Articles de revues sur le sujet « Dipolar systems »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Dipolar systems.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Dipolar systems ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Downing, Charles A., et Luis Martín-Moreno. « Polaritonic Tamm states induced by cavity photons ». Nanophotonics 10, no 1 (14 septembre 2020) : 513–21. http://dx.doi.org/10.1515/nanoph-2020-0370.

Texte intégral
Résumé :
AbstractWe consider a periodic chain of oscillating dipoles, interacting via long-range dipole–dipole interactions, embedded inside a cuboid cavity waveguide. We show that the mixing between the dipolar excitations and cavity photons into polaritons can lead to the appearance of new states localized at the ends of the dipolar chain, which are reminiscent of Tamm surface states found in electronic systems. A crucial requirement for the formation of polaritonic Tamm states is that the cavity cross section is above a critical size. Above this threshold, the degree of localization of the Tamm states is highly dependent on the cavity size since their participation ratio scales linearly with the cavity cross-sectional area. Our findings may be important for quantum confinement effects in one-dimensional systems with strong light–matter coupling.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Nagy, Sándor. « The frequency of the two lowest energies of interaction in dipolar hard sphere systems ». Analecta Technica Szegedinensia 14, no 2 (8 décembre 2020) : 13–18. http://dx.doi.org/10.14232/analecta.2020.2.13-18.

Texte intégral
Résumé :
This publication was inspired by the study of chaining in dipolar systems. Two adjacent particles form a chain is usually decided by energy or distance criterion. This prompted the author to investigate the frequency of interaction energy between nearby chain-forming particles in the dipolar system. So what is the frequency of the two lowest energies. Does have raison d’etre of the energy-based chaining criterion? Because if so, in the frequency chart qualitative change should have see at 70-75%, compared to the lowest possible energy. No such qualitative change was observed in the computer simulations. Monte Carlo simulations were performed at many densities and dipole moments in a dipolar hard sphere system. The simulation results were theoretically interpreted using the Boltzmann distribution The theoretical relationship was generalized to a wide range of density and dipole moments by fitting three suitable parameters. The fitting was necessary due to the compressive effect of density.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Chan, Chin Han, et Hans-Werner Kammer. « Characterization of polymer electrolytes by dielectric response using electrochemical impedance spectroscopy ». Pure and Applied Chemistry 90, no 6 (27 juin 2018) : 939–53. http://dx.doi.org/10.1515/pac-2017-0911.

Texte intégral
Résumé :
Abstract Authors present a phenomenological view on dielectric relaxation in polymer electrolytes, which is monitored by electrochemical impedance spectroscopy. Molecular interaction of polymer chains with salt molecules (or dipole-dipole interaction between segments and salt molecules) leads to dipolar molecular entities. Frequency-dependant impedance spectra are the key quantities of the interest for determination of electric properties of materials and their interfaces with conducting electrodes. Salt concentration serves as parameter. Bulk and interfacial properties of the samples are discussed in terms of impedance (Z*) and modulus (M*) spectra. We focus on two different classes of systems, i.e. high molar mass of poly(ethylene oxide) (PEO)+lithium perchlorate (LiClO4) (i.e. the inorganic salt) and epoxidized natural rubber (ENR-25) with 25 mol% of epoxide content+LiClO4. Impedance spectra with salt content as parameter tell us that we have interaction between dipolar entities leading to dispersion of relaxation times. However, as scaling relations show, dispersion of relaxation times does not depend on salt content in the PEO system. The relaxation peak for the imaginary part of electric modulus (M″) provides information on long-range motion of dipoles. Summarizing the results from imaginary part of impedance spectrum (Z″), tan δ (imaginary/real of permittivities) and M″ for the two systems under the discussion, PEO behaves like a mixture of chains with dipoles. There are interactions between the dipoles, but they are relaxing individually. Therefore, we see PEO-salt system as a polymer electrolyte where only a tiny fraction of added salt molecules becomes electrically active in promoting conductance. However, ENR-25-salt system behaves just as a macroscopic dipole and it can not display electrode polarization or electric relaxation because there is no mobility of individual dipoles. Hence, ENR-25-salt does not form a polymer electrolyte in the classic sense.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Höhr, T., P. Pendzig, W. Dieterich et P. Maass. « Dynamics of disordered dipolar systems ». Physical Chemistry Chemical Physics 4, no 14 (30 mai 2002) : 3168–72. http://dx.doi.org/10.1039/b110484e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Fujiki, N. M., K. De’Bell et D. J. W. Geldart. « Lattice sums for dipolar systems ». Physical Review B 36, no 16 (1 décembre 1987) : 8512–16. http://dx.doi.org/10.1103/physrevb.36.8512.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yukalov, V. I. « Dipolar and spinor bosonic systems ». Laser Physics 28, no 5 (11 avril 2018) : 053001. http://dx.doi.org/10.1088/1555-6611/aa9150.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Würger, Alois. « Tunneling systems with dipolar interactions ». Physica B : Condensed Matter 263-264 (mars 1999) : 253–57. http://dx.doi.org/10.1016/s0921-4526(98)01225-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Armstrong, J. R., N. T. Zinner, D. V. Fedorov et A. S. Jensen. « Thermodynamics of Dipolar Chain Systems ». Few-Body Systems 54, no 5-6 (28 juillet 2012) : 605–18. http://dx.doi.org/10.1007/s00601-012-0474-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Raynaud, R., L. Petitdemange et E. Dormy. « Dipolar dynamos in stratified systems ». Monthly Notices of the Royal Astronomical Society 448, no 3 (25 février 2015) : 2055–65. http://dx.doi.org/10.1093/mnras/stv122.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Torres, A., J. Jimenez, B. Vega et J. A. de Saja. « Non-Debye Behavior of Dipolar Relaxation in Systems with Dipolar Interaction ». IEEE Transactions on Electrical Insulation EI-21, no 3 (juin 1986) : 395–98. http://dx.doi.org/10.1109/tei.1986.349082.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Kutteh, Ramzi, et John B. Nicholas. « Implementing the cell multipole method for dipolar and charged dipolar systems ». Computer Physics Communications 86, no 3 (mai 1995) : 236–54. http://dx.doi.org/10.1016/0010-4655(94)00020-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Ames, Benedikt, Edoardo G. Carnio, Vyacheslav N. Shatokhin et Andreas Buchleitner. « Theory of multiple quantum coherence signals in dilute thermal gases ». New Journal of Physics 24, no 1 (1 janvier 2022) : 013024. http://dx.doi.org/10.1088/1367-2630/ac4054.

Texte intégral
Résumé :
Abstract Manifestations of dipole–dipole interactions in dilute thermal gases are difficult to sense because of strong inhomogeneous broadening. Recent experiments reported signatures of such interactions in fluorescence detection-based measurements of multiple quantum coherence (MQC) signals, with many characteristic features hitherto unexplained. We develop an original open quantum systems theory of MQC in dilute thermal gases, which allows us to resolve this conundrum. Our theory accounts for the vector character of the atomic dipoles as well as for driving laser pulses of arbitrary strength, includes the far-field coupling between the dipoles, which prevails in dilute ensembles, and effectively incorporates atomic motion via a disorder average. We show that collective decay processes—which were ignored in previous treatments employing the electrostatic form of dipolar interactions—play a key role in the emergence of MQC signals.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Levesque. « New solid phase of dipolar systems ». Condensed Matter Physics 20, no 3 (septembre 2017) : 33601. http://dx.doi.org/10.5488/cmp.20.33601.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Sutcliffe, Oliver B., Richard C. Storr, Thomas L. Gilchrist, Paul Rafferty et Andrew P. A. Crew. « Azafulvenium methides : new extended dipolar systems ». Chemical Communications, no 8 (2000) : 675–76. http://dx.doi.org/10.1039/b001521k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Nattermann, T. « Dipolar interaction in random-field systems ». Journal of Physics A : Mathematical and General 21, no 12 (21 juin 1988) : L645—L649. http://dx.doi.org/10.1088/0305-4470/21/12/005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Scheffler, F., P. Maass, J. Roth et H. Stark. « Quasicrystalline order in binary dipolar systems ». European Physical Journal B 42, no 1 (novembre 2004) : 85–94. http://dx.doi.org/10.1140/epjb/e2004-00359-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Sun, J. M., et Weili Luo. « Dynamics of low-dimensional dipolar systems ». Physical Review E 56, no 4 (1 octobre 1997) : 3986–92. http://dx.doi.org/10.1103/physreve.56.3986.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Bembenek, Scott D., et Grzegorz Szamel. « Kinetic theory for dilute dipolar systems ». Journal of Chemical Physics 117, no 19 (15 novembre 2002) : 8886–91. http://dx.doi.org/10.1063/1.1496460.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Füzi, János, et Lajos Károly Varga. « Dipolar interactions in nanosized granular systems ». Physica B : Condensed Matter 343, no 1-4 (janvier 2004) : 320–24. http://dx.doi.org/10.1016/j.physb.2003.08.063.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Kora, Youssef, et Massimo Boninsegni. « Patterned Supersolids in Dipolar Bose Systems ». Journal of Low Temperature Physics 197, no 5-6 (4 septembre 2019) : 337–47. http://dx.doi.org/10.1007/s10909-019-02229-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Sutcliffe, Oliver B., Richard C. Storr, Thomas L. Gilchrist et Paul Rafferty. « Azafulvenium methides : new extended dipolar systems ». Journal of the Chemical Society, Perkin Transactions 1, no 15 (2001) : 1795–806. http://dx.doi.org/10.1039/b103250j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Wang, K. X., et Z. Ye. « Collective behaviour in electrical dipolar systems ». Journal of Physics : Condensed Matter 13, no 35 (16 août 2001) : 8031–38. http://dx.doi.org/10.1088/0953-8984/13/35/310.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Fung, B. M., V. L. Ermakov et A. K. Khitrin. « Coherent Response Signals of Dipolar-coupled Spin Systems ». Zeitschrift für Naturforschung A 59, no 4-5 (1 mai 2004) : 209–16. http://dx.doi.org/10.1515/zna-2004-4-504.

Texte intégral
Résumé :
Recently, it has been demonstrated that long pulses of a weak radio-frequency field can generate long-lived coherent NMR signals in bulk liquid crystals, which are systems of dipolar-coupled spins with unresolved conventional spectra. Here we describe this phenomenon in more detail and present results of new experimental investigations and computer simulations. It is shown that such response signals can also be excited when the initial spin state of a system corresponds to dipolar ordering. In addition, results of the application of weak pulses on liquid crystalline systems with heteronuclear dipolar couplings are presented, and the role of overlapping peaks is explored.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Doronin, S. I., E. B. Fel’dman, E. I. Kuznetsova, G. B. Furman et S. D. Goren. « Dipolar temperature and multiple-quantum NMR dynamics in dipolar ordered-spin systems ». JETP Letters 86, no 1 (septembre 2007) : 24–27. http://dx.doi.org/10.1134/s0021364007130061.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Tang, Ke, Hong Jie Yang, Lin Hong Cao, Hong Tao Yu, Jing Song Liu et Jun Xia Wang. « High Efficiency Algorithm for the Dipolar Interaction Energy of 2D Magnetic Nanoparticle Systems ». Materials Science Forum 689 (juin 2011) : 108–13. http://dx.doi.org/10.4028/www.scientific.net/msf.689.108.

Texte intégral
Résumé :
Most of simulations often require the calculation of all pairwise interaction in large ensembles of particles, such as N-body problem of gravitation, electrostatic interaction and magnetic dipolar interaction, etc. The main difficulty in the calculation of long-range interaction is how to accelerate the slow convergence of the occurring sums. In this work, we are interested in the dipolar interaction in the two dimensional (2D) magnetic dipolar nanoparticle systems, which have attracted much attention due to both their important technological applications such as high-density patterned recording media and their rich and often unusual experimental behaviours. We develop a high efficiency algorithm based on the Lekner method to evaluate the magnetic dipolar energy for such systems, where the simulation cell is periodically replicated in the plane. Taking advantage of the symmetry of the systems, the dipolar interaction energy is expressed by rapidly converging series of modified Bessel functions in our algorithm. We found that our algorithm is better than the traditional Ewald summation method in efficiency for the regular arrays. Moreover, two simple formulas are obtained to evaluate the self-energy, which is important in the simulation of the dipolar systems.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Macrì, Tommaso, et Fabio Cinti. « Many-Body Physics of Low-Density Dipolar Bosons in Box Potentials ». Condensed Matter 4, no 1 (22 janvier 2019) : 17. http://dx.doi.org/10.3390/condmat4010017.

Texte intégral
Résumé :
Crystallization is a generic phenomenon in classical and quantum mechanics arising in a variety of physical systems. In this work, we focus on a specific platform, ultracold dipolar bosons, which can be realized in experiments with dilute gases. We reviewed the relevant ingredients leading to crystallization, namely the interplay of contact and dipole–dipole interactions and system density, as well as the numerical algorithm employed. We characterized the many-body phases investigating correlations and superfluidity.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Biehs, Svend-Age. « Thermal radiation in dipolar many-body systems ». EPJ Web of Conferences 266 (2022) : 07001. http://dx.doi.org/10.1051/epjconf/202226607001.

Texte intégral
Résumé :
The framework of fluctuational electrodynamics for dipolar many-body systems is one of the working horse for theoretical studies of thermal radiation at the nanoscale which includes dissipation and retardation in a naturally way. Based on this framework I will discuss near-field thermal radiation in non-reciprocal and topological many-body systems. The appearance of the Hall and non-reciprocal diode effect for thermal radiation illustrates nicely the interesting physics in such systems as well as the edge mode dominated heat transfer in topological Su-Schrieffer-Heeger chains and a honeycomb lattices of plasmonic nanoparticles. In the latter, the theory allows for quantifying the effciency of the edge-mode dominated heat transfer as function of the dissipation. Finally, I will present how the theoretical framework can be generalized to study far-field thermal emission of many-body systems close to an environment like a substrate, for instance. This theory might be particularly interesting for modelling thermal imaging microscopes.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Schechter, M., P. C. E. Stamp et N. Laflorencie. « Quantum spin glass in anisotropic dipolar systems ». Journal of Physics : Condensed Matter 19, no 14 (23 mars 2007) : 145218. http://dx.doi.org/10.1088/0953-8984/19/14/145218.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Høye, J. S., et G. Stell. « Ferroelectric phase transition in simple dipolar systems ». Molecular Physics 86, no 4 (novembre 1995) : 707–13. http://dx.doi.org/10.1080/00268979500102301.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Pshenichnikov, A. F., et V. V. Mekhonoshin. « Phase separation in dipolar systems : Numerical simulation ». Journal of Experimental and Theoretical Physics Letters 72, no 4 (août 2000) : 182–85. http://dx.doi.org/10.1134/1.1320108.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Jensen, S. J. Knak, et K. Kjaer. « Dipolar spin systems : models for LiHoF4and LiHo0.3Y0.7F4 ». Journal of Physics : Condensed Matter 1, no 13 (3 avril 1989) : 2361–68. http://dx.doi.org/10.1088/0953-8984/1/13/009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Klapp, S. H. L., et G. N. Patey. « Ferroelectric order in positionally frozen dipolar systems ». Journal of Chemical Physics 115, no 10 (8 septembre 2001) : 4718–31. http://dx.doi.org/10.1063/1.1388184.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Evensky, David A., et Peter G. Wolynes. « Transport of dipolar excitons in disordered systems ». Chemical Physics Letters 209, no 1-2 (juin 1993) : 185–89. http://dx.doi.org/10.1016/0009-2614(93)87221-n.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Załuska-Kotur, Magdalena A., et Marek Cieplak. « Glassy properties of dilute dipolar Ising systems ». Journal of Magnetism and Magnetic Materials 136, no 1-2 (septembre 1994) : 127–37. http://dx.doi.org/10.1016/0304-8853(94)90456-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Weis, J.-J. « Simulation of quasi-two-dimensional dipolar systems ». Journal of Physics : Condensed Matter 15, no 15 (9 avril 2003) : S1471—S1495. http://dx.doi.org/10.1088/0953-8984/15/15/311.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Ghazali, A., et J. C. S. Lévy. « Solid-liquid transition in 2D dipolar systems ». Europhysics Letters (EPL) 74, no 2 (avril 2006) : 355–61. http://dx.doi.org/10.1209/epl/i2005-10532-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Ayton, G., M. J. P. Gingras et G. N. Patey. « Orientational Ordering in Spatially Disordered Dipolar Systems ». Physical Review Letters 75, no 12 (18 septembre 1995) : 2360–63. http://dx.doi.org/10.1103/physrevlett.75.2360.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

BILSKI, P., N. A. SERGEEV et J. WASICKI. « Echoes in spin systems with dipolar interactions ». Molecular Physics 101, no 3 (10 février 2003) : 335–38. http://dx.doi.org/10.1080/0026897021000018178.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Joffrin, J. « Electric dipolar systems : Examples of glassy state ». Phase Transitions 32, no 1-4 (avril 1991) : 141–43. http://dx.doi.org/10.1080/01411599108219171.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Goerz, Oliver, et Helmut Ritter. « N-Alkylated dinitrones from isosorbide as cross-linkers for unsaturated bio-based polyesters ». Beilstein Journal of Organic Chemistry 10 (22 avril 2014) : 902–9. http://dx.doi.org/10.3762/bjoc.10.88.

Texte intégral
Résumé :
Isosorbide was esterified with acryloyl chloride and crotonic acid yielding isosorbide diacrylate (9a) and isosorbide dicrotonate (9b), which were reacted with benzaldehyde oxime in the presence of zinc(II) iodide and boron triflouride etherate as catalysts to obtain N-alkylated dinitrones 10a/b. Poly(isosorbide itaconite -co- succinate) 13 as a bio-based unsaturated polyester was cross-linked by a 1,3-dipolar cycloaddition with the received dinitrones 10a/b. The 1,3-dipolar cycloaddition led to a strong change of the mechanical properties which were investigated by rheological measurements. Nitrones derived from methyl acrylate (3a) and methyl crotonate (3b) were used as model systems and reacted with dimethyl itaconate to further characterize the 1,3-dipolaric cycloaddition.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Datta, Avijit, Christoph A. Marx, Christoph Uiberacker et Werner Jakubetz. « Dipole mediated tunnelling : Robust single-pulse population transfer across dipolar double-well systems ». Chemical Physics 338, no 2-3 (septembre 2007) : 237–51. http://dx.doi.org/10.1016/j.chemphys.2007.03.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Ayton, G., M. J. P. Gingras et G. N. Patey. « Ferroelectric and dipolar glass phases of noncrystalline systems ». Physical Review E 56, no 1 (1 juillet 1997) : 562–70. http://dx.doi.org/10.1103/physreve.56.562.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Gabay, M., T. Garel et R. Botet. « Two-dimensional chiral dipolar systems : a theoretical investigation ». Journal of Physics C : Solid State Physics 20, no 35 (20 décembre 1987) : 5963–74. http://dx.doi.org/10.1088/0022-3719/20/35/012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Cichocki, B., B. U. Felderhof et K. Hinsen. « Electrostatic interactions in periodic Coulomb and dipolar systems ». Physical Review A 39, no 10 (1 mai 1989) : 5350–58. http://dx.doi.org/10.1103/physreva.39.5350.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Ravichandran, Sarangan, et Biman Bagchi. « Rank Dependence of Orientational Relaxation in Dipolar Systems ». Journal of Physical Chemistry 98, no 11 (mars 1994) : 2729–31. http://dx.doi.org/10.1021/j100062a004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Załuska-Kotur, Magdalena A., et J. S. Høye. « Dipolar systems — transition to glassy ordering on dilution ». Journal of Magnetism and Magnetic Materials 161 (août 1996) : 111–17. http://dx.doi.org/10.1016/s0304-8853(96)00066-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Kędziora, P., J. Jadżyn, K. De Smet et L. Hellemans. « Nonlinear dielectric relaxation in non-interacting dipolar systems ». Chemical Physics Letters 289, no 5-6 (juin 1998) : 541–45. http://dx.doi.org/10.1016/s0009-2614(98)00457-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Carmesin, H. O. « Mapping of quadropolar to dipolar many-particle systems ». Physics Letters A 125, no 6-7 (novembre 1987) : 294–98. http://dx.doi.org/10.1016/0375-9601(87)90145-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Arjona, Odon, Roberto Fernandez De La Pkadilla, Rosa A. Perez et Joaquin Plumet. « New functionalizations of oxanorbornenic systems via 1,3-dipolar ». Tetrahedron 44, no 23 (janvier 1988) : 7199–204. http://dx.doi.org/10.1016/s0040-4020(01)86090-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Kleemann, W., et A. Klossner. « Glassy and domain states in random dipolar systems ». Ferroelectrics 150, no 1 (décembre 1993) : 35–45. http://dx.doi.org/10.1080/00150199308008692.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie