Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Diodes à avalanche à photon unique.

Articles de revues sur le sujet « Diodes à avalanche à photon unique »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Diodes à avalanche à photon unique ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Zunino, Alessandro, Giacomo Garrè, Eleonora Perego, Sabrina Zappone, Mattia Donato et Giuseppe Vicidomini. « s2ISM : A Comprehensive Approach for Uncompromised Super-Resolution and Optical Sectioning in Image Scanning Microscopy ». EPJ Web of Conferences 309 (2024) : 04021. http://dx.doi.org/10.1051/epjconf/202430904021.

Texte intégral
Résumé :
Image Scanning Microscopy (ISM) enables good signal-to-noise ratio (SNR), super-resolution and high information content imaging by leveraging array detection in a laser-scanning architecture. However, the SNR is still limited by the size of the detector, which is conventionally small to avoid collecting out-of-focus light. Nonetheless, the ISM dataset inherently contains the axial information of the fluorescence emitters. We leverage this knowledge to achieve computational optical sectioning without sacrificing the conventional benefits of ISM. We invert the physical model to fuse the raw dataset into a single image with improved sampling, SNR. lateral resolution, and optical sectioning. We provide a complete theoretical framework and validate our approach with experimental images of biological samples acquired with a custom setup equipped with a single photon avalanche diode (SPAD) array detector. Furthermore, we generalize our method to other imaging techniques, such as multi-photon excitation fluorescence microscopy and fluoresce lifetime imaging. To enable this latter, we take advantage of the single-photon timing ability of SPAD arrays, accessing additional sample information. Our method outperforms conventional reconstruction techniques and opens new perspectives for exploring the unique spatio-temporal information provided by SPAD array detectors.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lu, Z., X. Zheng, W. Sun, J. Campbell, X. Jiang et M. A. Itzler. « InGaAs/InP Single Photon Avalanche Diodes ». ECS Transactions 45, no 33 (2 avril 2013) : 37–43. http://dx.doi.org/10.1149/04533.0037ecst.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gulinatti, Angelo. « Single photon avalanches diodes ». Photoniques, no 125 (2024) : 63–68. http://dx.doi.org/10.1051/photon/202412563.

Texte intégral
Résumé :
Twenty years ago the detection of single photons was little more than a scientific curiosity reserved to a few specialists. Today it is a flourishing field with an ecosystem that extends from university laboratories to large semiconductor manufacturers. This change of paradigm has been stimulated by the emergence of critical applications that rely on single photon detection, and by technical progresses in the detector field. The single photon avalanche diode has unquestionably played a major role in this process.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Xu, Qing Yao, Hong Pei Wang, Xiang Chao Hu, Hai Qian, Ying Cheng Peng, Xiao Hang Ren et Yan Jie Li. « Quenching Circuit of Avalanche Diodes for Single Photon Detection ». Applied Mechanics and Materials 437 (octobre 2013) : 1073–76. http://dx.doi.org/10.4028/www.scientific.net/amm.437.1073.

Texte intégral
Résumé :
To reduce the afterpulsing in single photon detection based on avalanche diodes, an advanced passive quenching circuit for operation in free-running mode is developed. The measurement setup is designed. The dark count rate (DCR) and afterpulsing of Single photon avalanche diodes (SPADs) are measured. The results show that the new passive quenching circuit has a better afterpulsing performance compared to traditional circuits.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Petticrew, Jonathan D., Simon J. Dimler, Xinxin Zhou, Alan P. Morrison, Chee Hing Tan et Jo Shien Ng. « Avalanche Breakdown Timing Statistics for Silicon Single Photon Avalanche Diodes ». IEEE Journal of Selected Topics in Quantum Electronics 24, no 2 (mars 2018) : 1–6. http://dx.doi.org/10.1109/jstqe.2017.2779834.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Pullano, Salvatore A., Giuseppe Oliva, Twisha Titirsha, Md Maruf Hossain Shuvo, Syed Kamrul Islam, Filippo Laganà, Antonio La Gatta et Antonino S. Fiorillo. « Design of an Electronic Interface for Single-Photon Avalanche Diodes ». Sensors 24, no 17 (28 août 2024) : 5568. http://dx.doi.org/10.3390/s24175568.

Texte intégral
Résumé :
Single-photon avalanche diodes (SPADs) belong to a family of avalanche photodiodes (APDs) with single-photon detection capability that operate above the breakdown voltage (i.e., Geiger mode). Design and technology constraints, such as dark current, photon detection probability, and power dissipation, impose inherent device limitations on avalanche photodiodes. Moreover, after the detection of a photon, SPADs require dead time for avalanche quenching and recharge before they can detect another photon. The reduction in dead time results in higher efficiency for photon detection in high-frequency applications. In this work, an electronic interface, based on the pole-zero compensation technique for reducing dead time, was investigated. A nanosecond pulse generator was designed and fabricated to generate pulses of comparable voltage to an avalanche transistor. The quenching time constant (τq) is not affected by the compensation capacitance variation, while an increase of about 30% in the τq is related to the properties of the specific op-amp used in the design. Conversely, the recovery time was observed to be strongly influenced by the compensation capacitance. Reductions in the recovery time, from 927.3 ns down to 57.6 ns and 9.8 ns, were observed when varying the compensation capacitance in the range of 5–0.1 pF. The experimental results from an SPAD combined with an electronic interface based on an avalanche transistor are in strong accordance, providing similar output pulses to those of an illuminated SPAD.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ghioni, Massimo, Angelo Gulinatti, Ivan Rech, Franco Zappa et Sergio Cova. « Progress in Silicon Single-Photon Avalanche Diodes ». IEEE Journal of Selected Topics in Quantum Electronics 13, no 4 (2007) : 852–62. http://dx.doi.org/10.1109/jstqe.2007.902088.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zappa, F., A. Tosi, A. Dalla Mora et S. Tisa. « SPICE modeling of single photon avalanche diodes ». Sensors and Actuators A : Physical 153, no 2 (août 2009) : 197–204. http://dx.doi.org/10.1016/j.sna.2009.05.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Neri, L., S. Tudisco, F. Musumeci, A. Scordino, G. Fallica, M. Mazzillo et M. Zimbone. « Dead Time of Single Photon Avalanche Diodes ». Nuclear Physics B - Proceedings Supplements 215, no 1 (juin 2011) : 291–93. http://dx.doi.org/10.1016/j.nuclphysbps.2011.04.034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mita, R., G. Palumbo et P. G. Fallica. « Accurate model for single-photon avalanche diodes ». IET Circuits, Devices & ; Systems 2, no 2 (2008) : 207. http://dx.doi.org/10.1049/iet-cds:20070180.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Tan, S. L., D. S. Ong et H. K. Yow. « Advantages of thin single-photon avalanche diodes ». physica status solidi (a) 204, no 7 (juillet 2007) : 2495–99. http://dx.doi.org/10.1002/pssa.200723138.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Bulling, Anthony Frederick, et Ian Underwood. « Pion Detection Using Single Photon Avalanche Diodes ». Sensors 23, no 21 (27 octobre 2023) : 8759. http://dx.doi.org/10.3390/s23218759.

Texte intégral
Résumé :
We present the first reported use of a CMOS-compatible single photon avalanche diode (SPAD) array for the detection of high-energy charged particles, specifically pions, using the Super Proton Synchrotron at CERN, the European Organization for Nuclear Research. The results confirm the detection of incident high-energy pions at 120 GeV, minimally ionizing, which complements the variety of ionizing radiation that can be detected with CMOS SPADs.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Goll, Bernhard, Bernhard Steindl et Horst Zimmermann. « Avalanche Transients of Thick 0.35 µm CMOS Single-Photon Avalanche Diodes ». Micromachines 11, no 9 (19 septembre 2020) : 869. http://dx.doi.org/10.3390/mi11090869.

Texte intégral
Résumé :
Two types of single-photon avalanche diodes (SPADs) with different diameters are investigated regarding their avalanche behavior. SPAD type A was designed in standard 0.35-µm complementary metal-oxide-semiconductor (CMOS) including a 12-µm thick p- epi-layer with diameters of 50, 100, 200, and 400 µm; and type B was implemented in the high-voltage (HV) line of this process with diameters of 48.2 and 98.2 µm. Each SPAD is wire-bonded to a 0.35-µm CMOS clocked gating chip, which controls charge up to a maximum 6.6-V excess bias, active, and quench phase as well as readout during one clock period. Measurements of the cathode voltage after photon hits at SPAD type A resulted in fall times (80 to 20%) of 10.2 ns for the 50-µm diameter SPAD for an excess bias of 4.2 V and 3.45 ns for the 200-µm diameter device for an excess bias of 4.26 V. For type B, fall times of 8 ns for 48.2-µm diameter and 5.4-V excess bias as well as 2 ns for 98.2-µm diameter and 5.9-V excess bias were determined. In measuring the whole capacitance at the cathode of the SPAD with gating chip connected, the avalanche currents through the detector were calculated. This resulted in peak avalanche currents of, e.g., 1.19 mA for the 100-µm SPAD type A and 1.64 mA for the 98.2-µm SPAD type B for an excess bias of 5 and 4.9 V, respectively.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Tan, C. H., J. S. Ng, G. J. Rees et J. P. R. David. « Statistics of Avalanche Current Buildup Time in Single-Photon Avalanche Diodes ». IEEE Journal of Selected Topics in Quantum Electronics 13, no 4 (2007) : 906–10. http://dx.doi.org/10.1109/jstqe.2007.903843.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Cazimajou, Thibauld, Marco Pala, Jerome Saint-Martin, Remi Helleboid, Jeremy Grebot, Denis Rideau et Philippe Dollfus. « Quenching Statistics of Silicon Single Photon Avalanche Diodes ». IEEE Journal of the Electron Devices Society 9 (2021) : 1098–102. http://dx.doi.org/10.1109/jeds.2021.3127013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Mohammad Azim Karami, Mohammad Azim Karami, Armin Amiri-Sani Armin Amiri-Sani et Mohammad Hamzeh Ghormishi Mohammad Hamzeh Ghormishi. « Tunneling in submicron CMOS single-photon avalanche diodes ». Chinese Optics Letters 12, no 1 (2014) : 012501–12503. http://dx.doi.org/10.3788/col201412.012501.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Akil, N., S. E. Kerns, D. V. Kerns, A. Hoffmann et J.-P. Charles. « Photon generation by silicon diodes in avalanche breakdown ». Applied Physics Letters 73, no 7 (17 août 1998) : 871–72. http://dx.doi.org/10.1063/1.121971.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Ullah Habib, Mohammad Habib, Farhan Quaiyum, Khandaker A. Al Mamun, Syed K. Islam et Nicole McFarlane. « Simulation and Modeling of Single Photon Avalanche Diodes ». International Journal of High Speed Electronics and Systems 24, no 03n04 (septembre 2015) : 1520006. http://dx.doi.org/10.1142/s0129156415200062.

Texte intégral
Résumé :
A comprehensive SPICE model is developed for single photon avalanche diodes (SPADs). The model simulates both the static and dynamic behaviors of SPADs. Parameters of the model were extracted form experimental data obtained from SPADs designed and fabricated in a standard 0.5μm CMOS process. In this model, the resistive behavior of the device was modeled with an exponential function. Moreover, the device simulated response to incident optical power stimulation is modeled. Experimentally extracted parameters were incorporated into the model, and simulation results agreed with the experimental data.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Karami, Mohammad Azim, Lucio Carrara, Cristiano Niclass, Matthew Fishburn et Edoardo Charbon. « RTS Noise Characterization in Single-Photon Avalanche Diodes ». IEEE Electron Device Letters 31, no 7 (juillet 2010) : 692–94. http://dx.doi.org/10.1109/led.2010.2047234.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Itzler, M. A., r. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa et R. Ispasoiu. « Single photon avalanche diodes (SPADs) for 1.5 μm photon counting applications ». Journal of Modern Optics 54, no 2-3 (20 janvier 2007) : 283–304. http://dx.doi.org/10.1080/09500340600792291.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Hsieh, Chin-An, Chia-Ming Tsai, Bing-Yue Tsui, Bo-Jen Hsiao et Sheng-Di Lin. « Photon-Detection-Probability Simulation Method for CMOS Single-Photon Avalanche Diodes ». Sensors 20, no 2 (13 janvier 2020) : 436. http://dx.doi.org/10.3390/s20020436.

Texte intégral
Résumé :
Single-photon avalanche diodes (SPADs) in complementary metal-oxide-semiconductor (CMOS) technology have excellent timing resolution and are capable to detect single photons. The most important indicator for its sensitivity, photon-detection probability (PDP), defines the probability of a successful detection for a single incident photon. To optimize PDP is a cost- and time-consuming task due to the complicated and expensive CMOS process. In this work, we have developed a simulation procedure to predict the PDP without any fitting parameter. With the given process parameters, our method combines the process, the electrical, and the optical simulations in commercially available software and the calculation of breakdown trigger probability. The simulation results have been compared with the experimental data conducted in an 800-nm CMOS technology and obtained a good consistence at the wavelength longer than 600 nm. The possible reasons for the disagreement at the short wavelength have been discussed. Our work provides an effective way to optimize the PDP of a SPAD prior to its fabrication.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Kawata, Go, Keita Sasaki et Ray Hasegawa. « Avalanche-Area Dependence of Gain in Passive-Quenched Single-Photon Avalanche Diodes by Multiple-Photon Injection ». IEEE Transactions on Electron Devices 65, no 6 (juin 2018) : 2525–30. http://dx.doi.org/10.1109/ted.2018.2825995.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Zheng, Lixia, Huan Hu, Ziqing Weng, Qun Yao, Jin Wu et Weifeng Sun. « Compact Active Quenching Circuit for Single Photon Avalanche Diodes Arrays ». Journal of Circuits, Systems and Computers 26, no 10 (2 mars 2017) : 1750149. http://dx.doi.org/10.1142/s0218126617501493.

Texte intégral
Résumé :
A compact quenching circuit for Single Photon Avalanche Diode (SPAD) arrays is presented. The proposed circuit preserves the advantages of small area occupation and low power consumption, since it mainly adopts the junction capacitance of the detector to sense the avalanche current. The sensing time is now limited more by the detector rather than the circuit itself. Fabricated in TSMC standard 0.35[Formula: see text][Formula: see text]m CMOS process, the proposed circuit only occupies an area of 20[Formula: see text][Formula: see text]m[Formula: see text][Formula: see text][Formula: see text]31[Formula: see text][Formula: see text]m and can operate properly with the detector biased up to 5[Formula: see text]V above breakdown. The circuit functionality has been verified by experimental measurements, operating with 64[Formula: see text][Formula: see text][Formula: see text]64 InGaAs/InP single photon avalanche diode arrays for time-of-flight-based applications.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Privitera, Simona, Salvatore Tudisco, Luca Lanzanò, Francesco Musumeci, Alessandro Pluchino, Agata Scordino, Angelo Campisi et al. « Single Photon Avalanche Diodes : Towards the Large Bidimensional Arrays ». Sensors 8, no 8 (6 août 2008) : 4636–55. http://dx.doi.org/10.3390/s8084636.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Tian, Yuchong, Junjie Tu et Yanli Zhao. « A PSpice Circuit Model for Single-Photon Avalanche Diodes ». Optics and Photonics Journal 07, no 08 (2017) : 1–6. http://dx.doi.org/10.4236/opj.2017.78b001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Ma, Hai-Qiang, Jian-Hui Yang, Ke-Jin Wei, Rui-Xue Li et Wu Zhu. « Afterpulsing characteristics of InGaAs/InP single photon avalanche diodes ». Chinese Physics B 23, no 12 (28 novembre 2014) : 120308. http://dx.doi.org/10.1088/1674-1056/23/12/120308.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Panglosse, Aymeric, Philippe Martin-Gonthier, Olivier Marcelot, Cedric Virmontois, Olivier Saint-Pe et Pierre Magnan. « Dark Count Rate Modeling in Single-Photon Avalanche Diodes ». IEEE Transactions on Circuits and Systems I : Regular Papers 67, no 5 (mai 2020) : 1507–15. http://dx.doi.org/10.1109/tcsi.2020.2971108.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Calandri, Niccolo, Mirko Sanzaro, Alberto Tosi et Franco Zappa. « Charge Persistence in InGaAs/InP Single-Photon Avalanche Diodes ». IEEE Journal of Quantum Electronics 52, no 3 (mars 2016) : 1–7. http://dx.doi.org/10.1109/jqe.2016.2526608.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Spinelli, A., et A. L. Lacaita. « Physics and numerical simulation of single photon avalanche diodes ». IEEE Transactions on Electron Devices 44, no 11 (1997) : 1931–43. http://dx.doi.org/10.1109/16.641363.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Cova, S., A. Lacaita, M. Ghioni, G. Ripamonti et T. A. Louis. « 20‐ps timing resolution with single‐photon avalanche diodes ». Review of Scientific Instruments 60, no 6 (juin 1989) : 1104–10. http://dx.doi.org/10.1063/1.1140324.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Zheng, Lixia, Jiangjiang Tian, Ziqing Weng, Huan Hu, Jin Wu et Weifeng Sun. « An Improved Convergent Model for Single-Photon Avalanche Diodes ». IEEE Photonics Technology Letters 29, no 10 (15 mai 2017) : 798–801. http://dx.doi.org/10.1109/lpt.2017.2685680.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Neri, L., S. Tudisco, L. Lanzanò, F. Musumeci, S. Privitera, A. Scordino, G. Condorelli et al. « Design and characterization of single photon avalanche diodes arrays ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 617, no 1-3 (mai 2010) : 432–33. http://dx.doi.org/10.1016/j.nima.2009.06.085.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Tudisco, Salvatore, Francesco Musumeci, Luca Lanzano, Agata Scordino, Simona Privitera, Angelo Campisi, Luigi Cosentino et al. « A New Generation of SPAD—Single-Photon Avalanche Diodes ». IEEE Sensors Journal 8, no 7 (juillet 2008) : 1324–29. http://dx.doi.org/10.1109/jsen.2008.926962.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Tisa, Simone, Fabrizio Guerrieri et Franco Zappa. « Variable-load quenching circuit for single-photon avalanche diodes ». Optics Express 16, no 3 (2008) : 2232. http://dx.doi.org/10.1364/oe.16.002232.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Assanelli, Mattia, Antonino Ingargiola, Ivan Rech, Angelo Gulinatti et Massimo Ghioni. « Photon-Timing Jitter Dependence on Injection Position in Single-Photon Avalanche Diodes ». IEEE Journal of Quantum Electronics 47, no 2 (février 2011) : 151–59. http://dx.doi.org/10.1109/jqe.2010.2068038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Gaskill, D. Kurt, Jun Hu, X. Xin, Jian Hui Zhao, Brenda L. VanMil, Rachael L. Myers-Ward et Charles R. Eddy. « Proton Irradiation of 4H-SiC Ultraviolet Single Photon Avalanche Diodes ». Materials Science Forum 679-680 (mars 2011) : 551–54. http://dx.doi.org/10.4028/www.scientific.net/msf.679-680.551.

Texte intégral
Résumé :
The effects of proton irradiation on uv 4H-SiC single photon avalanche photodiodes (SPADs) are reported. The SPADs, grown by chemical vapor deposition, were designed for uv operation with dark count rates (DCR) of about 30 kHz and single photon detection efficiency (SPDE) of 4.89%. The SPADs were irradiated with 2 MeV protons to a fluence of 1012 cm-2. After irradiation, the I-V characteristics show forward voltage (<1.9 V) generation-recombination currents 2 to 3 times higher than before irradiation. Single photon counting measurements imply generation-recombination centers created in the band gap after irradiation. For threshold voltage ranging from 23 to 26 mV, the 4H-SiC SPAD showed low DCR (<54 kHz) and high SPDE (>1%) after irradiation. The SPADs demonstrated proton radiation tolerance for geosynchronous space applications.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Buchner, Andre, Stefan Hadrath, Roman Burkard, Florian M. Kolb, Jennifer Ruskowski, Manuel Ligges et Anton Grabmaier. « Analytical Evaluation of Signal-to-Noise Ratios for Avalanche- and Single-Photon Avalanche Diodes ». Sensors 21, no 8 (20 avril 2021) : 2887. http://dx.doi.org/10.3390/s21082887.

Texte intégral
Résumé :
Performance of systems for optical detection depends on the choice of the right detector for the right application. Designers of optical systems for ranging applications can choose from a variety of highly sensitive photodetectors, of which the two most prominent ones are linear mode avalanche photodiodes (LM-APDs or APDs) and Geiger-mode APDs or single-photon avalanche diodes (SPADs). Both achieve high responsivity and fast optical response, while maintaining low noise characteristics, which is crucial in low-light applications such as fluorescence lifetime measurements or high intensity measurements, for example, Light Detection and Ranging (LiDAR), in outdoor scenarios. The signal-to-noise ratio (SNR) of detectors is used as an analytical, scenario-dependent tool to simplify detector choice for optical system designers depending on technologically achievable photodiode parameters. In this article, analytical methods are used to obtain a universal SNR comparison of APDs and SPADs for the first time. Different signal and ambient light power levels are evaluated. The low noise characteristic of a typical SPAD leads to high SNR in scenarios with overall low signal power, but high background illumination can saturate the detector. LM-APDs achieve higher SNR in systems with higher signal and noise power but compromise signals with low power because of the noise characteristic of the diode and its readout electronics. Besides pure differentiation of signal levels without time information, ranging performance in LiDAR with time-dependent signals is discussed for a reference distance of 100 m. This evaluation should support LiDAR system designers in choosing a matching photodiode and allows for further discussion regarding future technological development and multi pixel detector designs in a common framework.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Kurilla, Boldizsár. « Single Photon Communication with Avalanche Diodes and the General Basics of Photon Counting ». Academic and Applied Research in Military and Public Management Science 15, no 1 (30 avril 2016) : 19–30. http://dx.doi.org/10.32565/aarms.2016.1.2.

Texte intégral
Résumé :
Single photon communication (SPC) already exists in several applications in laboratory and even outdoor conditions. In the field of quantum cryptography SPC experiments are part of military applications too. There are several methods to detect every single impacting photon in such an experiment. Mostly photomultiplier tubes (PMT) are used. In some cases single photon avalanche diodes (SPAD) are more suitable for photon detection. Both the SPADs and PMTs have advantages and disadvantages. Usually PMTs have much larger detection areas than SPADs, but most of the PMTs detection efficiency peaks at 400 nm wavelength compared to the SPADs, where it peaks at 600–700 nm wavelength. For long distance laser measurements the higher wavelength is more suitable due to the Rayleigh scattering, but the detection hole of SPAD is very tight, which is why it is really hard to target the laser punctually without an optical gyroscope.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Di Capua, F., M. Campajola, L. Campajola, C. Nappi, E. Sarnelli, L. Gasparini et H. Xu. « Random Telegraph Signal in Proton Irradiated Single-Photon Avalanche Diodes ». IEEE Transactions on Nuclear Science 65, no 8 (août 2018) : 1654–60. http://dx.doi.org/10.1109/tns.2018.2814823.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Wu, Jau-Yang, Ping-Keng Lu et Sheng-Di Lin. « Two-dimensional photo-mapping on CMOS single-photon avalanche diodes ». Optics Express 22, no 13 (26 juin 2014) : 16462. http://dx.doi.org/10.1364/oe.22.016462.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Dalla Mora, A., A. Tosi, D. Contini, L. Di Sieno, G. Boso, F. Villa et A. Pifferi. « Memory effect in silicon time-gated single-photon avalanche diodes ». Journal of Applied Physics 117, no 11 (21 mars 2015) : 114501. http://dx.doi.org/10.1063/1.4915332.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Xudong Jiang, M. A. Itzler, R. Ben-Michael, K. Slomkowski, M. A. Krainak, S. Wu et Xiaoli Sun. « Afterpulsing Effects in Free-Running InGaAsP Single-Photon Avalanche Diodes ». IEEE Journal of Quantum Electronics 44, no 1 (janvier 2008) : 3–11. http://dx.doi.org/10.1109/jqe.2007.906996.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Lu, Zhiwen, Wenlu Sun, Joe C. Campbell, Xudong Jiang et Mark A. Itzler. « Pulsed Gating With Balanced InGaAs/InP Single Photon Avalanche Diodes ». IEEE Journal of Quantum Electronics 49, no 5 (mai 2013) : 485–90. http://dx.doi.org/10.1109/jqe.2013.2253762.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Rech, Ivan, Ivan Labanca, Giacomo Armellini, Angelo Gulinatti, Massimo Ghioni et Sergio Cova. « Operation of silicon single photon avalanche diodes at cryogenic temperature ». Review of Scientific Instruments 78, no 6 (juin 2007) : 063105. http://dx.doi.org/10.1063/1.2743167.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Acerbi, Fabio, Alberto Tosi et Franco Zappa. « Growths and diffusions for InGaAs/InP single-photon avalanche diodes ». Sensors and Actuators A : Physical 201 (octobre 2013) : 207–13. http://dx.doi.org/10.1016/j.sna.2013.07.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Pellion, D., K. Jradi, N. Brochard, D. Prêle et D. Ginhac. « Single-Photon Avalanche Diodes (SPAD) in CMOS 0.35 µm technology ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 787 (juillet 2015) : 380–85. http://dx.doi.org/10.1016/j.nima.2015.01.100.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Michalet, Xavier, Antonino Ingargiola, Ryan A. Colyer, Giuseppe Scalia, Shimon Weiss, Piera Maccagnani, Angelo Gulinatti, Ivan Rech et Massimo Ghioni. « Silicon Photon-Counting Avalanche Diodes for Single-Molecule Fluorescence Spectroscopy ». IEEE Journal of Selected Topics in Quantum Electronics 20, no 6 (novembre 2014) : 248–67. http://dx.doi.org/10.1109/jstqe.2014.2341568.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Hu, Jun, Xiaobin Xin, Jian H. Zhao, Brenda L. VanMil, Rachael Myers-Ward, Charles R. Eddy et David Kurt Gaskill. « Proton Irradiation of Ultraviolet 4H-SiC Single Photon Avalanche Diodes ». IEEE Transactions on Nuclear Science 58, no 6 (décembre 2011) : 3343–47. http://dx.doi.org/10.1109/tns.2011.2168980.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Gu, Jinlong, Mohammad Habib Ullah Habib et Nicole McFarlane. « Perimeter-Gated Single-Photon Avalanche Diodes : An Information Theoretic Assessment ». IEEE Photonics Technology Letters 28, no 6 (15 mars 2016) : 701–4. http://dx.doi.org/10.1109/lpt.2015.2505241.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Karami, Mohammad Azim, Abdollah Pil-Ali et Mohammad Reza Safaee. « Multistable defect characterization in proton irradiated single-photon avalanche diodes ». Optical and Quantum Electronics 47, no 7 (5 décembre 2014) : 2155–60. http://dx.doi.org/10.1007/s11082-014-0089-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie