential to understand frameworks with additional spatial-dimensions ( at and warped) is provided. In Chapter[2] we specialize to the case of warped extra-dimensions and motivate the need to have the SM elds in the bulk. Mathematical details related to the analysis of various spin elds (0; 12; 1 and 2) in a warped background necessary to understand relevant phenomenology is provided. The lack of knowledge of Dirac or Majorana nature of the neutrino leads to a wide variety of possibilities as far as neutrino mass generation is concerned. In Chapter[3] we focus on the leptonic sector where three cases of neutrino mass generation are consid- ered: a)Planck Scale lepton number violation (LLHH case) b) Dirac neutrinos c) Bulk Majorana mass terms. We then study the implications of each case on the charged lepton mass tting. The case with Planck scale lepton number violation in normal RS scenario requires large and negative values for the bulk mass parameters for the charged singlets cE. Dirac neutrinos and the case with Bulk Majorana mass terms give good t to data. For completeness, the ts for the hadronic sector is provided in the appendix. In Chapter[4] avour violation for each of three cases introduced in Chapter[3] is studied. For the case with Planck scale lepton number violation, the non-perturbative Yukawa coupling between the SM singlets and the KK states render the higher order diagrams incalculable. Lepton avour violation (LFV) is particularly large for the Dirac case and the bulk Majorana case for low Kaluza-Klein(KK) mass scales. We then invoke the ansatz of Minimal Flavour violation to suppress LFV with low lying KK scales and examples of avour group is provided for both cases. In Chapter[5] we present an example with a type II two Higgs doublet model applied to the LLHH case. The setup o ers a solution where LLHH scenario can be consistently realized in RS model, where the masses and mixing angles in the leptonic sector can bet with O(1) choice of bulk parameters. Assumption of global lepton number conservation (like in Dirac neutrinos) could lead to problems in theories of quantum gravity where it does not hold. This leads us to the question whether Dirac neutrinos can be naturally realized in nature. In Chapter[6] we consider the special case of bulk Majorana mass encountered in Chapter[3] where the bulk Dirac mass terms for the right handed neutrino is set to zero. We nd that this leads to a case where the e ective zero mode neutrino mass is of Dirac type with negligible e ects from the tower of Majorana states. In Chapter[7] we consider RS at the GUT scale which no longer serves as a solution to the hierarchy problem. SUSY is introduced in the bulk and the low energy SUSY serves as a solution to the hierarchy problem. Such models serve as a useful alternative to SUSY models with family symmetries (e.g. Froggatt-Nielsen Model). However the solutions to the Yukawa hierarchy problem are constrained due to anomaly cancellation conditions. In Chapter[8] supersymmetry breaking due to radion mediation in addition to brane localized sources is considered and detailed analysis of the running of soft masses and the low energy avour observables is considered for both cases separately. In Chapter[9] we conclude and present future directions.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Dirac Neutrino Mass"

1

Kenyon, Ian R. « Particle physics I ». Dans Quantum 20/20, 323–50. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198808350.003.0018.

Texte intégral
Résumé :
Particle families (quarks and leptons), their properties and their interactions are introduced. The exchange mechanism and the Yukawa potential are discussed. Natural units are explained. The cross-section for e + e + → μ‎ + μ‎+ is calculated using a first order Feynman diagram. Comparison with data reveals the existence of the Z0-boson and makes a link between electroweak processes. Higher orders diagrams give divergences and their removal by renormalization is described. Neutrino properties are outlined and the determination of the number of light neutrinos related. The weak interaction is discussed: parity and charge parity are seen to be maximally violated in W-boson exchange, but the product is approximately conserved. Handedness is pursued in an appendix using Dirac spinors. The neutrino mass and weak eigenstates differ and this leads to oscillations between weak eigenstates in flight. Measurements of the neutrino flux from the sun revealing this behaviour are described. Weak and strong eigenstates of quarks also differ by a unitary transformation, the CKM matrix. This difference leads to oscillations of certain neutral mesons from particle to antiparticle. This behaviour is explored for neutral K-mesons and for B0 d mesons. CP violation is observed, which is required for the survival of matter in the universe.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Bettini, A. « The nature and the mass of neutrinos. Majorana vs. Dirac ». Dans Predicted And Totally Unexpected In The Energy Frontier Opened By LHC, 451–67. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814340212_0017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hanlon, Robert T. « The Atom : discovery ». Dans Block by Block : The Historical and Theoretical Foundations of Thermodynamics, 52–90. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198851547.003.0004.

Texte intégral
Résumé :
Many independent discoveries led to the discovery of the atom. Einstein’s explanation of Brownian motion provided proof that atoms exist. J.J. Thomson identified the cathode rays produced in Crookes‘ tube as electrons. Rutherford discovered that most atom mass is concentrated in a small central region. Bohr combined this with Planck’s quantized energy results from blackbody radiation studies to create the first physical model of the atom. Schrodinger, Heisenberg, and Born mathematically model the behavior of orbiting electrons, Heisenberg discovers uncertainty, Pauli defines exclusion, Dirac predicts spin, Chadwick discovers neutrons, and Fermi discovers weak interaction. Finally, Hahn, Meitner, and Strassmann discover nuclear fission, Yukawa discovers the strong interaction, the Stanford Linear Accelerator discovers the quark, and physicists capture the strong, weak, and electromagnetic fundamental interactions in the Standard Model.
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Dirac Neutrino Mass"

1

Nimmala, Narenda, Nirakar Sahoo et Narendra Sahu. « Dirac Leptogenesis in assistance of Dark Matter and Neutrino Mass ». Dans The 39th International Conference on High Energy Physics. Trieste, Italy : Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.340.0137.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie